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CHAPTER 1 

FUNDAMENTALS OF CONTROL SYSTEM  
Mr. Tirumala Vasu G, Assistant Professor 

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India 
Email Id- tirumala.vasu@presidencyuniversity.in 

A system is a combination of diverse components that function together as a collective entity 
to achieve a given activity. The physical system is described as the aggregate activity of 
physical items in a system to fulfill a purpose, for example a classroom. The classroom with 
seats, tables, fans, lighting, chalkboard, etc., together constitutes a physical system. A kite is 
made out of sticks and paper, as well as the water in a lake is likewise a form of physical 
system. 

Control system 

Control implies to govern or direct. Thus, a control system is the interconnection of numerous 
physical parts coupled in a manner to govern or steer itself or the other system. Let's examine 
a finest example utilized in our day-to-day lives, Air conditioner. It accepts the user's input 
via remote, executes the instructions, and provides the air to the relevant room. The 
temperature control mechanisms installed in the air conditioner regulates the temperature 
according to the user's needs. When the specified temperature achieved, air conditioner 
automatically cuts off the compressor. As soon as the temperature begins fluctuating, it again 
turns on the compressor. The settings may be done manually through remote. Air conditioner 
features three controls, temperature control, humidistat, monitoring air stats. The thermostat 
regulates the temperature, the humidistat controls overall relative humidity, and air stats 
regulates the airflow within the room. So, we may infer that a control system is indeed an 
interconnection of the physical components to deliver the intended function with some 
regulating action. Now, let's review some basic words that will be beneficial[1]–[5]. 

Plant 

The component of the system that is to be managed or regulated is known as plant of the 
process. In a control system, it is commonly referred as a transfer function, which establishes 
the connection between both the input and output of the system without feedback. It indicates 
that plant may be anything that receives an input and gives the output. The plant may have 
one or multiple output and inputs. The sensors are used to monitor the plant's output, whereas 
actuators control the plants inputs. The architecture of the plant is presented inFigure 1.1: 

Figure 1.1: Illustrates the architecture of the plant. 

The input variable in a system is often termed reference input and the output is known as the 
controller output. 

Controller 

The controller is the component of the system. It might also lie exterior to the system. The 
job of the controller would be to control the plant or process. Every system receives an input 
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but also defines the output after studying the nature of the input. The controller inside the 
control system is indeed a mechanism that lowers the difference between the current value 
and intended value of the system. Therefore, the actual value denotes the genuine value, 
whereas desired value is indeed the set-point or goal value. 

Input 

It is a signal from of the external energy source delivered to the control system to generate 
the intended output and it represents the desired action that is capable of causing any reaction 
in a system. The primary forms of input employed inside the control system are SISO (Single 
Input Single Output) and MIMO (Multiple Input and Multiple Output) (Multiple Input and 
Multiple Output). SISO denotes that the system provides one output for the single input, 
whereas MIMO creates multiple outputs again for multiple inputs. It is displayed below in 
Figure 1.2: 

Figure 1.2: Illustrates the signal of input u1 and output y1. 

The reference input inside a control system also was known as the set-point, the intended 
value. It functions as the foundation for error-controlled regulation employing negative 
feedback towards error control. 

Output 

It is a genuine response to the applied input signal from the control system. The inputs are 
stimulated into the system as well as the outputs are the processed outcomes of those inputs. 
The outputs are the outcomes of either a tiny element of the process or the full operation. 

Disturbances 

Disturbances are a form of signal which negatively affects the output value of the control 
system. The disruptions might be internal or external. The internal disturbances that originate 
in the system itself while the external disturbances are created outside the system. Such 
disruptions operate as an additional input to the network and the usual input and further alter 
the system's output. 

Terminology of a control system 

1. The terminology of the control system were classed as:

2. Automatic control system

3. Manual control system

4. Linear control system

5. Time-variant control method
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6. Time-invariant control method 

Automatic control system 

An automated control system without even any human interaction is known as an automatic 
control system, such as an auto-pilot control system. It is a sort of dynamic system wherein 
differential equations commonly explain processes. Other examples of the automated control 
system include freezers, automatic ticket machines, etc. Because of the use of feedback, the 
closed-loop system enables the system to rectify the disturbances in the output, which makes 
the process an automated control system. 

Manual control system 

A control system that is governed with human interaction is known as a manual control 
system. It specifies the manual controls that a person outside the system does. Examples 
include sign-off paperwork and bank reconciliation. The fundamental role of manual control 
would be to disturb or change the process. The Control system may either be automated or 
manual, or both. Automatic controls were essential when the system includes large 
transactions with similar kind. The manual controls were based on the needed judgment. 

Linear control system 

As the name says, it describes the linear connection between the input and output. Or A 
system that has the input and output connection is defined by the linear difference equation is 
referred to as a system. Such systems also obey the superposition principle. 

Time-variant control system 

A system in which both the input and output connection is characterized by the difference 
equation with changing coefficient is described as a time-variant system. 

Time-invariant control system 

A system where the input and output connection is characterized by the difference equation 
with constant coefficient was known as a time-invariant system. 

Negative feedback 

The block diagram of such a closed-loop system is depicted below (Figure 1.3): 

 

Figure 1.3: Illustrates circuit diagram of closed-loop system. 

When the input is stimulated to the controller, it creates an actuation signal which regulates 
the plant. The output, in such a circumstance, adjusts automatically until the required 
response is attained. The feedback allows the system to rectify the changes in the output and 
eliminate mistakes from it. Hence, a closed-loop system is sometimes termed an automated 
closed-loop system. 
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Almost all are acquainted with the feedback route in the control system. The feedback 
channel assists in assessing the mistake. The transfer function best reflects the connection 
between the input and output and so assists in assessing the mistake via the feedback. 

Basic ideas of a control system 

A control system defines the connectivity between numerous components. The separate 
components of a system might be electrical, hydraulic, mechanical, thermal, or chemical in 
nature. A properly designed control system tends to offer the optimal response for the overall 
system. It can also manage the external, internal, and time-dependent disruptions 
successfully. The essential ideas of a control system are: To minimize the mistake, and to 
decrease the time-response. The fewer the difference between the actual value and the 
intended value, the better the system's reaction will be. It happens because no system wants 
any fault in between. The minimal time responsiveness of the system helps to load 
modifications to the system[6], [7]. 

Example let’s explore an example of water-level control system inside a tank. When the 
pump is turned ON it permits the flow of water into to the tank. Once the tank has been filled 
up towards the specified level, the pump will turn OFF. The schematic diagram of the water-
level control system can be seen below Figure 1.4: 

 

Figure 1.4 water level control system 

Some individuals utilize a random approach that indicates the full tank and manually changes 
the ON and OFF button. But, in the sectors and workplaces where there are numerous tanks 
and enormous systems, the procedure operates automatically. The sensors deliver signals to 
the system. The water-level sensor delivers the signal towards the system that informs the 
liquid level existing in the water tank. The system compares this level with the desired water 
level. The system further gives the right reaction to get the needed tank level of water. If the 
level of water is less than the specified value, it turns ON the pumps and water from the 
inflow flow into the tank. It is an example of the feedback control system in which the sensor 
signals are provided feedback from the output. It examines the actual output of the system 
with the necessary value and adjusts appropriately. 

Through the use of feedback inside a control system, the system displays decreased 
susceptibility to the undesirable internal and external disturbances. 

Feedback loop 

We understand that in a control system this same controller creates the needed signal 
according to input. However, we have already stated earlier, that control systems are 
generally classed as: Open-loop control system and Closed-loop control system. 
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In an open-loop control system, the current input is independent of the previously created 
output. Thus it is evident that here feedback loop is not existent, since no signal is given back 
to the input for further processing. So, this causes the formation of such a system within 
which there exists a high probability of attaining such an output that displays divergence from 
the intended output. Thus in order to create a system that produces a desired outcome, 
feedback mechanisms are employed. Basically, a system combined with a feedback loop is 
called as a closed-loop control system. In this type of system, a part of the output is fed back 
to the input. Further, the created output is compared with the existing input and based on the 
fluctuation, the controller creates the signal for obtaining the required value. In the absence of 
a feedback mechanism, the output and input display non-interdependency. This indicates that 
in such system, the current output does not impose any impact on future output values[8], [9]. 

As we have previously established that the usage of feedback in a system, minimizes the 
likelihood of fluctuation inside the system parameters due to undesirable disturbances. This is 
thus because, under varying circumstances, the values of the system's parameters may display 
fluctuations. 

And such variances might lead to produce severe consequences on the functioning of the 
system. Thus the feedback is incorporated into the system, in order to render it insensitive to 
undesirable changes in the parameter. Majorly electronics circuitry like amplifiers, 
synthesizers, and etc. find applications of the feedback loops. 

Schematic Representation of Feedback System 

The graphic shown displays the block diagram of the control system with feedback in Figure 
1.5: 

 

Figure 1.5: Illustrates the control system with feedback. 

The key important components of a feedback system are detecting, regulating and actuating 
the process within the system. More precisely, the reasons for integrating feedback in any 
electrical circuit are as follows: Feedback affects the gain and also the reaction of the system. 
The usage of feedback brings the independence of the system’s features with the change in 
operating circumstances like applied voltage and fluctuating temperature. The non-linearity 
of a components included in the system tends to generate a considerable decrease in signal 
distortion. 

Types of Feedback Systems 

In every control system, feedback may be supplied in primarily two ways. Thus feedback is 
often categorized as: 
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Positive Feedback: A positive feedback system entails a situation in which the feedback 
signal is already in phase with both the reference input signal. Thus the two get merged and 
combine the resulting answer serves as input for subsequent system functioning in Figure 1.6. 

 

Figure 1.6: Illustrates the positive feedback loop with input output signal. 

As the two signals are joined to generate the resulting response the case of a positive 
feedback system, therefore this raises the total gain of the system. 

As the size of the input signal gets rises in the case of positive feedback, hence leading to 
create oscillatory response inside the system. 

Negative Feedback: The system that occurs when the feedback signal is not in phase with 
both the reference input generally referred to as a negative feedback system. Due to out of 
phase connection, the two signals were subtracted throughout order to obtain the difference 
signal in Figure 1.7. 

 

Figure 1.7:Illustrates the negative feedback loop with input output signal 

The inclusion of negative feedback gives rise to a decrease in the total benefit. As the 
difference in the two values represents the error value which is required to be compensated in 
order to get the intended value. Thus it is usually advised that the system will have a low 
value of error signal. 

As such systems give higher stability and circuit responsiveness with an increase in 
operational bandwidth. Thus most of the control systems employ negative feedback so as to 
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have a decrease in the total gain. For a better understanding of the functioning of two kinds of 
feedback systems, we might take an example of a room heater. When positive feedback is 
applied in a room heating system, subsequently when the output temperature is high and it is 
delivered to the reference input then the two will be combined and this will lead to create a 
further rise in the input signal. Hence the temperature will be elevated higher over the 
standard value. And if the temperature gets below the prescribed value then it will lead to 
trigger the shutting off the system. Therefore, a broad category one control system involves 
negative feedback. Now let us learn, how the parameters display fluctuation in a control 
system by adding the feedback. 

Effects of Parametric Variations on Output 

Let us first explore the open-loop control scheme: 

 

As we know that the transfer function of a system is specified as output by input. Thus for 
this system, it is given as: 

 

Thus 

 

Suppose due to variation in parameter, ∆G(s) is the change that gets introduced in the gain, 
thus the variation in the output will be given as: 

 

Since we know 

 

Thus on substituting this in the above equation, we will get 

 

Hence 

 

This is the change in output of the system, due to change in the transfer function of the 
system because of parameter variation in an open-loop control system. 

Suppose we have a closed-loop control system in Figure 1.8: 
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Figure 1.8: Illustrates the closed-loop control system. 

 

 

 

For a closed-loop system with negative feedback, the transfer function is given as: 

 

Let ∆G(s) be the change in the transfer function, due to parameter variation, thus the change 
in output will be given as: 

 

Since ∆G(s)H(s) is very small in comparison to G(s)H(s). Thus it can be neglected from the 
denominator. 

 

On substituting 

 

Therefore, 

 

Further 
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This describes the change in output due of the variation in the parameter. 

Since the magnitude value of 1 + G(s)H(s) is significantly bigger than unity. Thus on 
comparing eq1 with eq2, it is seen that owing to parameter fluctuation in case of closed-loop 
system overall change is output is decreased by factor 1 + G(s)H(s) (s). This is the result of 
the existence of feedback inside the system.When using the open-loop system, since the 
feedback is missing hence such a decrease is also absent. 

Open-loop Control System 

An open-loop system is a sort of control system in which the output of the system relies on 
the input however the input or even the controller is independent of an outcome of the 
system. These systems do not feature any feedback loop and so are also referred to as non-
feedback system. In open-loop systems, because output is neither monitored nor given back 
to the input for the further assessment. 

Open-loop System 

We know that a control system guides the functioning of a system in order to carry out a 
given aim. 

Everything surrounding us that gives an output demands effective regulating. Like from a 
compressor, TV, refrigerator to antennas etc. everything requires regulating, are therefore 
control systems. 

In the open-loop control system, a reference input is supplied to the system in order to 
produce the desired output. But the produced output is not evaluated by the computer for 
subsequent reference input. 

The graphic shown illustrates the block diagram of an open-loop control system inFigure 1.9: 

 

Figure 1.9: Illustrates the block diagram of an open-loop control system. 

Here as we can see that the system consists of two blocks, one is the controller while other is 
controlled process. 

Basically, according to the required output, an input is provided to the controller of the 
system. Depending on the achieved input, the controller generates the control signal which is 
fed to the processing unit. Thus according to the control signal, proper processing is 
performed and output is achieved. 

But as there is no feedback path present in the system, thus whether the achieved output is 
desired or not the input has nothing to do with it. 

So, this is the reason we say that in an open-loop system the input is independent of the 
output. 

It is noteworthy here that this generally produces an error in the system because there exist no 
chances to adjust the input when the output shows variation from the expected value. 
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Example 

We all are aware of the operation of a traffic light controller present at various road crossings. 

Basically the three signals generated by the controller is time-dependent. An internal timing 
is provided to the controller at the time of designing the system. So, when the traffic signal 
controller is installed at the crossing then each signal is displayed by the controller timely, 
independent of the rush present on any of the side. 

Here the system has nothing to do with the generated output as it is not changing its input 
according to the traffic present on any particular side or any other factor. Simply after a 
definite time interval, according to the initially provided input, the system is generating the 
output. 

Basically relays are used to provide timing sequence to the system. 

So, this clearly indicates that whatever output is achieved, the input will remain independent 
of it. 

Consider below: 

 

We know transfer function is given as: 

 

When we separately consider the transfer function of each block then it will be given as: 

  

Thus the overall transfer function will be: 

 

So, the open-loop gain will be: 
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The usage of the open-loop control system shows that the operator of the system is willing to 
contemplate some little divergence in the output from the intended value. 

Advantages of Open-loop Control System 

These systems feature simplicity in design and simple maintenance, Due to the reduced 
number of units, fundamentally the system is inexpensive, the output produced by the system 
demonstrates stability, and the operation is relatively comfortable. 

Disadvantages of Open-loop Control System 

These systems need periodic recalibration, the systems are more prone to faults, the 
alterations in the intended output might be the consequence of internal or external 
disruptions. 

Applications 

Open-loop systems commonly find their applications in the following areas are found in the 
traffic light controlling system, TV remote control, Immersion Rod, Automatic washers and 
dryers, in room heaters, Automatic door opening and shutting systems etc. So, us may deduce 
that the open-loop system never employs a feedback loop in the circuit because it has nothing 
to have with the output for additional reference input. 

Closed-Loop Control System  

A closed-loop control system is a sort of control system in which the regulating action 
demonstrates dependent on the produced output of the system. In simple terms, in these 
systems, the output produced by the system regulates the input provided to the system. 

The modification in input in response to the outcome helps to provide more consistent system 
output. Thus controllability inside the closed-loop system is obtained by the output created by 
adopting a feedback route. 

 

Figure 1.10: Illustrates the closed-loop system is obtained by the output created by 

adopting a feedback route. 

Closed-loop systems are classified as completely automated control system since it is 
constructed in a manner that the attained output is automatically compared with the reference 
input to achieve the needed output. 

Need for Closed-Loop Control System 

We have previously covered in our previous post about the control system. A control system 
is an apparatus that is meant to create a given output by the action of needed controls.Now 
the controls offered to the system may be either output independent or output dependent. This 
variance leads to produce two separate sorts of control system. 

A system wherein the controlling action was independent of the created system output was 
known as open-loop control system. When using a closed-loop system, the generated output 
governs the functioning of the system via the employed of feedback.Basically a closed-loop 
system was created to address the drawbacks associated with just an open-loop system. 
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Researchers know that open-loop systems do not contain the capacity to automatically 
produce correct output.We all are aware of the fact that the fundamental need of operating an 
electric or electronic system is to provide the required output. And in any system, if the 
measurements is not completed and the needed output is not produced then it becomes 
practically hard to acquire the precise system response.So, to get the correct system reaction 
the simplest technique is to compare the applied input with accomplished output. This assists 
in detecting the mistake which is there within the system. Therefore, after the error is 
measured then it may be decreased to the lowest feasible amount in order to produce the 
desired result.Thus in a closed-loop system, a feedback signal is sent to the input. This 
feedback signal as well as the reference input signal functions as system stimulation to 
produce the desired response. Thus in this manner, the output performs the controlling 
activity in a closed-loop system. 
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CHAPTER 2 

FEEDBACK 
Dr. Sumantra Chaudhuri, Assistant Professor 

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India 
Email Id- sumantra.c@presidencyuniversity.in 

 

Till now we have employed the phrase feedback so very many times. But one must clearly 
realize what feedback actually implies. So simply feedback functions as the feature of the 
system that permits comparison between accomplished output and reference inputs of a 
system.A feedback is often a component of the output signal which would be provided back 
to the input signal to ensure that the two can be evaluated and the intended output may be 
reached if the current output displays variance with the desired output. Thus feedback loop is 
regarded as the main parameter of the closed-loop control system (Figure 2.1). 

Feedback in just about any circuit may be typically of two sorts: 

 

Figure 2.1: Illustrates the types of feedback in control system. 

Positive Feedback: The form of feedback in a control system in which the input signal as well 
as the feedback signal are already in phase with each other is known as either a positive 
feedback system.Within those systems, the reference input is coupled with the feedback 
signal therefore boosting the gain of the whole system.Negative Feedback: Inside the case of 
negative feedback, both input signal as well as the feedback signal display out-of-phase 
interaction w.r.t each other.Thus the applied input signal as well as the feedback signal were 
subtracted to yield the error signal. This results to a decline in the total gain of the system. 
Thus one may say that it is the element that is most crucially accountable to get the desired 
reaction of a system[1]–[6]. 

 

Operation of the a Closed Loop System 

The graphic shown depicts the comprehensive block diagram depiction of a closed-loop 
control system in Figure 2.2: 
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Figure 2.2: Illustrates the comprehensive block diagram depiction of a closed-loop 

control system. 

Here as you can see how command input is delivered to a transducer. This is so because it is 
not always required that the provided input be accepted by the controller. Thus in such 
instances, the input cannot be immediately applied to the system. As it must be transformed 
from one form to another so that it may fulfill the job of reference input for the system. This 
is the reason input is originally applied towards the transducer so that it may be converted to 
a form accepted by the system according to the type of controller and process. When the 
controller creates the control signal as according input applied, therefore the needed action 
according to the created signal takes place within the system. This leads to the development 
of a certain output. But it is required to measure the created output in order to ascertain if it is 
the intended output or not. So, for this, a fraction of the obtained output is given to the input 
as well. This signal works as a feedback signal. This feedback signal, whenever compared 
against reference input, creates an error signal. This error signal is further supplied to the 
controller that creates a modified signal (proportional to error signal) which is simply a 
control input that leads the process to remove the error hence providing the desired output. 
The obtained output is known as the regulated output data and holds accuracy. 

Transfer Function of Closed-Loop Control System 

Transfer function displays the performance of the system because it is defined as that of the 
mathematics relation between both the input and output produced by the system. The gain of 
the system determines the ratio of output to input. Thus we may say the outcome of the 
system is the product of Fourier transform and input[7][8]–[11]. 

Consider the closed-loop system described below: 
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So, for the above-given system,  

 

On substituting the value of E(s) in the 1st equation 

 

On transposing 

 

This is the transfer function of a closed-loop system with negative feedback. 

For a positive feedback system, it is given as: 

 

For a unity feedback system (i.,e H(s) = 0) with a large amount of gain. The frequency 
response is unity. 

Examples of Closed-Loop Control System 

Almost all know that what a control system supervises or directs the functioning of a system 
so order to generate a specified output. In a closed-loop system, the intended output is 
attained by conducting a comparison between accomplished output and given input. And for 
this reason, a portion of the output is fed back to the controller in order to have the difference 
between the input and output value. This one is known as a feedback signal. Thus we may 
say the system whose functioning is regulated by its output is known as just a closed-loop 
control system. We have previously described a closed-loop control system in their previous 
post so to get a thorough notion of functioning you may refer the same. Here we will cover 
the instances along with the pros and downsides of closed-loop systems. 

 

Examples of closed-loop control system 

Here we shall describe the comprehensive functioning of an automated electric iron as well as 
a temperature control system. 

 

Automatic Electric Iron 

Consider the example of automated electric iron which functions as a closed-loop system. 
The image below illustrates the block diagram with main components inFigure 2.3: 
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Figure 2.3: Illustrates circuit diagram the automatic electric iron. 

An automated electric iron comprises of a thermostat that functions as a controller for the 
system, and a resistive heating component is provided that creates heat. 

The sole-plate of both the iron instrument functions as a process of the whole system. 

The fundamental functioning done by an automated electric iron is such that when the 
temperature of a sole-plate attains a specified value then the heating operation is terminated 
automatically. And when the temperature falls below a specific predetermined threshold then 
again heating begins within it.So, it is apparent that in this form of system the controlling 
relies on the output of the system.Initially, in electric iron, this same thermostat is given with 
a specified precise value which works as a reference input for the system. 

When the input is delivered to the system, then perhaps the resistive heating element creates 
heat within the system. This leads to increasing up the temperature of an iron sole. Through a 
feedback mechanism, this output temperature is contrasted with the reference input of a 
thermostat. If the produced output displays smaller value than that of the reference input, then 
the differential temperature actuates its thermostat and thus turns on the heating element. 

This resultantly creates a rise in the temperature of an iron sole.Once the temperature 
surpasses the reference value therefore the heating element automatically switches off. And 
after a given amount of time, the temperature begins to decline.However, the comparison still 
continues on and when the temperature falls below the precise value, the heating element 
immediately starts to increase the temperature of the sole. 

In this approach the continual process inside of an electric iron actually took place. 

Temperature Control System 

Let us now consider another example of the control system for temperature that acts as a 
closed-loop system. The major objective offered by a temperature control system is to 
preserve a steady temperature of water. Generally, these systems are utilized to give an 
invariable temperature (hot) there at output. 

The graphic below depicts the block diagram depiction of a closed-loop system inFigure 2.3: 

 

Figure 2.3: Illustrates the block diagram depiction of a closed-loop system. 
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Basically in such sort of systems water from an output arrive with a consistent flow rate. 
Also, internally produced steam from a valve is mixed with the water to obtain a set 
temperature of water. A pressure thermometer is employed within the system that functions 
as feedback. So, whenever a reference input is supplied to the system then the valve present 
provides a control signal that instructs the system to deliver the needed quantity of steam. 

When the steam mixes with both the water flowing from the exit then the temperature of the 
liquid is monitored by that of the pressure thermometer and is contrasted with the reference 
input provided to the system.If the intended temperature (reference input) indicates 
equivalence with the produced temperature, therefore the control signal is created and the 
flow of steam is halted.But if any degree of fluctuation occurs between the two temperature 
readings then the controller produces the control signal about the level of temperature 
difference which is additionally corrected throughout the operation. In this approach, the 
continuous process within the system is taking place and a regulated level of temperatures is 
maintained. 

Advantages 

The closed-loop system is much more accurate than that of the open-loop system because of 
regulating via the output signal. These sorts of systems are less influenced by noise as well as 
other environmental perturbations. It gives a high-frequency range of operation as well as 
being more adaptable as compared towards the open-loop system inFigure 2.4. 

 

Figure 2.4: Illustrates the graphical representation of elevator versus time. 

 

Disadvantages 

The incorporation of the feedback components leads to the formation of complex structures. 

Closed-loop systems really aren't economical. 

The issue of instability in output is a critical component of the closed-loop system since the 
existence of feedback creates timely change in the system’s output. 

Applications 

In our day to day existence, we come across different usage of closed-loop systems. From an 
air conditioner which manages to deliver the correct value of room temperature through 
making needed modifications to automated washing machines that impart the required degree 
of dryness to the fabric after washing. In a similar fashion from an automated toaster, water 
level controller, home heating system through dc motor speed control and missile launching 
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system, etc. anything that is intended to deliver the desired output with precision is the 
closed-loop system. 

Control systems for four key reasons: 

Power amplification. Remote control Convenience of input form and Compensation for 
disturbances for example, a radar antenna, positioned by the low-power rotation of a knob 
there at input, needs a considerable amount of power for its output spin. A control system can 
create the desired power amplification, or power increase. Robots created using control 
system principles may compensate for human impairments. Control systems are also 
beneficial in isolated or risky situations. For example, a remote-controlled robot arm may be 
utilized to pick up stuff in a radioactive environment. A robot arm built to function in 
polluted settings. Control systems may also be utilized to improve convenience by modifying 
the shape of the input. For example, in a temperature management system, the input is a 
position on a thermostat. The output is heat. Thus, a handy location input gives a desirable 
thermal output. Another benefit of a control system is the capacity to correct for disruptions. 
Typically, we regulate basic variables as temperature in thermal systems, location and 
velocity in mechanical systems, and voltage, current, or frequency in electrical systems. The 
system must be able to give the right output even with a disruption. For example, imagine an 
antenna system that points inside a commanded direction. If wind pushes the antenna from its 
specified position, or if noise enters within, the system must be able to detect the disruption 
and rectify the antenna’s position. 

A History of Control Systems 

Feedback control mechanisms are ancient than mankind. Numerous biological regulatory 
mechanisms were established into the early inhabitants of our planet. Let us now look at a 
short history of human-designed control systems. 

Liquid-Level Control 

The Greeks started building feedback systems circa 300 B.C. A water clock designed by 
Ktesibios functioned by having water drip into a measuring container at a steady pace. The 
amount of water in the measuring jug might be utilized to determine time. For rainwater to 
trickle at a consistent pace, the supply tank had to be maintained at a constant level. This was 
achieved utilizing a float valve similar towards the water-level control in today’s flush toilets. 
Soon after Ktesibios, the principle of liquid-level control was applied to an oil lamp by Philon 
of Byzantium. The light consists of two oil canisters oriented vertically. The bottom pan was 
open from the top and provided the fuel source for the blaze. The lidded top bowl was the 
fuel storage for the pan below. The containers were coupled by two capillary tubes and then 
another tube, termed a vertical riser, which has been placed into the oil in the bottom pan 
slightly below the surface. As the oil burnt, the base of the vertical riser was exposed to the 
air, which drove oil in the reservoir above to flow down the capillary tubes and into the pan. 
The flow of fuel from the higher reservoir to the pan halted when the former oil level in the 
pan was restored, thereby keeping the air from entering through vertical riser. Hence, the 
method maintained the liquid level inside the bottom container constant. 

Steam Pressure and Temperature Controls 

Regulation of steam pressure started about 1681 with Denis Papin’s creation of the safety 
valve. The notion was subsequently improved on by weighing the valve top. If the upward 
pressure from the boiler surpassed the weight, steam was released, as well as the pressure 
reduced. If it did not surpass the weight, the valve didn't open, and the pressure within the 
boiler grew. Thus, the weight here on valve top controlled the internal pressure of a boiler. 
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Also in the seventeenth century, Cornelis Drebbel in Holland created a totally mechanical 
temperature control device for hatching eggs. The gadget employed a vial of alcohol and 
mercury with a floater placed in it. The floater was attached to a damper that regulated a 
flame. A part of the vial was placed into the incubators to feel the heat created by the fire. As 
the heat grew, the alcohol and mercury expanded, lifting the floater, shutting the damper, and 
decreasing the flame. Lower temperature led the float to sink, opening the damper thus 
intensifying the flame. 

Speed Control 

In 1745, speed control was used to a windmill by Edmund Lee. Increasing winds pitched the 
blades further back, so that less surface was accessible. As the wind lessened, more blade 
surface was accessible. William Cubitt built on the concept in 1809 by separating the 
windmill sail into moveable louvers. Also during the eighteenth century, James Watt devised 
the flyball speed governor to regulate the speed of steam engines. In this gadget, two spinning 
flyballs ascend as rotational speed rises. A steam valve attached to the flyball mechanism 
shuts with the rising flyballs and opens with both the descending flyballs, thereby controlling 
the speed.  

Introduction Stability, Stabilization, and Steering  

Control systems theory as we know it now started to coalesce in the later part of the 
nineteenth couple of centuries. In 1868, James Clerk Maxwell presented the stability criteria 
for a third-order system that relies on the coefficients of the differential equation. In 1874, 
Edward John Routh, following a proposal from William Kingdon Clifford that was 
overlooked earlier by Maxwell, was capable of expanding the stability criteria to fifth-order 
systems. In 1877, the subject for the Adams Prize was “The Criterion of Dynamical 
Stability.” In response, Routh submitted a paper entitled A Treatise on the Stability of such a 
Given State of Motion and received the award. This work includes what is now known as the 
Routh-Hurwitz criteria for stability, which we shall discus. Alexandr Michailovich Lyapunov 
also contributed to the creation and formulation of today’s theories and practice of control 
system instability. A student of P. L. Chebyshev at the University of St. Petersburg in Russia, 
Lyapunov expanded the work of Routh to nonlinear systems in his 1892 PhD thesis, entitled 
The General Problem of Stability of Motion. During the second part of the 1800s, the 
development of control systems centered on the steering and stabilization of ships. In 1874, 
Henry Bessemer, using a gyro to measure a ship’s motion and employing power supplied by 
the ship’s hydraulic system, relocated the ship’s saloon to keep it steady (whether this had an 
impact to the customers is dubious) (whether this made a difference to the patrons is 
doubtful). Other attempts were made to steady platforms for cannons as well as to stable 
whole ships, employing pendulums to detect the motion. Twentieth-Century Developments It 
was not until the early 1900s that autonomous steering of ships was established. In 1922, the 
Sperry Gyroscope Company implemented an automated steering system that employed the 
concepts of compensation and adaptive control to increase performance. However, most of 
the basic theory utilized today to enhance the efficiency of automated control systems is 
ascribed to Nicholas Minorsky, a Russian born around 1885. It was his theoretical work 
applied to the autonomous steering of ships that resulted to what we call today proportional-
plus-integral-plus-derivative (PID), or three-mode, controllers, which we shall cover.  

Inside the late 1920s and early 1930s, H. W. Bode and H. Nyquist of Bell Telephone 
Laboratories pioneered the analysis of feedback amplifiers. These contributions developed 
into sinusoidal frequency analysis and design methodologies now utilized for feedback 
control system, and are discussed. In 1948, Walter R. Evans, working in the aviation industry, 
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invented a graphical approach to draw the roots of a characteristic equation of a feedback 
system wherein parameters fluctuated across a given range of values. This method, now 
known as the root locus, takes its place alongside the work of Bode and Nyquist in 
establishing the cornerstone of linear control systems analysis and development theory. 
Contemporary Applications Today, control systems find significant use in the guidance, 
navigation, and control of missiles and spacecraft, as well as aircraft and ships at sea. For 
example, contemporary ships utilize a mix of electrical, mechanical, and hydraulic 
components to create rudder orders in response to desired heading commands. The rudder 
orders, in turn, result in a rudder angle that directs the ship. We find control systems across 
the process control business, managing liquid levels in containers, chemical concentrations in 
vats, as well as the thickness of manufactured material. For example, imagine a thickness 
control system for such a steel plate finishing factory. Steel enters the finishing mill and goes 
through rollers. In the finishing machine, X-rays measure the actual thickness and compare it 
to the target thickness. Any discrepancy is controlled by a screw-down position adjustment 
that alters the roll gap at the crushers through which the steel travels. This honge in roll gap 
determines the thickness. Modern improvements have seen extensive usage of the digital 
computer as component of control systems. For example, computers in control systems are 
really for industrial robots, spaceships, and the process control sector. It is impossible to 
conceive a contemporary control system that does not involve a digital computer.  

Although recently decommissioned, the space shuttle offers an outstanding illustration of the 
employment of control systems since it featured several control systems managed by an 
onboard computer on the a time-shared basis. Without control systems, it would be difficult 
to maneuver the shuttle to and from earth’s orbit or to alter the orbit itself and maintain life 
on board. Navigation routines incorporated into the shuttle’s computers utilised data from the 
shuttle’s hardware and estimate vehicle location and velocity. This information was sent to 
the guidance equations that calculated orders for the shuttle’s flight control systems, 
effectively directed the vehicle. In space, the flight control system gimbaled (rotated) three 
orbital maneuvering system (OMS) engines together into position that produced thrust in the 
specified direction to steer the ship. Within the earth’s atmosphere, the shuttle was directed 
by orders issued from the flight control system towards the aerosurfaces, such as the elevons. 
Within this huge control system represented by navigation, navigation, and control were 
various subsystems to govern the vehicle’s activities. For example, the elevons needed a 
control system to guarantee that their position was really that which was intended, as 
disturbances like as wind may spin the elevons away from the prescribed position. Similarly, 
in spacecraft, the gimbaling of the orbital maneuvering engines requires a similar control 
system to guarantee that the rotating engine can complete its duty with speed and precision. 
Control mechanisms were also employed to control and steady the spacecraft during its fall 
from orbit. Numerous tiny jets that constitute the response control system (RCS) were 
utilized originally in the exoatmosphere, where even the aerosurfaces are useless. Control 
was given to the aerosurfaces as the orbiter fell into the atmosphere. Inside the shuttle, 
several control systems were necessary for electricity and life support. For example, the 
orbiter contained three fuel-cell power plants that turned hydrogen and oxygen (reactants) 
into energy and water for use by the crew. The fuel cells featured the use of control systems 
to manage temperature and pressure. The reactant tanks were held at constant pressure while 
the amount of reactant lowers. Sensors in the tanks transmitted signals to the control systems 
to switch heaters on or off to maintain the tank pressure constant (Rockwell International, 
1984). Control systems are not confined to science and industry. For example, a home 
heating system is a basic control system consisting of a thermostat incorporating a bimetallic 
substance that expands or contracts upon changing temperature. This expansion or 
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contraction moves a vial of mercury that functions as a switch, turning the heater on or off. 
The amount of movement or contraction needed to move the mercury switch is dictated by 
the temperature setting. Home entertainment systems also include built-in control systems. 
For example, in an optical disk recording system small pits representing the information are 
burnt into the disc by a laser during the data collection process. In playback, a reflected laser 
beam focused on the pits changes intensity. The light intensity variations are translated to an 
electrical signal and processed as sound or image. A control system maintains the laser 
pointer positioned on the pits, which are cut as concentric circles. There are innumerable 
additional instances of control systems, from the commonplace to the remarkable. As you 
begin your study in control information systems, users will become more aware of the huge 
array of applications. 

System Configurations  

In this part, we cover two main configurations of control systems: open loop and closed loop. 
We may consider these combinations to constitute the internal architecture of an overall 
system depicted in Figure 2.5 and 2.6. Finally, we explain how a digital computer becomes 
part of a control scheme configuration. 

 

Figure 2.5: Illustrates the configuration of open loop system. 

 

Figure 2.6: Illustrates the configuration of open closed system. 

Computer-Controlled Systems  

In many contemporary systems, the controller (or compensator) is a digital computer. The 
benefit of utilizing a computer is that several loops may be managed or compensated by the 
same computer via time sharing. Furthermore, any modifications of the compensator 
parameters necessary to give a desirable response may be accomplished by changes in 
software rather than hardware. The computer may also perform supervisory activities, such as 
scheduling various essential programs. For example, the space shuttle main engine (SSME) 
controller, which comprised two digital computers, alone regulated multiple engine 
operations. It monitored engine sensors that gave pressures, temperatures, flow velocity, 
turbo-pump speed, valve positions, and engine servo dependent variable positions. The 
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controller additionally offered closed-loop control of propulsion and propellant mixture 
proportion, sensor excitation, valve actuators, spark igniters, as well as additional functions. 

Transient Response  

Transient reaction is significant. In the instance of an elevator, a delayed transitory reaction 
makes passengers antsy, but an abnormally quick response makes them uncomfortable. If the 
elevator oscillates around the arrival floor for more than a second, an uncomfortable 
sensation might develop. Transient response is also significant for structural reasons: Too 
quick a transitory reaction might cause irreversible physical harm. In a computer, transient 
response adds to the time needed to read from or write to the computer’s disk storage. 
Because reading and writing cannot take place again until head stops, the speed of both the 
read/write head’s movement through one track upon that disk to another effects the overall 
speed of the computer. In this book, they provide quantitative concepts for transitory reaction. 
We then assess the system for its present transient response. Finally, we alter parameters or 
design components to give a desirable transient response—our initial analytical and design 
aim. Steady-State Response Another study and design aim focuses on the steady-state 
response. As we've already seen, this response mimics the input and is generally what that 
remains after transients have declined to zero. For example, this answer may be an elevator 
halted at the fourth level or the head of a storage device finally stopped there at proper track. 
We are worried about the correctness of the steady-state answer. An elevator must be level 
sufficient with the floor therefore for passengers to escape, and a read/write head not 
positioned and over required track results in computer failures. An antenna monitoring a 
satellite must maintain the spacecraft substantially inside its beam width in order to avoid 
losing track.  

In this book chapter we define steady-state errors statistically, assess a system’s steady-state 
error, and then plan corrective action to lower the steady-state error—our second analysis and 
design aim. Computer hard disk drive, displaying disks and read/write head 1.4 Analysis and 
Development Objectives 9 Stability Discussion of transient responsiveness and steady-state 
error is meaningless if the system does not have consistency. In order to understand stability, 
we start with the notion that the overall reaction of a system is the sum of the natural response 
and the forced response. Whenever you researched linear differential equations, students 
presumably referred to these replies as the homogeneous and the specific solutions, 
respectively. Natural reaction explains the way the system dumps or gains energy. The shape 
or character of this reaction is reliant entirely on the system, not the input. On the contrary 
hand, the shape or character of the forced reaction is depending on the input. Thus, given a 
linear system, we may write Total reaction ˆ Natural reaction Forced reaction … 1.1† 2 for a 
control system to be functional, the natural response must (1) gradually approach zero, 
thereby leaving just the forced reaction, or (2) oscillate. In certain systems, however, the 
natural response rises without limit rather than shrink to zero or fluctuate. Eventually, the 
natural reaction is so much stronger than the artificial response that the system is no longer 
controlled. This phenomenon, termed instability, might lead to self-destruction of a physical 
device if limit controls are not part of the design. For example, the escalator would shut down 
through the floor or exit through the ceiling; an aircraft would have to go into an 
uncontrollable roll; or an antenna directly ordered to point to a target will indeed rotate, line 
up with the target, but then start to oscillate about just the target with growing oscillations 
and vastly increased velocity again until motor or amplifiers reached their production limits 
or up until the antenna has been damaged structurally.  

A time plot of an undamped system would show a transitory response that increases without 
limit and without any sign of a steady-state response. Control systems must always be built to 
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be stable. That is, their natural reaction must decrease to zero as time approaches infinity or 
oscillate. In many technologies the transient reaction you observe on a temporal response plot 
may be directly connected to the natural response. Thus, if the natural reaction decays to zero 
as the time approaches infinity, the transitory response will likewise fade out, leaving just the 
forced response. If the system is stable, the suitable transient response and steady-state error 
characteristics may be developed. Stability is your third analysis and design aim. Other 
Considerations The three major goals of control system analysis and design have previously 
been identified. However, other essential variables must be taken into consideration. For 
example, variables impacting hardware choices, such as motor size to satisfy power needs 
and choice of sensors for precision, must be addressed early in the design. Finances are 
another factor. Control system designers cannot produce designs without considering 
potential economic effect. Such concerns as budget allocations and competitive rates must 
influence the engineer. For example, if your product is a one-of-a-kind kind, then may be able 
to construct a design that incorporates more costly components without materially raising 
overall cost. However, when your design will be utilized for numerous copies, modest 
increases in cost per copy might translate into hundreds of additional dollars for your 
organization to present during contract bidding and to spend before sales. Another factor is 
strong design.  

System characteristics presumed constant throughout the design for transient responsiveness, 
steady-state errors, and durability vary over time when the real system is produced. Thus, the 
performance of the system also varies over time and is unlikely to be consistent with your 
design. Unfortunately, the connection between parameter modifications and their effects on 
performance is not linear. In certain circumstances, even in the same system, changes 
changing parameter values might lead to slight or major variations in performance, dependent 
on the system’s normal operating point and the kind of design utilized. Thus, the engineer 
aims to construct a robust design in order that the system will not be susceptible to parameter 
changes. The Design Process In this part, we construct an organized procedure for the design 
of feedback control systems that is to be followed as we go through the remainder of the 
book. It illustrates the outlined method as well as the chapters where the phases are covered. 
The antenna azimuth position control system presented in the previous section is illustrative 
of control systems that must be examined and constructed. Intrinsic is feedback and 
communication throughout each step. For example, if testing (Step 6) indicates that criteria 
have not been satisfied, the system must be modified and retested. Sometimes criteria are 
contradictory as well as the design cannot be reached. In these circumstances, the 
requirements are required to be established and the design process redone. Let us now 
elaborate on each block 

 

 

Transform Requirements  

Into a Physical System We begin by translating the requirements into a physical system. For 
example, inside the antenna azimuth position control system, this same requirements would 
express the desire to position. The antenna from a faraway point and explain such factors as 
weight and physical dimensions. Using the requirements, design criteria, such as desirable 
transient responsiveness and steady-state accuracy, were derived in Figure 2.6. Perhaps an 
overarching idea, would result. 
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Figure 2.6: Illustrates the block diagram of transform requirement. 

The designer now turns a qualitative description of the system into a functional block 
diagram that explains the component pieces of the system (that is, function and/or hardware) 
and depicts their connectivity.  

Create a Schematic As we have seen, position control systems comprise of electrical, 
mechanical, and electromechanical components. After developing the description of a 
physical system, professional control systems engineer translates the actual system into a 
schematic diagram. The control system designer may begin with both the physical 
description, to create a schematic. The engineer must make estimates about the system and 
overlook some processes, or else the schematic would be bulky, making it impossible to 
derive a suitable mathematical model during the following step of the analysis and design 
sequence. The designer begins with a basic schematic representation and, at succeeding steps 
of the analysis and design process, evaluates the assumptions made about the physical system 
via analysis but instead computer simulation. If the design is too simplistic and does not fully 
account for observable behaviors, the control systems engineer introduces phenomena 
towards the schematic that were previously thought insignificant. A schematic design for the 
antenna azimuth position control system. When we draw the potentiometers, then establish 
our first implicit assumption by omitting their friction or inertia. These mechanical features 
provide a dynamic, rather than an immediate, reaction in the output voltage. We presume that 
these mechanical effects are insignificant and that the voltage across a potentiometer changes 
immediately as the potentiometer shaft spins. A differential amplifier as well as a power 
amplifier are utilized as the controller to provide gain and output amplification, 
correspondingly, to drive the motor. Again, humans assume that perhaps the dynamics of an 
amplifiers are quick relative to the reaction time of the motor; consequently, we represent 
them as a pure gain, K. A dc motor and comparable load create the output angular 
displacement.  

The velocity of the motor is proportionate to the voltage delivered to the motor’s armature 
winding. Both inductance and resistance are elements of the armature circuit. In illustrating 
merely the armature resistance, they assume the influence of the armature inductance is 
insignificant for a dc motor. The designer makes more assumptions about the load. The load 
consists of a spinning mass and bearing friction. Thus, the model comprises of inertia and 
viscous damping whereby resistive torque increases increasing speed, such as an 
automobile’s suspension system or a screen door damper. The judgments taken in 
constructing the schematic originate from understanding of the physical system, the physical 
rules guiding the system’s behavior, including practical experience. These judgments are not 
simple; nevertheless, as you acquire additional design expertise, you will obtain the 
knowledge necessary for this challenging endeavor.  

The Design Process 15 Step:  

Develop a Mathematical Model (Block Diagram) (Block Diagram) that once schematic is 
constructed, the designer employs physical rules, such as Kirchhoff’s laws with electrical 
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networks but also Newton’s law for mechanical devices, combined with simple assumptions, 
to represent the system mathematically. These laws are 

1. Kirchhoff’s Voltage Law 

2. Kirchhoff’s Current Law 

3. Newton’s Law 

Kirchhoff’s and Newton’s laws lead towards mathematical models that explain the link 
between the inputs and outputs of dynamic systems. One such model is the nonlinear, time-
invariant differential equation, Equation. 

 

Many systems may be roughly characterized by this equation, which ties the output, c(t), to 
the input, r(t), by means of the system parameters, ai and bj. We presume the reader is 
acquainted with differential equations. Problems and a bibliography are supplied at the 
conclusion of the chapter for you to review this topic. Simplifying assumptions made inside 
the process of developing a mathematical model frequently leads to a low-order form. 
Without the assumptions the system model might be of high order or characterized using 
nonlinear, time-varying, or partial differential equations. These equations complicated the 
design process and diminish the designer’s understanding. Of course, all assumptions must be 
validated and all simplifications justified by analysis or testing. If the assumptions for 
simplification can indeed be justified, then perhaps the model cannot be simplified. 

 In complement to the differential equation, the transfer function is another approach of 
mathematically representing a system. The model is constructed from the linear, time-
invariant differential equation to use what we call the Laplace transform. Although the 
transfer function may be utilized exclusively for linear systems, it offers more 
comprehensible information than that of the differential equation. Users will be able to adjust 
system parameters and instantly perceive the influence of these changes on the system 
reaction. The transfer function is also helpful in representing the interconnectedness of 
subsystems by generating a block diagram similar to but including a mathematical function 
within each block. Still another paradigm is the state-space representation. One benefit of 
state-space approaches is that they may also be utilized for systems that cannot be represented 
by linear difference equations. Further, state-space approaches are utilized to represent 
systems for simulation just on digital computer. Basically, this form converts an nth-order 
differential problem into n simultaneous first-order differential equations. Let this 
explanation enough for now; we discuss this strategy in greater depth.Finally, we should 
highlight that to construct the mathematical model for a system, we need information of the 
parameter values, including such equivalent resistance, conductance, mass, and damping, 
which is frequently not simple to get. Analysis, measurements, or specifications from vendors 
are sources that the control engineering team may utilize to gather the parameters. 

Reduce the Block Diagram Subsystem models are combined to construct block diagrams of 
bigger systems, where each block has a mathematical explanation. Notice that so many 
signals, such as proportional voltages and error, are intrinsic to the system. There are 
additionally two signals—angular input but also angular output—that are external to the 
system. In order to assess system response in this example, we need to compress this 
enormous system’s block diagram to something like a single block with such a mathematical 
description that depicts the system from its input to its outputs, as illustrated. Once the block 
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diagram is simplified, we are ready to study and design the system. Analyze and Design the 
next step of the process, after block diagram reduction, is planning and analysis. If you are 
interested just in the performance of a specific subsystem, however may skip the block 
diagram reduction and proceed right into analysis and design. In this step, the engineer 
studies the system to determine whether the response specifications and performance criteria 
may be fulfilled by simple tweaks of system characteristics. If requirements cannot be 
reached, the designer then creates extra hardware in order to achieve a desired performance. 
Test input signals are employed, both analytically and during testing, to validate the design. It 
is not necessary practicable nor informative to pick sophisticated input signals to study a 
system’s performance. Thus, the engineer normally picks conventional test inputs. These 
inputs are impulses, steps, ramps, parabolas, and sinusoids, as illustrated in Table 1.1. An 
impulse is infinite at t ˆ 0 and zero everywhere. The area underneath the unit impulse is 1. An 
approximation of this sort of waveform is used to introduce initial energy into a system such 
that the response owing to that initial energy is simply the transitory response of a system. 
From this answer the designer may develop a system's mathematical model from this 
information. A step input represents a constant instruction, such as location, velocity, or 
acceleration. Typically, the step input instruction is of the same form as the output. For 
example, if the system’s output is positioning, as it is for the antenna azimuth position control 
system, the step input represents a desired position, and the output reflects the actual position. 
If indeed the system’s output is velocity, as example the spindle speed for the video disc 
player, the step input indicates a constant intended speed, while the output reflects the actual 
speed.  

The designer chooses step inputs since both the transient reaction and the steady-state 
response are readily apparent and can be analyzed. The ramp input provides a linearly 
ascending message. For example, if the system’s output is location, the input ramp depicts a 
linearly rising position, such as that encountered while following a satellite traveling across 
the sky at constant speed. If the system’s output is speed, the input ramp reflects a linearly 
rising velocity. The response to the input ramp test signal offers further information about 
just the steady-state error. The same concept may be generalized to parabolic inputs, which 
also are likewise utilized to assess a system’s steady-state error. Sinusoidal inputs may also 
be used to examine a physical system and arrive at the mathematical model. 
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Control systems engineering is an intriguing area in which to use your engineering abilities, 
since it spans across multiple disciplines and various roles within those fields. The control 
engineer may be found at the highest level of big projects, participating at the conceptual 
phase in identifying or executing overall system needs. These requirements comprise overall 
system performance parameters, subsystem functions, and the interconnection of these 
functions, including interface requirements, hardware and software design, and test plans and 
procedures. Many engineers are involved in just one field, such as circuit design or 
application design. However, as a control systems engineer, anyone may find yourself 
working in a wide arena and dealing with experts from different fields of engineering and the 
sciences. For example, when you are working on a biological system, you will need to engage 
with colleagues inside the biological sciences, mechanical engineering, electrical engineering, 
and computer engineering, not to mention physics and mathematics. You will be 
collaborating with these engineers at all phases of project development from idea through 
design and, eventually, testing. There at design level, the control systems engineer might be 
conducting hardware selection, design, and interface, including whole subsystem design to 
fulfill stated criteria. The control engineer might be dealing with sensors and motors in 
addition to electrical, pneumatic, and hydraulic circuits. The space shuttle is another 
illustration of the variety demanded of the systems engineer[1]–[5].  

We demonstrated that the space shuttle’s management systems crossed across several 
disciplines of science: orbital mechanics and propulsion, aerodynamic electrical engineering, 
and mechanical engineering. Whether or whether you work in the space program, as a control 
systems engineer visitors will use broad-based expertise to the solution of engineering control 
challenges. You will have the chance to develop their engineering horizons beyond your 
academic program. You are now aware of future prospects. But for now, what benefits does 
this course give to a student studying control systems (other than the fact that you need it to 
graduate)? Engineering programs tend to stress bottom-up design. That is, you start with the 
components, build circuits, and then construct a product. In top-down design, a high-level 
image of the requirements is first developed; then the functions and hardware necessary to 
implement the system are defined. You will be able to adopt a top-down systems approach as 
a consequence of this training. A key reason for not teaching top-down design across the 
curriculum is the high degree of mathematics initially necessary for the systems approach. 
For example, control systems theory, which needs differential equations, could not be taught 
as a lower-division subject. However, when advancing through bottom-up design classes, it is 
difficult to grasp how such design fits logically into the wider picture of the product 
development cycle. After finishing this control systems course, you will be able to step back 
and see how your prior studies fit into the big picture. Your amplifier course or vibrations 
course will take on new significance as you begin to comprehend the role design work plays 
as part of product development. For example, as engineers, we seek to explain the physical 
world mathematically so that we may design systems that will benefit mankind. You will 
discover that you have actually learned, via your prior courses, the capacity to model physical 
systems numerically, but at the time you may not have recognized where within the product 
development cycle the modeling fits. Understanding control systems helps students from all 
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areas of engineering to communicate a common language and build appreciate and practical 
knowledge of the other branches. You will discover that there actually is not much variation 
among the fields of engineering as far as the aims and applications were concerned. 

Modeling in the Frequency Domain 

A differential equation may explain the connection between the input and output of a system. 
The form of a differential equation as well as its coefficients represent a formulation or 
description of the system in Figure 3.1. Although the differential equation ties the system 
towards its input and output, it is not a suitable representation from a system standpoint. 
Looking a generic, nth-order, linear, time-invariant differential equation, you find that the 
system parameters, which are the coefficients, exist throughout the equation. In addition, the 
output, c (t), as well as the input, r(t), both occur throughout the equation. We would like a 
mathematical formulation such as that provided, where the input, output, and system were 
distinct and independent portions. Also, we would want to depict easily the 
interconnectedness of many subsystems. For example, we would want to describe cascaded 
interconnections, as illustrated, in which a mathematical function, termed a transfer function, 
is within each block, and chunk functions may easily be coupled to give for simplicity of 
analysis and design. This convenience cannot be reached using the differential equation. 

 

Figure 3.1: Illustrates the connection between the input and output of a system. 

Laplace Transform Review  

A system described by a differential equation is difficult to depict as a block diagram. Thus, 
we now establish the framework for the Transfer function, with with which we can represent 
both input, output, and system as independent entities. Further, their interaction will be 
simple algebraic. Let us first describe the Laplace transform and afterwards illustrate how it 
simplifies the representations of physical systems. The Laplace transform was defined as, 

 

where s ˆ σ jω, a complex variable. Thus, knowing f(t) and assuming that the integral in Eq. 
exists, we may derive a function, F(s), that is termed the Laplace transform of f(t) (t). The 
notation for the lower limit suggests that even if f(t) is discontinuous at t ˆ 0, one may start 
our integration prior to the discontinuity thus long as the integral converges. Thus, we may 
determine the Transformation function of impulse functions. This trait has particular benefits 
when implementing the Laplace transform towards the solution of differential equations 
whenever the starting conditions are discontinuous at t ˆ 0. Using differential equations, 
researchers have had to solve for the starting circumstances after the discontinuity 
understanding the beginning conditions before even the discontinuity. To use the Laplace 
transform humans need only know the beginning circumstances before the discontinuity. The 
inverse Laplace transform, that enables us to calculate f(t) given F(s) (s), is 
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The Transfer Function  

In the last section we defined the Laplace transform as well as its inverse. We discussed the 
notion of the partial-fraction expansion but also applied the principles to the differential 
equations we were solving. We are now ready to develop the system representation depicted 
in Figure 2.1 by creating a feasible specification for a function which algebraically ties a 
system’s output to its input. This function will enable segregation of the input, system, and 
output into three discrete and distinct portions, unlike the differential equation[5]–[8]. The 
function will also enable us to algebraically integrate computational models of subsystem to 
create a comprehensive system description. Let us commence by formulating a generic nth-
order, linear, time-invariant differential equation: 

 

 

 

Electrical Network Transfer Functions  

In this part, we explicitly apply the transfer function to the mathematical modeling of electric 
circuits comprising passive networks and operational amplifier circuits. Following 
subsections discuss mechanical and electromechanical components. Equivalent circuits for 
the electric networks that we deal with initially consist of three passive linear components: 
resistors, capacitors, plus inductors. The components as well as the relationships involving 
voltage and current and between voltages but instead charge under zero starting 
circumstances. We now integrate electrical components into circuits, decide upon that input 
and output, and determine the transfer function. Our guiding concepts are Kirchhoff’s laws. 
We add voltages around loops or sum currents at nodes, dependent on which approach entails 
the least effort in algebraic manipulation, and afterwards equal the result to zero. From these 
correlations we can build the differential equations again for circuit. Then we may use the 
Laplace transforms of differential equations and ultimately solve for such transfer 
function[9], [10]. 
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Simple Circuits through Mesh Analysis 

Transfer functions may be constructed using Kirchhoff’s voltage law and summing voltages 
across loops or meshes. 

Term this technique loop or mesh analysis and explain it through the following example. Let 
us now build a method for simplifying the answer for future problems. First, consider the 
Laplace transform of something like the equations inside the voltage-current presuming zero 
conditions. 

 

Notice that this function is comparable to the concept of resistance, that is, the ratio of 
voltage to current. However, unlike resistance, this function is appropriate to capacitors and 
inductors and conveys information about the dynamic behavior of the component, as it forms 
an analogous differential equation. They name this specific transfer function impedance. The 
impedance for every one of the electrical elements was presented. Let us now explain how 
the idea of impedance simplifies the equation for the transfer function. The Laplace transform 
of Eq, considering zero starting conditions, is: 

 

Translational Mechanical System Transfer Functions 

We have demonstrated that electrical networks may be described by a transfer function, G(s), 
that algebraically connects the Laplace transform of the output toward the Laplace transform 
of both the input. Now we shall apply the same process to mechanical systems. In this section 
we focus on translational mechanical systems. In the following part we apply the principles to 
rotating mechanical systems. Notice that the finished result, depicted in Figure 2.2, would be 
mathematically indistinguishable from an electricity systems. Therefore, an electrical network 
may be interfaced to a mechanical system through cascading their difference equation, 
provided that one system is not burdened by the other. 6 Mechanical systems parallel 
electrical networks to such a degree that there are parallels between systems and equipment 
and variables. Mechanical systems, including electrical networks, comprise three passive, 
linear components. Two of these, the spring and the mass, are energy-storage components; 
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one of them, the viscous damper, releases energy. The two energy-storage components are 
equivalent to the two electrical energy-storage components, the inductor and capacitor. The 
energy dissipator is equivalent to electrical resistance. In the table, K, f v, and M are named 
spring constant, coefficient of viscous friction, as well as mass, respectively.  

We observe that the spring is equivalent to the capacitor, the viscous damper is comparable to 
the resistor, and the masses is comparable to the inductor. Thus, summing forces expressed in 
terms of velocity is equivalent to summing voltages written in terms of current, and the 
resultant mechanical differential equations are analogous to meshes equations. If the forces 
are shown in terms of displacement, the resultant mechanical equations resemble, but they are 
not comparable to, the mesh equations. We, however, shall utilize this model for mechanical 
systems so that we may write equations directly in terms of displacement. Another 
connection may be established by comparing the force-velocity column of to the current-
voltage column of in reverse order.  

Here that the analogy is between force and current and between velocity and voltage. Also, 
the spring is equivalent to the inductor, the viscous damper has analogous to the resistor, and 
the mass is analogous to the capacitor. Thus, summing forces expressed in terms of velocity 
is equivalent to summing currents written throughout terms of voltage and the resultant 
mechanical differential equations are akin to nodal equations. We shall analyze these 
comparisons in greater depth. We are now able to identify transfer functions with 
translational mechanical systems. The mechanical system needs only one differential 
equation, termed the equation of motion, to explain it. We will begin simply assuming a 
positive motion, such as for example, towards the right. This presumed positive direction of 
motion is comparable to assuming a current direction inside an electrical loop. Using our 
assumed orientation of positive motion, we first build a free-body diagram, putting on the 
body any forces that operate on the body either in the direction of movement or opposing to 
it. Next we utilize Newton’s law to build a differential motion equation by accumulating the 
forces and putting the total equal to zero. Finally, assuming zero starting conditions, we take 
the Laplace transform of a differential equation, differentiate the variables, and arrive just at 
transfer function. An example follows: 

 

Rotational Mechanical System Transfer Functions  

Having studied electrical and translational mechanical systems, we now go on to explore 
rotating mechanical systems. Rotational mechanical systems are treated the same manner as 
translational mechanical systems, except that torque substitutes force and angular 
displacement substitutes translational displacement. The mechanical components for rotating 
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systems are identical to those for translational systems, however the components undergo 
rotation instead of translation. The components together with the correlations between torque 
and angular velocity, in addition to angular displacement. Notice that the symbols for both 
the components appear the same as translational symbols, yet they are undergoing rotation 
but not translation. Also observe that the phrase linked with the mass is substituted with 
inertia. The quantities of K, D, and J are termed spring constant, coefficient of viscous 
friction, and moment of inertia, correspondingly. The inductances of the mechanical 
components are likewise reported in the final column. The values may be determined by 
applying the Laplace transform, presuming zero starting conditions, of the torque-angular 
deformation column. The idea of degrees of freedom transfers over to rotational systems, 
with the exception that we test a point of motion by rotating something while keeping still all 
other points of motion. The amount of points of motion which can be rotated whilst all others 
are kept stationary equals the amount of equations of motion necessary to describe the 
system. Writing the equations of motion for rotating systems is identical to writing those for 
translational systems; the main difference is that the free-body diagram comprises of torques 
rather than forces. They derive these torques via superposition. First, we rotate a body while 
keeping all other points constant and display on its free-body diagram all torques owing to 
the body’s own motion. Then, keeping the body steady, we rotate neighboring points of 
motion one by one time and add the torques owing to the adjacent motion towards the free-
body diagram. The process is repeated by each point of motion. For every free-body diagram, 
these torques have been summed as well as set to zero in order to form the motion equations. 

 

Transfer Functions for Systems with Gears  

Now that we are able to calculate the transfer function for rotating systems, we recognize that 
spinning systems, particularly those powered by motors, are seldom observed without related 
gear trains driving the load. This section discusses this crucial subject. Gears offer 
mechanical advantage to rotating systems. Anybody who has ridden a 10-speed bicycle 
understands the impact of gearing. Going upward, you shift to offer more torque and less 
speed. On the straightaway, they shift to achieve greater speed and less torque. Thus, gears 
enable developers to match the driving system and the load—a trade-off between speed and 
torque. For many applications, gears show backlash, which happens due of the slack fit 
between two meshed gears. The driving gear spins over a minor angle before making contact 
with the meshed gear. The consequence is that the angular revolution of the output gear does 
not occur until a modest angular rotation of the input gear has happened. In this section, we 
idealize the behaviour of gears and assume that there is no backlash. The linearized 
relationship between two gears is represented in Figure 2.27.  Thus, 
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Since the ratio of the number of teeth around the circle is in the same proportion as that of the 
ratio of the radii. They find that the ratio of the angular displacement of a gears is 
approximately equal towards the percentage of the number of teeth. What is the connection 
between the input torque, T1, as well as the output torque, T2? When we assume the gears are 
lossless, that really is, they don't really absorb or energy stored, the energy entering Gear 1 
equals the energy out of Gear 2.11 Ever since translational energy of force times 
displacement has now become the rotational energy of torque time’s angular displacement, 

 

Which implies the analogous arrangement at the input and without gears depicted. Thus, the 
load may be thought of as having been mirrored from the input onto the output. Generalizing 
the findings, we may formulate the following statement: Rotational mechanical impedances 
may be reflected across gear trains by increasing the mechanical susceptibility by the ratio, 

 

Where the impedance to be reflected is connected to the source shaft and is being reflected 
towards the destination shaft. The following example highlights the application of the notion 
of reflected impedances as we determine the transfer function of a rotating mechanical system 
with gears. 

Electromechanical System Transfer Functions 

In the previous part we spoke about rotating systems using gears, which finished our 
examination of purely mechanical systems. Now, we turn to systems that really are hybrids of 
electrical and mechanical components, the electromechanical systems. Have seen one use of 
an electromechanical system in Volume 1, the antenna azimuth position monitoring system. 
Other uses for systems having electromechanical components include robot controls, sun and 
star trackers, including computer tape but also disk-drive position controllers. An example of 
the control system that employs electromechanical components. A motor is an 
electromechanical component that produces a displacement output for a voltage input that 
seems to be, a mechanical output created by an electrical input. We shall develop the transfer 
function for one specific sort of electromechanical system, namely armature-controlled dc 
servomotor (Mablekos, 1980).  

 

We call v(t) the back electromotive force (back emf); K is a constant of proportionality called 
the back emf constant; and dem(t)/dt = w(t) is the angular velocity of the motor. Taking the 
Laplace transform, we get 
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Vb(s) = Ks0m(s) 

The relationship between the armature current, i(t), the applied armature voltage, ea(t), and 
the back emf, v(t), is found by writing a loop equation around the Laplace transformed 
armature circuit: 

Rala(s) + Lasla(s) + Vb(s) = Ea($) 

The torque developed by the motor is proportional to the armature current; thus, 

Tm(s) = Kila(s) 

Where T is the torque developed by the motor, and K, is a constant of proportionality, m 
called the motor torque constant, which depends on the motor and magnetic field 
characteristics. In a consistent set of units, the value of K, is equal to the value of K. 
Rearranging yields. 

Ia(s) === Tm(s) 

K₁ 

To find the transfer function of the motor, it first substitute, yielding. 

(Ra + Las)Tm(s) K₁ ·+Kbs0m(s) = Ea(s) 

We need to compute Tm…s† in terms of θm  s  if we would like to separate the variables 
into input and output and get the transfer function, θm    s =Ea s . Figure 2.36 depicts a 
typical comparable mechanical stress on a motor. Jm is the analogous inertia there at 
armature and comprises the both armature inertia and, as they shall see later, total load inertia 
reflected towards the armature. Dm is indeed the approximate solution damping just at 
armature and comprises both of the armature viscous damping also, as we shall see later, the 
load viscous dampening reflected towards the armature. 

Electric Circuit Analogs In this part, we highlight the commonality of systems from the many 
disciplines by proving that the mechanical systems with which we worked may be 
represented by analogous electric circuits. They have pointed out the resemblance between 
the equations derived from Kirchhoff’s rules for electrical systems as well as the equations of 
motion of mechanical systems. We now illustrate this similarity even more strongly by 
creating electric circuit counterparts for mechanical systems.  

The variables of the electric circuits operate identically like the comparable variables of the 
mechanical systems. In fact, transforming mechanical systems into electrical networks before 
developing the descriptive equations is a problem-solving method that you might wish to 
investigate. An electric circuit that is comparable to a system from some other discipline is 
termed an electric circuit analog. Analogs may be generated by comparing the descriptive 
equations, such as the equations of motion equations of such a mechanical system, either with 
the electrical mesh and nodal equations. 

 Whenever compared using mesh equations, the resultant electrical circuit is termed a series 
analog. Whenever compared using nodal equations, the resultant electrical circuit is termed a 
parallel analog. 
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Series Analog 

Considering the translational mechanical system represented, whose motion's equation of 
motion is (Figure 3.2), 

 

 

Figure 3.2 series analog 

Operating on to convert displacement to velocity by dividing and multiplying the left-hand 
side by s, yielding. 

 

Analog Parallel 

A system may also be transformed into an analogous parallel version. Take into account the 
translational mechanical system represented, who’s the motion equation. For the 
straightforward parallel RLC network seen, Kirchhoff's nodal equation is, 

 

We determine the total admittances and sketch the circuit illustrated in by comparing. It 
provides a summary of the conversions (d). The parts of a motion that include more than one 
degree of freedom are represented as parallel electrical elements linked to a node. Between 
two related nodes, the components of nearby movements are shown as parallel electrical 
elements. We provide an example to illustrate Figure 3.3. 
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Figure 3.3 Parallel analog 

Nonlinearities  

The models created so far are based on systems that roughly correspond to those represented 
by linear, time-invariant differential equations. The creation of these models included an 
implicit linearity assumption. We officially define the words linear and nonlinear in this 
section and demonstrate how to differentiate between the two. We demonstrate how to 
represent a nonlinear system as a linear system. So that we may use the previously discussed 
modeling strategies. Two characteristics of a linear system are superposition and 
homogeneity. Due to the feature of superposition, a system's output reaction to the whole of 
its inputs is equal to the total of its individual input responses. In other words, if an input of 
r1...t produces an output of c1...t and an input of r2(t) produces an output of c2...t, then an 
input of r1...t combined with r2...t produces c1...t and c2...t, respectively. The reaction of the 
system to multiplying the input by a scalar is described by the homogeneity property. The 
property of homogeneity in a linear system is specifically shown if, given an input of r1...t 
that gives an output of c1...t, an input of Ar1...t yields an output of Ac1...t; that is, multiplying 
an input by a scalar results in a response that is also multiplied by a scalar. Linearity is shown 
as such. The output of the linear system is always (Figure 3.4). 

 

Figure 3.4 output of the linear system 

Regardless of a value of x, f...x 0:5x, which is equal to half the input. Every one of the two 
linear system characteristics so holds true. As an example, an input of 1 results in an output 
of 1 and 2, whereas an input of 2 results in an output of 1. Superposition should result inside 
an output that is the total of the individual outputs, or 1.5, from an input that represents the 
sum of the original inputs, or 3. A 3 input results in a 1.5 output. Consider an input of 2 that 
also results in an output of 1, to test the homogeneity property. This input should result in an 
output that is twice as much, or 2. An input of 4 does in fact result in an output of 2. The 
connection shown couldn't possibly fit the criteria for linearity, as the reader may confirm (b).  
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Some examples of physical nonlinearities are shown. Although an electrical amplifier is 
linear within a certain range, excessive input voltages cause it to become nonlinear and 
display saturation. The term dead zone refers to a nonlinearity that occurs in a motor when 
frictional forces prevent it from responding at extremely low input voltages. Backlash is a 
nonlinearity that occurs in loosely fitting gears when the input moves across a narrow range 
even without output reacting. The reader should be sure that the curves in do not, across their 
full range, fulfill the requirements of linearity. A phase detector, which is utilized in a phase-
locked loop inside an FM radio reception and whose output response equals the sine of the 
input, is another example of such a nonlinear subsystem. A nonlinear system may often be 
approximated linearly by a designer. As long even as outcomes provide a decent 
approximation to reality, linear approximations were utilized to streamline system 
development and analysis. For instance, if the origin is moved to a position on the nonlinear 
curve where the range between input values is minimal, a linear connection may be 
constructed at that location. Physical objects that conduct linear amplification with minute 
excursions around a point include electronic amplifiers. 

REFERENCES 

[1] T. Sakuneka, A. Marnewick, and J. H. Pretorius, “Industry 4.0 competencies for a 
control systems engineer,” in 2019 IEEE Technology and Engineering Management 

Conference, TEMSCON 2019, 2019. doi: 10.1109/TEMSCON.2019.8813717. 

[2] S. Liberty, “Modern control engineering,” IEEE Trans. Automat. Contr., 1972, doi: 
10.1109/tac.1972.1100013. 

[3] E. B. Hekler et al., “Tutorial for using control systems engineering to optimize 
adaptive mobile health interventions,” J. Med. Internet Res., 2018, doi: 
10.2196/JMIR.8622. 

[4] C. Poleacovschi, A. Javernick-Will, T. Tong, and J. Wanberg, “Engineers Seeking 
Knowledge: Effect of Control Systems on Accessibility of Tacit and Codified 
Knowledge,” J. Constr. Eng. Manag., 2019, doi: 10.1061/(asce)co.1943-
7862.0001594. 

[5] M. McEnery, “The changing role of the control system engineer – Advanced 
technology and control system basics,” InTech. 2019. 

[6] K. Ogata and J. W. Brewer, “Modern Control Engineering,” J. Dyn. Syst. Meas. 

Control, 1971, doi: 10.1115/1.3426465. 

[7] P. J. O’Donnell, “Control Systems Engineering,” J. Oper. Res. Soc., 1961, doi: 
10.1057/jors.1961.20. 

[8] E. Foo, M. Branagan, and T. Morris, “A proposed Australian industrial control system 
security curriculum,” in Proceedings of the Annual Hawaii International Conference 

on System Sciences, 2013. doi: 10.1109/HICSS.2013.55. 

[9] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan, and N. Meskin, “Cybersecurity 
for industrial control systems: A survey,” Computers and Security. 2020. doi: 
10.1016/j.cose.2019.101677. 

[10] E. Albertini, “The Contribution of Management Control Systems to Environmental 
Capabilities,” J. Bus. Ethics, 2019, doi: 10.1007/s10551-018-3810-9. 

 

 



 

 

 

39 Control System 

CHAPTER 4 

LINEARIZATION 
Mr. Tony Aby Varkey M, Assistant Professor 

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India 
Email Id- tonyaby.varkey@presidencyuniversity.in 

 

The mechanical and electrical systems discussed thus far were predicated on linearity. To 
obtain the transfer function, we must first linearize the system if it has any nonlinear 
components. Having defined and analyzed nonlinearities in the previous part; in this section, 
they demonstrate how to approximate nonlinear systems in linear form in order to derive 
transfer functions. Recognizing the nonlinear component and creating the nonlinear 
differential equation is the first step. For small-signal inputs concerning the steady-state 
solution where the small-signal input gets equal to zero, researchers linearize a nonlinear 
differential equation. Equilibrium is the name of this steady-state solution, and it is chosen as 
the second stage in the linearization procedure. For instance, a pendulum is in balance when 
it is in rest. Although the angular displacement is given by a nonlinear differential equation, it 
is possible to express tiny deviations from this equilibrium point using a linear differential 
equation. We then linearize the nonlinear differential equation and, assuming zero starting 
conditions, we obtain the Laplace transform of the linearized differential equation. Finally, 
we create the transfer function by separating the input and output variables. Let's look at how 
to linearize a function first, and then we'll use that knowledge to linearize a differential 
equation[1]–[6]. 

Small changes in the input may be attributed to changes in the output around the point by 
means of the slope of the curve at the point A if we assume a nonlinear system operating 
around point A, fx0; fx. Consequently, if the contour of the curve at point A equals ma, then 
minor deviations of the input (x) from point A will result in slight changes in the output (fox), 
which are connected by the slope at point A. Thus, 

 

This connection is shown visually. At point A, a new pair of axes, x and f x, are produced, 
and f(x) is roughly equal to f x0, the ordinate of the new origin, plus minor detours, ma x. 
Let's examine a case in point. 

Several common techniques 

The majority of effective methods for numerical linear algebra rely on the use of orthogonal 
transformations. The SVD for rank determinations and generalized inverses, the Schur 
decomposition with eigenvalue and generalized eigenvalue issues, and the QR decomposition 
for least-squares problems are common instances of this. The majority of dependable linear 
algebra algorithms for control theory also use orthogonal transformations. This is largely 
because control issues have been directly addressed by existing linear algebra 
decompositions. Examples of this include using the Schur technique to solve continuous- and 
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discrete-time algebraic Riccati equations, solve Lyapunov equations, and conduct pole 
placement. Additionally, new orthogonal decompositions have been published that strongly 
depend on the same ideas but were created especially for control-related issues. A system 
with A, B, and C is transformed into a new state-space representation with UHAU, UHB, and 
CU as a consequence of orthogonal state-space transformations, where U decomposes the 
matrices A, B, and C in some way. These unique shapes, often known as "condensed forms. 
Those orthogonal state-space transformations are used for two primary reasons: The 
numerical sensitivity of the control problem under consideration is not affected by these 
transformations even though sensitivity has been measured by norms or angles of specific 
spaces, and these are unaffected by orthogonal transformations. Orthogonal transformations 
have a minimum condition number, which is crucial in proving bounded error propagation 
but also establishing numerical stability of an algorithm that employs such transformations. 
This topic is covered in further length and later parts, wherein some of these condensed 
versions are employed for specific purposes. 

Poles, zeros, and transfer functions 

It discusses significant linear system structural characteristics and the numerical methods 
available to ascertain them. A state-space model C(I A) 1 B + D or a polynomial 
representation V()T1()U() + W() may both provide the transfer function R() of a linear 
system. Both the discrete-time situation (where stands for the shift operator z) and the 
continuous-time example (where stands for the differentiation operator D) are consistent with 
the conclusions in this subsection. Utilizing Polynomials the poles, transmission zeros, 
decoupling zeros, and other structural characteristics of the transfer function R() are of 
interest. All of this may be discovered using a rootfinder and a greatest common divisor 
(GCD) extraction algorithm in the scalar case, where T(, U(, V(, and W() are scalar 
polynomials. The issue gets far more complicated in the matrix situation, and the 
fundamental GCD extraction technique, the Euclidean algorithm, becomes unstable. The 
polynomial technique is less appealing than the state-space approach since additional 
structural components (such as null spaces, etc.) enter the picture. State-Space Methodology 
The poles and zeros of R(), decoupling zeros, controllable and unobservable subspaces, 
supremal (A, B)-invariant and controllable subspaces, factorizability of R(), left and right null 
spaces of R(), etc. are the structural features of importance. These ideas are crucial to many 
design issues and have attracted a lot of attention in recent years; for examples. All of the 
ideas listed above may be seen as generalized eigenstructure issues, and it is shown that they 
can be calculated using the Kronecker canonical form of the pencils. 

 

Or from pencils that are descended from these. It is also possible to compute the Kronecker 
structure of any pencil using backward-compatible software. The fact that several of the 
structural qualities stated above may be ill-posed in situations where the concept of limited 
condition must be developed is a lingering issue in this situation. Reformulating the issue as 
an optimization or approximation problem, for which quantitative measurements are created, 
and letting the user make the ultimate decision represent an entirely new strategy. Results in 
this vein are achieved for controllability, observability, and controllability subspaces that are 
(nearly) (A, B)-invariant. 
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Controllability and other Abilities 

The study of linear control and system theory is fundamentally based on the many "abilities" 
including controllability, observability, reachability, reconstructibility, stabilizability, and 
detectability. These ideas may also be understood in terms of the prior section's discussion of 
decoupling zeros, controllable and unobservable subspaces, controllability subspaces, etc. 
Our comments here are focused on the idea of controllability, although they are not restricted 
to it. There have been several algebraic and dynamic descriptions of controllability provided; 
see for an example. But when applied to finite arithmetic, each of these has issues. For a 
summary of this subject and several instances. The close connection between the 
controllability issue and the invariant subspace problem contributes to the difficulty of 
solving controllability numerically. The smallest A-invariant subspace (subspace covered by 
eigenvectors or main vectors) spanning the range of B is the controlled subspace related to 
Equation 1.1. It implies that the controlled subspace may be just as perturbation sensitive as 
the A-invariant subspaces. The calculation of the so-called controllability indices should be 
noted similarly. The slightly perturbed matrix A contains n eigenvectors associated with the n 
different eigenvalues, while matrix A only has one eigenvector (associated with 0). The pole 
placement issue, which is covered in a subsequent section, has been the subject of attempts to 
devise numerically stable methods. It is sufficient to establish here that controllability and the 
issue of pole placement via state feedback are closely connected. The reduction of A to a 
Hessenberg form forms the basis of work on creating numerically stable algorithms for pole 
placement; for examples. The controller Hessenberg form, where the input vector B is a 
multiple of (1, 0, 0) T and the state matrix A is upper Hessenberg, is a suitable strategy in the 
single-input scenario. If, and only if, all (n 1) sub-diagonal elements of A are nonzero, the 
pair (A, B) is then controllable. When a sub-diagonal element is 0, the system is uncontrolled, 
and it is simple to build a foundation for the uncontrollable subspace. From this "canonical 
form," the transfer function gain or first nonzero Markov parameter may likewise be simply 
created. In reality, the numerically more fragile special case of a companion or rational 
canonical or Luenberger canonical form is being replaced by the numerically more robust 
system Hessenberg form, which is becoming more and more important in system theory[7]–
[11].  

A topological concept like "near uncontrollability" is a more significant feature of 
controllability. However, there are additional numerical challenges in this case; for further 
information. This is related to the intriguing "balancing" system-theoretic idea that Moore's 
discusses. It discusses the calculation of "balancing transformations." There are at least two 
different concepts of near uncontrollability that apply to both energy and parametric systems. 
A controllable pair (A, B) is said to be near uncontrollable in the parametric sense if the 
parameters of (A, B) need to be altered just little for (A, B) to lose controllability. A 
controlled pair is almost uncontrollable in the energy sense if there is a lot of control energy. 
The pair 

 

In terms of energy, it is very nearly uncontrolled, albeit not to the same extent as in terms of 
parameters. Of course, the coordinate dependence of both measurements exists, and 
"balancing" is an effort to correct for this bias. A and B are a pair that are in "controllable 
canonical form." As n becomes larger, it is now understood that matrices in this form, more 



 

 

 

42 Control System 

especially the A matrix in rational canonical form, nearly invariably behave poorly 
numerically and become "close to" uncontrolled (unstable, etc.). 

Pole assignment and observer design, an inverse eigenvalue issue is the design of state or 
output feedback for just a linear system to produce a closed-loop system with a specified set 
of poles. The following is the state feedback pole assignment problem: One searches for a 
matrix F such that the eigenvalues of the matrix AF = A + BF reside at certain points or in 
specific areas, given a pair (A, B). Many strategies have been explored to address this issue. 
However, the focus is on mathematically sound approaches and taking into account the 
problem's numerical sensitivity, as can be seen, for instance, in the publications. In observer 
design and deadbeat control with discrete-time systems (where A + BF is needed to be 
nilpotent), special instances of the pole assignment issue appear. The numerically accurate 
techniques for assigning poles are based on reducing A to an RSF, a Hessenberg or block 
Hessenberg (staircase). In contrast to the controlled or Luenberger canonical form, whose 
calculation is known to be numerically unreliable, the latter could be viewed as a statistically 
robust alternative. The extra flexibility provided by the state-feedback matrix for multi-input 
systems may be employed for eigenvector assignment and sensitivity reduction for the 
closed-loop poles. Instead of computing the resultant matrix AF directly in this case, an 
iterative method is used to obtain the matrices X and of the decomposition AF = XX1. The 
iteration seeks to optimize the orthogonality of the eigenvectors xi or reduce the sensitivity of 
the inserted eigenvalues i. It is more challenging to assign poles using output feedback, both 
conceptually and computationally. As a result, a limited number of numerically trustworthy 
algorithms are accessible. Other studies on pole assignment have focused on descriptor or 
generalized state-space systems. Finding matrices T, AK, and K such that TAK AT = KC, 
wherein the spectrum of AK is determined, is the observer design issue for a given state-
space system (A, B, C). Equation 1.48 becomes AK = A + KC, resulting in a transposed pole 
placement issue, when one commonly sets T = I. This is because Equation 1.48 is an 
underdetermined (and nonlinear) problem inside the unknown parameters of T, AK, and K. 
The aforementioned pole positioning methods in this situation are inherently applicable. 
When assuming AK in Schur form, one may still solve Equation 1.48 through a recurrence 
connection even if T in reduced order design is non-square and therefore cannot be equated to 
the identity matrix. 

Strong Control 

The theory and practices of robust control have significantly advanced over the last ten years; 
for examples, see and its references. Though the field of robust control is still developing, 
attention to its numerical elements has only just started. Therefore, it is too soon to review 
trustworthy numerical methods in the field. In this part, we analyze the so-called H method, a 
recent discovery in robust control that has garnered a lot of interest in order to provide an 
idea of the flavor of the numerical and computational challenges involved. H and the 
associated structured single value approach have given engineers a strong basis for creating 
reliable linear system controllers. The controllers are reliable because they provide the 
intended system performance despite a high level of system uncertainty. In this section, we 
refer to the collection of appropriate real rational matrices of dimension n m as R(s) n m. A 
stable matrix G(s) R(s) nm's H norm is defined as, 
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Where max refers to a (complex) matrix's biggest singular value. There are several iterative 
ways to compute this norm. In one method, a connection is made between the imaginary 
eigenvalues of the a Hamiltonian matrix produced from a state-space realization of G as well 
as the singular values of G(jw) (s). The H norm of G is then calculated using this result using 
an effective bisection procedure (s). Imagine a linear, time-invariant system defined by the 
statespace equations to explain the fundamental H method, 

 

The early approaches for calculating opt either employed an iterative search using spectral 
factorization or addressing the ensuing Nehari issue or calculated the spectral norm of the 
related Hankel plus Toeplitz operator. The initial formulation of this question was in a input-
output setup. The issue is expressed in terms of two algebraic Riccati equations which rely on 
a gain parameter in a state-space formulation for calculating opt that seems promising from 
the perspective of numerical computation. Then, with certain assumptions, it can be shown 
that three requirements must be met for a controller K(s) K to exist such that Tzw , 
specifically that stabilizing solutions exist again for two Riccati equations as well as the 
spectral radius of the product of the solutions is constrained by 2. The relevant controller K(s) 
may be found from the solutions of the Riccati equations if these requirements are met for a 
certain value of. The maximum over all suboptimal values of such that the three requirements 
are met is the optimum gain, opt. The method described above instantly offers a computing 
opt algorithm of the bisection kind. However, in the vicinity of the ideal value, such an 
algorithm may be exceedingly sluggish. Using a gradient technique, speedups near the 
solution may be obtained, as shown in. An approach that combines a gradient technique with 
bisection is derived using the behavior of the Riccati solution as a function of. As the ideal 
value of approaches, it has been noted in that the Riccati equation may become ill-
conditioned.  

Transfer function 

This problem simplifies to straightforward algebraic equations that are rather straightforward 
to solve when we use Laplace transforms to translate it to the s-domain. A transfer function is 
a term used to describe this altered representation of the system in the s-domain. Let's now 
examine a transfer function's definition in greater detail. The transfer function for a linear 
time invariant (LTI) system, assuming that all starting conditions are zero, is the ratio of the 
output's Laplace transform to its input's Laplace transform. Mathematical model, the transfer 
function G(s) is defined as follows if C(s) is the Laplace transform of an output function and 
R(s) is the Laplace transform of both the input function: Let's look at this little illustration in 
Figure 4.1. 

 

Figure 4.1: Illustrates the graphical presentation of transfer function. 
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The output is produced as indicated above after a unit step signal is provided as the input. 

Let's use the Laplace transform and refer to this table. 

The system's input is given as follows: 

 

Which you get after using the Laplace transform. 

 

The output, on the other hand, is, 

 

Taking the Laplace transform of this, we get, 

 

With this input and output relation, we find the transfer function is simply: 

 

Let's think about a different situation right now. What happens if R(s), the Laplace or s-
domain constant, equals 1 Then G(s) equals C. (s). When the Laplace transform of something 
like the input is 1, the transfer function simply represents the Laplace transform of a output. 
This prompts the question, "Which input has a Laplace transform of 1" It is the impulse 
function or impulse signal. 

A tall and thin signal known as a "impulse signal" (t) is produced as indicated (Figure 4.2). 

 

Figure 4.2 impulse signal  
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1/and becomes endlessly tall as an approaches absolute zero. This indicates that although if 
the rectangle's width and height are effectively zero and infinite, respectively, the rectangle's 
area is still one (Figure 4.3). 

 

Figure 4.3 time vs impulse signal  

Therefore, for any values of time other than t = 0, the impulse signal or impulse function has 
a value of 0. 

Since the area is still 1, we may state, 

 

The output that results from applying this impulse signal even as system's input is known as 
the impulse response. In real life, an impulse signal is similar to a brief, transient disturbance 
of the system, and an impulse response is how the system would normally respond to this 
disturbance in Figure 4.4. For the sake of clarity, let's take an example. 

 

Figure 4.4: Illustrates the calculating the Impulse Reponses. 

An impulse is created when your flick the pendulum using your fingertips. And the 
pendulum's impulse reaction determines how it responds. As we previously established, if the 
input is assumed to be impulse (t), then its Laplace transform equal, 

 

And as per the definition of transfer function, 
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In the case of an impulse input, the transfer function is thus the same as the output. With 
these two instances, students can see how the transfer function connects the input and output. 
In light of this, the transfer function is just the Laplace transform of a result produced after 
exciting an LTI system with an impulse signal. 

Identifying the Transfer Function: Steps to Take 

With the aid of the simple RLC circuit that we modeled in the last lesson, we will explore the 
procedures to be followed in order to establish the transfer function of a system in Figure 4.5. 

 

Figure 4.5: Illustrates the circuit diagram of identifying the transfer function. 

Determine the supplied systems mathematical model equations in step 1. 

The loop depicted above is subjected to Kirchhoff's voltage law, 

 

Step 2: Define the input and output variables for the system. 

The input in this case is vi(t), and the output is vo(t). 

Step 3: Using Laplace transforms and the assumption that the initial conditions are zero, 
convert the input and output equations into the s-domain. In this illustration, we'll suppose 
that the starting voltage across the capacitor and the initial current through into the inductor 
are both zero. 

Consider the Laplace transform of an output and input equations that were obtained now. 
These are quite straightforward, so we can do a direct translation using the table. 

 

Step 4: Obtain the ratio of the Laplace transform of the output to the Laplace transform of the 
input. 

 

In conclusion, after identifying the equations in the time domain, we calculated their Laplace 
transform while supposing that the starting conditions are zero. The transfer function is then 
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obtained by dividing the output by the input. To determine the transfer function of the 
majority of systems, one may follow this basic process. 

Here are some crucial things to remember in relation to transfer functions: 

The reaction of the system to different inputs and the nature of the system, which we will be 
studying in the next lessons, can both be studied using transfer functions. 

The kind and size of the input have no bearing on transfer functions. 

Transfer functions don't reveal anything about the system's make-up. It follows that distinct 
systems might have the same transfer function. 

Transfer functions are often shown as in the diagram. 

 

Here, 

n is the order of the system 
K is the system gain (A proportional value) 
z1, z2, ....., zm are the zeros of the system and 
p1, p2, ....., pn are the poles of the system 

The transfer function's poles are nothing more than the roots of its denominator polynomial. 
Similarly to this, the zeros are the transfer function's numerator polynomial's solutions. To 
put it another way, the poles and zeros are the values of s whereby the transfer function has 
become infinite and zero, respectively. 
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CHAPTER 5 
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Having modeled a DC motor at the conclusion of the prior lesson, from which we were able 
to get the model equation: 

 

Where L is the motor winding's inductance, R is its resistance, B is its damping coefficient, 
KT is its torque constant, KB is its back emf constant, v is its input voltage, and is the angle 
at which it rotates. 

Let's assume all the constants are equal to one for the sake of simplicity. 

Laplace transformation, we get 

 

Let the speed of the motor be considered as the output, so we know: 

 

Taking the Laplace transform of the output, 

 

Now, per the definition of transfer function, 

 

As a result, they have a transfer function for a DC motor. We will now use Scilab XCOS to 
model this transfer function. 

Refer to the instruction shown below to get started with XCOS in Figure 5.1: 
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Figure 5.1: Illustrates the step wise modelling of transfer function. 

And when the simulation is being conducted, we discover in Figure 5.2. 

 

Figure 5.2: Graphical representation between the speeds versus time. 

The only conclusion we need to draw from simulating the above model is that, as we apply a 
specific voltage to a motor, this same speed of the motor gradually increases from zero and 
stabilizes at a constant value. As a result, the transfer function can be utilized to analyze how 
the system behaves when subjected to different inputs. Let's not worry too much about the 
reaction right now since we will analyze the system's response in depth in the next lessons. In 
this lesson, we began by creating a transfer function. Next, using the Laplace transform table 
as just a guide, we took the voltage input and output of the RLC circuit and used it to 
calculate the transfer function for just a series RLC circuit. Then, we studied certain transfer 
function characteristics and discovered what poles and zeros were. After modeling a DC 
motor in the prior lesson, we finally retrieved its transfer function and examined its simulated 
response[1]–[6]. 

Representation of a Transfer Function 

Block schematics 

Block diagrams may be made up of a single block or several blocks. These are used to 
visually illustrate the control systems. 

 

The take-off point, the summation point, and the block are the three fundamental components 
of a block diagram. To recognize these components, let's look at the block diagram of the 
closed loop control system as illustrated in the accompanying image in Figure 5.3 

. 

Figure 5.3: Illustrates the basic element of bloc diagram of takeoff point. 
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There are two blocks with transfer functions G(s) and H in the block diagram above (s). 
Additionally, it has a takeoff point and a summation point. Arrows show the direction of the 
signal flow. Let's now go through each of these components individually. 

Block 

A block represents a component's transfer function. One input and one output are present in 
the block. 

A block with input X(s), output Y(s), as well as the transfer function G is shown in the 
accompanying image (s). 

 

SummingPoint 

A circle with an X within it serves as a visual representation of the summation point. It has 
one output and two or more inputs. It generates the inputs' algebraic sum. According on the 
polarity of the inputs, it also performs summation, subtraction, or a mix of summation and 
subtraction on the inputs. Let's examine each of these three procedures separately.The 
summing point having two inputs (A, B) and one output is shown in the following image (Y). 
In this case, both inputs A and B are positive. The output of the summing point is thus Y, 
which is equal to the total of A and B.The summing point having two inputs (A, B) and one 
output is shown in the following image (Y). In this case, the inputs A and B have the opposite 
signs, meaning that A is positive and B is negative. As a result, the output Y from the 
summing point is the difference between A and B, or. 

Y=A+(-B)=A-B. 
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The summation point with three inputs (A, B, and C) and one output is shown in the 
following image (Y). The inputs A and B were positive in this case, whereas C is negatively 
skewed. The result of the summing point is output Y as, 

Y=A+B+(−C)=A+B−C. 

Take-offPoint 

The take-off point is when more than one branch may be reached using the same input signal. 
That implies that we may apply the same input to one or more blocks, summing points, with 
both the aid of the take-off point. The take-off point is utilized in the following illustration to 
link the same input, R(s), to two more blocks in Figure 5.4. 

Figure 5.4: The take-off point is utilized in the following illustration to link the same 
input, R(s), to two more blocks. 

The output C(s) are connected to the take-off point in the accompanying diagram as being 
one of the inputs to the summing point in Figure 5.5. 
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Figure 5.5: Illustrates the output C(s) are connected to the take-off point in the 
accompanying diagram as being one of the inputs to the summing point. 

The algebra entailed with the fundamental components of the block diagram is known as 
"block diagram algebra." This algebra is concerned with the depiction of algebraic equations 
in pictures[7]–[11]. 

Basic Block Connections 

The three most common sorts of relationships between two blocks are as follows. 

Series Relationship 

Cascade connection is another name for a series connection. Two blocks with transfer 
functions G1(s) G1(s) and G2(s) G2(s) are linked in series in the following diagram. 
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This indicates that we may use a single block to represent the series connection of two 
blocks. The transfer functions of the two blocks are added together to form the transfer 
function of the single block. Below is the corresponding block diagram. 

Similar to this, a single block may be used to symbolize a series connection of 'n' blocks. The 
sum of the transfer functions of the 'n' blocks makes up the transfer function of the particular 
block. 

Parallel Relationship 

The input for all parallel-connected blocks will be the same. Two blocks with transfer 
functions G1(s) G1(s) and G2(s) G2(s) are linked in parallel in the following diagram. These 
two blocks' outputs are linked to the summing point. 

 

 

This indicates that we may use a single block to represent the parallel connection of two 
blocks. The transfer functions of those two blocks are added together to form the transfer 
function of that kind of single block. Below is the corresponding block diagram. 

 

The parallel connection of 'n' blocks may also be represented by a single block. The algebraic sum of 
the transfer functions of each of those "n" blocks makes up the transfer function of this particular 
block
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. 

Feedback Relationship 

There are two sorts of feedback: positive feedback and negative feedback, as we covered in 
earlier chapters. An example of a negative feedback control system is shown below. Here, a 
closed loop is formed by two blocks with the transfer functions G(s)G(s) and H(s)H(s). 

 

 

Therefore,thenegativefeedbackclosedlooptransferfunctionis:  

 

This indicates that we may use a single block to represent the negative feedback relationship 
between two blocks. The closed loop transfer function of both the negative feedback serves 
as the transfer function of the single block. Below is the corresponding block diagram. 

 

The positive feedback link between two blocks may also be represented by a single block. 
This particular block's transfer function is the closed-loop transfer function of both the 
positive feedback, that is. 
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Block Diagram for Summing Points in Algebra 

Moving summing point before the block and changing summing point after the block are the 
two options for shifting summing points with regard to blocks. 

Let's examine the necessary preparations in each of the aforementioned two scenarios one at a 
time. 

Summing Point before Block to After Block Shift 

Take a look at the block diagram in the accompanying graphic. In this case, the block is 
preceded by the summing point. 

 

TheoutputofSummingpointis 
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Equations 1 and 2 should be compared. 

The initial term in both equations is "G(s)R(s)" ("G(s)R(s)"). But the second term differs 
from the first. We need one more block G(s)G in order for the second term to be the same (s). 
Its input is X(s)X(s), and its output is used as the summation point's input rather than X(s)X. 
(s). The next figure displays this block diagram. 

 

 

 

In both equations, the initial term, G(s) R(s), remains the same. But the second term differs 
from the first. Only need one more block 1/G to get the second term to be the same (s). It has 
the input X(s), and its output is used as the input to a summing point in place of X. (s). The 
next figure displays this block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

Algebraic Block Diagrams for Takeoff Points 

Two options exist for moving the take-off points in relation to blocks: moving the take-off 
point even before block and moving the take-off point after the block. 
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Let's examine the appropriate arrangements in each of the aforementioned two scenarios one 
at a time. Changing the takeoff point from being before a block to being after the block Take 
a look at the block diagram in the accompanying graphic. The take-off point is available in 
this instance before. 

The output Y(s) will be the same if you move the take-off point just after block. However, the 
value of X(s) differs. Consequently, we need one more block 1/G to obtain the same value of 
X(s) (s). Its input is Y(s), and its output is X. (s) the next figure displays this block diagram. 

 

Changing the takeoff point from one that is after a blocks to one that is before the block Take 
a look at the block diagram in the accompanying graphic. In this case, the takeoff point is 
after the block. 
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The output Y(s) will be the same if visitors move the take-off point before the block in. 
However, the value of X(s) differs. In addition to get the same value for X(s), we thus need 
block G. (s) Its input is R(s), and its result is X. (s). The next figure displays this block 
diagram. 

 

 

The preceding chapter's techniques are useful for condensing (simplifying) the block 
diagrams. 
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CHAPTER 6 

DERIVATIVE, PROPORTIONAL, AND INTEGRAL CONTROL 
Dr. Sreenivasappa B V, Professor 

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India 
Email Id- sreenivasappabv@presidencyuniversity.in 

 

 

 

 

In the last session, we learned the fundamentals of how a controller or a compensator 
operates. The "Proportional, Integral and Derivative Control" (PID Control), which is perhaps 
one of the most used control approaches, will be covered in this lesson. 

Below is a generic block diagram of the a system using PID control in Figure 6.1, 

 

Figure 6.1: Illustrates theblock diagram of the system using PID control. 

Starting with proportional control, we'll go through each kind individually. 

Quantitative Control 

The proportional control delivers the control action that is proportionate to the error present, 
acting on the current error. Take a broad illustration to help illustrate the point. Consider that 
you wish to go by foot from point A to point B. The error (difference between the intended 
location and the present position) increases as you walk, which causes you to move more 
quickly. But as you grow closer to point B, things start to slow down, and when you get there, 
simply stop moving. Ones speed in this situation is directly inversely proportional to the 
inaccuracy. This method of proportionally regulating your pace depending on the inaccuracy 
is known as control[1]–[6]. 

Consider the following illustration of a first-order plant with proportional control, 
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These equations show that the system's time constant has decreased from T to with the 
addition of proportional control, 

 

Consequently, the system now reacts considerably more quickly. Another finding is that 
when Kp increases, the steady state error decreases inFigure 7.2. However, as we observed in 
the lesson on the root locus plot, raising Kp in higher order systems causes the poles to shift 
to the right side of the s plane, rendering the system unstable. We will utilize Scilab's XCOS 
as primary simulation tool for this course. Because it contains a built-in PID block, it is easier 
for us. 
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Figure 6.2: Illustrates the steady state error decreases. 

This window appears when visitors click on the PID control block inFigure 6.2. The settings 
may be set here. We first simulate without such proportional control by setting Kp = 1 and 
maintaining 0 for the others. The outcome we get is. 

 

Figure 6.3: Illustrates the window appears when visitors click on the PID control block. 

As can be seen, the steady state inaccuracy is considerable. (The black one is the reference 
input, while the green one represents the response in Figure 6.3.) Let's imitate proportional 
control; for this, we'll set Kp = 20, keeping the other values at 0. The outcome we get is 
(Figure 6.4), 

 

Figure 6.4: Illustrates the black one is the reference input, while the green one 

represents the response. 
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What we described before is supported by the system's improved response time and 
decreased steady state error. 

Control Integral 

Integral control does not address the immediate problem but rather the accumulated error 
inFigure 6.5. This implies that even if the mistake eventually decreases to zero, the control 
action doesn't really, and instead stays constant. A drone or a helicopter might serve as an 
illustration of this. Say you want to ascend to a height of X meters above the earth. Once you 
reach that height, you want to keep the propellers' speed constant and leave them running. 
The propellers' speed saturates and stabilizes as the inaccuracy decreases. You employ an 
integral in this kind of circumstance[7]–[10]. 

Consider the following example of a first order plant or system with integrated control, 

 

Figure 6.5: Illustrates the Integral control does not address the immediate problem but 

rather the accumulated error. 

 

We'll calculate the steady state error for just a unit step input as a reference, just as we did 
before. 

E provides the error (s), 

 

The steady state error ess is given by  
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With the integral control, we are now able to completely make the steady state error 0, but 
this comes at a cost of increasing the order of system (originally the system in this example 
was of first order, butwith integral control, <em>G(s)</em> is second order, and we have 
seen in the tutorial on root locus that adding an open loop pole to a higher order system can 
make the system unstable in Figure 6.6. Hence, there is this risk. Most of the time, integral 
control is used along with proportional control, and it’s called proportional – integral control. 
We shall come to the reason for this shortly. 

To simulate this, we take the same block diagram, but here we set Ki = 1 and all others 0. 
Let’s look at the response, 

 

Figure 6.6: Illustrates an open loop pole to a higher order system can make the system 

unstable. 

Since the system's order has now grown to two, the steady state error in this case is 0, and the 
first detection of a little oscillation confirms our argument. 

Now let's look at a second order system, 

 

A block schematic of the system using proportional control and an external disturbance is 
also shown below (s) inFigure 7.6. 

 

Figure 6.7: Illustrates a block schematic of the system using proportional control and an 
external disturbance. 
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Setting the input R(s) to 0, let's now calculate the transfer function connecting the disturbance 
D(s) towards the output C(s) inFigure 6.8. 

 

 

Figure 6.8: Illustrates the transfer function connecting the disturbance D(s) towards the 

output C(s). 

Here, we will set Kp = 1000 and observe the outcome in order to significantly reduce the 
steady state error. 

They first see high frequency oscillations despite the almost low steady state inaccuracy. As a 
result, by raising Kp, the steady state may be decreased, but as a tradeoff, the system begins 
to oscillate more (at a higher natural frequency), which might compromise stability inFigure 
6.9. We will now combine proportional control plus integral control within the same system 
to examine how things change from of the previous situation. 
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Figure 6.9: Illustrates the Combine proportional control plus integral control within the 

same system. 

 

Here, they should choose Kp and Ki to ensure system stability. Utilizing the Routh array. 

 

As 10 * 10 > 20 in this case, let's select Kp = 10 and Ki = 20 for stability to get observations 
replicating this scenario. 

As a result, humans can conclude that perhaps the proportional and integral control worked 
well to eliminate the steady state error without becoming very oscillatory. Proportional-
integral (PI) control effectively rejects the disturbance (Figure 6.10). 
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Figure 6.10: Illustrates the Proportional-integral (PI) control effectively rejects the 
disturbance. 

The open loop transfer function again for aforementioned system changes to. 

 

The genesis of this currently has two poles. If may recall, we had spoken about how the 
system automatically becomes unstable if the poles on the fictitious axis of the s-plane 
coincide. It's okay if you can't recall. We may simply verify it using simulation.  

 

As a result, in this instance both proportional and integral control are required. The 
proportional control aims to maintain system stability whereas the integral control eliminates 
steady state error. 

Derivative Management 

The rate of change of the error signal is affected by the derivative control, or put another way, 
the control action being proportional to the rate of change of an error signal. Let's use an 
illustration to clarify inFigure 6.11. Take into account the plant using the proportionate 
control shown below. 

 

Figure 6.11: Illustrates the aforementioned system's closed loop transfer function. 

 

This system is totally oscillatory regardless of the value of Kp since it is only moderately 
stable (has poles just on imaginary axis) for just a step input. Let's simulate and test with Kp 
= 10. 
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The schematic block, 

 

Figure 6.12. This system is totally oscillatory regardless of the value of Kp since it is 
only moderately stable (has poles just on imaginary axis) for just a step input. 

The response, 

This exhibits undamped oscillations, as can be seen. Our controller must dampen these 
oscillations in some way, and the derivative controller does this. 

We'll apply derivative control to the prior illustration (Figure 6.12). 

 

Figure 6.12 derivative control 

 

This gives, 
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Therefore, we should expect to witness a tiny overshoot since the system is slightly 
underdamped. This comment backs up what we just spoke about. Even the derivative control 
does not operate on its own. Always utilize proportional control while using it (proportional – 
derivative control). This is due to the fact that a system's output will be zero if it has a 
continuous error, which is the opposite of what we want to happen. Then, in order to 
understand proportional, integral, and derivative control (all of them combined), we will take 
an unstable system and attempt to force it to behave as we want.  

 

As one of its poles, 

 

System instability lies inside the right half of the s-plane inFigure 6.13. Throughout this 
example, we will refer to the unit step input. Let's try stabilizing it with simply proportional 
control to get the required output first. 

 

Figure 6.13: Illustrates the System instability lies inside the right half of the s-plane. 

The closed loop transfer function becomes,  

 

This system can be brought from being unstable to being marginally stable if we make Kp > 
10. So we choose Kp = 20 and check by simulating it inFigure 6.14. The block diagram, 

 

Figure 6.14: Illustrates this system can be brought from being unstable to being 

marginally stable. 
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The response, 

Clearly, proportional control alone won't be enough to stabilize the system. Derivative control 
will be added since they need to dampen the oscillations in this situation inFigure 7.13. 

 

Figure 6.15: Illustrates the derivative control will be added since they need to dampen 

the oscillations in this situation. 

The closed loop transfer function now becomes,  

 

This will be stable for Kp > 10 and Kd > 0, so we arbitrarily choose Kp = 20 and Kd = 10 and 
check the response (Figure 6.16). 

 

Figure 6.16 closed loop transfer function 

Although the system currently seems to be stable, there appears to be a significant steady 
state error. Designers use the integral controller to lower the steady state error. Let's now add 
the integral controller (Figure 6.17): 
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Figure 6.17 steady state error 

The closed loop transfer function will now be, 

 

For this system to be stable, 

 

 

We choose Kp = 20, Kd = 10, and Ki = 5 at random, which stabilizes the system (10 * (20 - 
10) > 5). 

 

As we can see, the steady state error is removed in this case, and we used PID control to get a 
stable response. The parameters Kp, Kd, and Ki may be correctly tuned to provide even better 
tracking. One can still get a respectable response by modifying these settings by trial and 
error, even though there are a few particular strategies for doing so that are beyond the scope 
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of this instructional series. Proportional control came first, and then we learned about integral 
control. We sought to resist disruption by using both of them. After learning about derivative 
control, we utilized it to dampen the response together with a proportional control. Later, we 
stabilized an unstable system by making overall steady state error zero and bringing its 
response near to the intended one using proportional, derivative, and integral control. 
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CHAPTER 7 

COMPENSATORS AND CONTROLLERS 
Dr. Sreenivasappa B V, Professor 
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In order to obtain the required output from the primary plant system, controllers or 
compensators essentially act alongside it. Is it necessary when we can just build the primary 
system to provide the desired results? It's because a system's characteristics might alter as a 
result of lengthy usage (aging), and the output and time response requirements that result may 
not be what you were hoping for. The system should now be modified so that it responds to 
our requests once more, although that is not always achievable. Once a system has been built 
and established, it might not be possible to change it. Therefore, having controllers or 
compensators with adjustable/tunable characteristics in addition to the primary system aids in 
minimizing the changes that the main system experiences as a result of variables like aging, 
outside disturbances, etc. The duties of controllers or compensators might include stabilizing 
the output, reducing overshoot, minimizing settling time, and keeping it within a specified 
range. Below is a generic block diagram of a closed loop system with a controller or 
compensator[1]–[7].We will quickly review the time response parameters we learned in 
lesson 2.4 before moving on. A general closed loop second order system is explained by, 

 

These time response standards provide a description of this system's response: 

 

Almost all of these are required in order to evaluate the effectiveness of a control system. But 
this only applies to second order systems, not all of which we encounter in the actual world. 
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Let's say we have a higher order system (more than two poles). Each pole or zero contributes 
to the system's reaction in some way, although certain poles tend to have a significantly 
bigger impact on the system's response than others. These poles are known as the dominating 
poles. The system is then approximated by disregarding poles other than the dominant ones 
and employing the same temporal response criteria as before (Figure 7.1). 

 

Figure 7.1 illustration of a higher order system as well as its prominent poles 

As we continue with this course, the idea of dominating poles will become more evident, so 
hang on tight. Let's now examine systems that also have a zero or a pole in addition to their 
dominating poles. Prior to that, we'll use the transfer function of the series RLC circuit for 
this study, as illustrated below in Figure 7.2. 

 

Figure 7.2: Illustrates the circuit diagram of RLC. 
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When a pole or zero is added at different points, its impact on the reaction decreases as the 
value of "a" rises, i.e., as the pole or zero travels further from the hypothetical axis. Visitors 
can see from this study that the response is most influenced by a value of 0.5 and the system 
is least affected by a value of 10. We may also conclude that the dominating pole notion 
makes it simpler to analyze systems of higher order. The higher order systems often have the 
dominating poles arranged in conjugate pairs. The real part of the other poles in the system 
must be more than five times overall real part of the dominant pole combination in order to 
consider a pair of poles to be dominant. One may change the response of the system to the 
desired one by adding a zero or a pole. For instance, by looking at the plots, we can 
determine that adding a zero to the left side of the s-plane would be effective if we were to 
speed up the response. Similarly, if they need to slow down the system, we may do so by 
adding a pole or a zero to the left or right halves of the s-plane, respectively; however, in the 
former case, one can see an undershoot as shown in the plots. By observing the requirements 
in this manner, one may modify the system's reaction by adding a pole or a zero. If may 
remember, they also covered the root-locus plot in the last lesson while talking about the 
effects of adding a pole or a zero on stability. As a result, we may conclude that the addition 
of a pole or even a zero can alter the system response and have an influence on the stability of 
the system, serving as the foundation for controller design in control systems. 

Root Locus Plot 

Consider the system with an open-loop transfer function Figure 7.3. 

 

Where K is positive 

 

Figure 7.3: Illustrates to consider the system with an open-loop transfer function. 
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The first is the Evans criteria, which serve as the foundation for the root locus approach 
(Evan was its creator). Circumstances, Evans Think about the following usually closed-loop 
system (Figure 7.4). 

 

Figure 7.4 closed-loop 

system 
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It must create an angle that is odd multiples of 180° in order for it to be -1 (to be on the true 
negative axis). They get Evans conditions as well as the Magnitude Criterion by comparing 
the two sides of the aforementioned equation, 

 

The Angle Criterion is used in situations when the magnitude of the open-loop transfer 
function must be 1. 

 

Where the odd multiple of 180° is the angle of the complex open-loop transfer function for 
each and every point on the root locus. 

Flow Chart for Signals 

An algebraic equation is graphically represented in a signal flow graph. Let's talk about the 
fundamental ideas behind signal flow graphs in this chapter and also discover how to create 
one. 

Basic Signal Flow Graph Elements 

The fundamental components of a signal flow graph are nodes and branches. 

Node A node is a point that symbolizes a signal or a variable. Three different node kinds 
exist. 

Output node, mixed node, and input node. 

A node with only outgoing branches is indeed an input node. 

An output node only contains incoming branches is known as an output node. 

A node with both incoming and outgoing branches was referred to as a mixed node. 

Example 

 To locate these nodes, let's consider the following signal flow graph. 
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Branch A branch connects two nodes on a line. It has orientation as well as gain. For instance, 
the signal flow graph above has four branches. The gains on these branches are a, b, c, and -d. 

Building a Signal Flow Graph 

Let's create a signal flow graph by taking into account the following algebraic equations. 

 

There will be six nodes (V1, V2, V3, V4, V5 and y6) and eight branches in this signal flow 
graph. The gains of the branches are a12, a23, a34, a45, a56, a42, a53 and a35. 

To get the overall signal flow graph, draw the signal flow graph for each equation, then 
combine all these signal flow graphs and then follow the steps given below - 

Step 1 figure. Signal flow graph for y2 = a13Y1 +04294 is shown in the following 
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Block diagrams are transformed into signal flow graphs. 

To translate a block diagram itself into the corresponding signal flow graph, follow these 
steps. Create a signal flow graph with nodes for each of the block diagram's signals, 
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variables, summing points, and takeoff points. Interpret the signal flow graph's branching as 
that of the block diagram's building blocks. Represent the gains of a branches inside the 
signal flow graph as the transfer functions within the blocks of the block diagram. According 
to the block diagram, interconnect the nodes. If there is a link between two nodes (but no 
block), therefore the gain of the branch should be represented as 1. For instance, between 
input and takeoff points, input and summing points, input and output, as well as between 
summing points. 

Example 

Let's create a signal flow graph using the following block diagram Figure 7.5. 

 

Figure 7.5: Illustrates the signal flow graph using the following block diagram. 

Use the input node R(s) and output node C(s) of a signal flow graph to represent the input 
signal R(s) and output signal C(s) of a block diagram. 

The block diagram labels the remaining nodes (y1 to y9) for convenience. Other than the 
input and the output nodes, there seem to be nine nodes. This results in one node again for 
variable between blocks G1 and G2, four nodes for the four take-off points, but also four 
nodes for the four summing points.The similar signal flow graph is shown in the following 
image in Figure 7.6. 

 

Figure 7.6: Illustrates the signal flow graph with their summing point. 
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Now, let's talk about the Mason's Gain Formula. Consider a signal flow graph with "N" 
forward pathways. A signal flow graph's gain between both the input and output nodes is 
nothing more than the system's transfer function. Mason's Gain Formula may be used to 
compute it. 
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Mason’s gain formulais 

 

 

C(s) is the output node where 

The input node is R(s). 

T is the gain between R(s) and C's transfer function (s) 

Pi is the ith gain on a forward route. 

∆=1 

(Total gain of each individual loop) + (Total gain of each of the two non-touching loops that 
might occur) + (Total gain of each of the three non-touching loops that could occur) + 

By deleting the loops that touch the ith forward route, they can get I from[1]–[10]. To 
comprehend the fundamental language used here, have a look at the following signal flow 
graph (Figure 8.1). 

 

Figure 8.1 signal flow graph 

Path 

It is a traversal of branches from one node to any other node in the direction of branch 
arrows. It should not traverse any node more than once. 

Examples - y2 → Y3 → Y4 → у5 and y5 → Y3 → Y2 

Forward Path 

The path that exists from the input node to the output node is known as forward path. 
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Examples - y1 → Y2 → Y3 → Y4 → Y5 → Y6 and y1 → Y2 → Y3 → Y5 → Y6 · 

Forward Path Gain 

It is obtained by calculating the product of all branch gains of the forward path. 

Examples - abcde is the forward path gain of y1 → Y2 → Y3 → Y4 → Y5 → Y6 and abge is 
the forward path gain of y1 y2 → Y3 → Y5 → Y6 · 

Loop 

A loop is a route that originates at one node and terminates at that same node. It is thus a 
closed route. 

Examples - y2 y3 → Y2 and y3 → Y5 → Y3. 

Loop Gain 

It is obtained by calculating the product of all branch gains of a loop. 

Examples - bj is the loop gain of y2 → Y3 → y2 and gh is the loop gain of 

Y3 → Y5 → Y3. 

Non-touching Loops 

These are the loops, which should not have any common node. 

Examples - The loops, y2 → Y3 → Y2 and y4 → Y5 → Y4 are non-touching. 

CalculationofTransferFunctionusingMason’sGainFormula 

Let's use the same signal flow graph to determine the transfer function (Figure 8.2). 

 

 

Figure 8.2 signal flow graph 

N = 2, the number of forward pathways. 

The first forward-looking route is y1y2y3y4y5y6. 

Gain on the first forward route, p1=abcde 

This is the second forward path: y1y2y3y5y6. 

Gain on the second forward route, p2=abge. 

Numberofindividualloops,L =5. 

Loops are Y2 → Y3 → Y2, Y3 → Y5 → Y3, Y3 → Y4 → Y5 → Y3. - 

Y4 → Y5 → Y4 and y5 → Y5. 

Loop gains are - l₁ = bj, l₁ = gh, l3 = cdh, l = di and l5 = f. 
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There are two loops that are not touching. 

The first non-touching loop pair is y2y3y2, followed by y4y5y4. 

First non-touching loops' gain product is l1l4=bjdi. 

The second non-touching loop pairing is y2y3y2, followed by y5y5. 

L1L5=bjf is the gain product of the second pair of non-touching loops. 

Throughout this signal flow graph, there aren't any non-touching loops with a higher number 
(greater than two). 

We are aware of (Figure 8.3), 

 

Figure 8.3 signal flow graph 

Number of forward paths, N = 2. 

First forward path is y1 y2 y3 y4→ Y5 → Y6. - 

First forward path gain, P₁ = abcde. 

Second forward path is y1 y2 y3 → Y5Y6. - 

Second forward path gain, p2 = abge. 

Number of individual loops, L = 5. 

We know, 

▲ = 1 - (sum of all individual loop gains) +(sum of gain products of all possible two 
nontouching loops) -(sum of gain products of all possible three nontouching loops) 
+...Substitute the values in the above equation, A = 1 - (bj+gh + cdh +di+f) + (bjdi + bjf) — 
(0)⇒ ▲ = 1 − (bj +gh +cdh + di + f) + bjdi +bjfSo, A₁ = 1. 

Similarly, A2 = 1. Since, no loop which is non-touching to the second forward path. 

Substitute, N = 2 in Mason's gain formula 

 

 

 T= C(s) R(s) ΣΑΡΙ∆ ∆ 

 T= C(s) R(s) P1A1 + P2A2 A 
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Substitute all the necessary values in the above equation.

 

Loops are - Y2Y3 → Y2, Y3Y5Y3, Y3Y4Y5 → Y3, 

Loop gains are - l₁ = bj, l₁ = gh, l3 = cdh, 14 = di and l5 = ƒ. 

Number of two non-touching loops = 2. 

First non-touching loops pair is y2 y3 →Y2, Y4 → Y5 → Y4. 

Gain product of first non-touching loops pair, l1l4 = bjdi 

Second non-touching loops pair is - y2 y3 →→Y2, Y5 → Y5. 

Gain product of second non-touching loops pair is - l₁l = bjf 

Higher number of (more than two) non-touching loops are not present in this signal flow 
graph. 

Therefore, the function is - 

 

 

 

Example-1:DeterminethetransferfunctionC(s)/R(s). 

 

Analysis of time and response 

Both the time domain as well as the frequency domain may be used to examine the response 
of a control systems. Later chapters will include frequency response analysis of control 
systems. Let's now talk about the control systems' time response analysis. 
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Time Reaction 

The term "time response of the control system" refers to how a control system responds to an 
input while its output changes over time. There are two components to the time response. 

Instantaneous reaction 

Stable state reaction 

The following graphic displays the control system's reaction in the temporal domain in Figure 
8.4. 

 

Figure 8.4: Illustrates both the transient and the steady states. 

Here, both the transient and the steady states are indicated in the figure. The responses 
corresponding to these states are known as transient and steady state responses. 

Mathematically, we can write the time response c(t) as 

c(t) = Ctr (t) + Css (t) 

Where, 

ctr(t)isthetransientresponse 

css(t)isthesteadystateresponse 

Temporary Response 

It takes a specific amount of time for output to achieve steady state after applying input to the 
control system. Therefore, until it reaches a steady state, the output will be in a transitory 
condition. Transitory reaction is the term for the control system's response while it is in a 
transient condition. 

If foot' is big, the transient reaction will be nil. This value of "t" should be infinite in theory, 
but in practice it is five times constant. 

In mathematics, it may be expressed as, 

 

 

Response in a stable state 

The steady state response is the portion of the temporal response that persists even after the 
transient response achieves zero value for large values of’t’. This implies that even at steady 
state, the transient reaction will be zero. 
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Example 

 Let's determine the transient and steady state components of the control system's temporal 

response. 

 

Here,thesecondterm willbezeroastdenotesinfinity.So,thisisthetransientterm. And even as t 
approaches infinity, the first term (10), stays the same. Thus, this word refers to a stable 
condition. Common test signals 

Impulse, step, ramp, and parabolic signals are the typical test signals. Utilizing the output's 
temporal response, those signals are utilized to evaluate the performance of the management 
systems. 

Signal with Unit Impulse 

The definition of a unit impulse signal t is, 

 

The following figure shows unit impulse signal, 

 

Therefore, the unit impulse signal only occurs when t is equal to 0. This signal's area at tiny 
time intervals around t' equals zero and is one. For all other values of "t," the unit impulse 
signal has a value of 0. 

Step Unit Signal 

The definition of a unit step signal, u(t), is, 

 

FollowingFigure 8.5showsunitstepsignal. 
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Figure 8.5: Illustrates the unitstepsignal. 

For any and all positive values of "t," including zero, the unit step signal is present. And 
throughout this time, its value is 1. For any and all negative values of't, the unit step signal 
has a value of zero’. 

UnitRampSignal 

Aunitrampsignal,r(t) isdefinedas, 

 

We can write unit ramp signal, r(t) in terms of unit step signal, u(t) as 

r(t) = tu(t) 

Following Figure 8.6 shows unit ramp signal. 

 

Figure 8.6: Illustrates the unit ramp signal. 

For any and all positive values of "t," including zero, the unit ramp signal was present. 
During this time, its value grows linearly with respect to t. For all negative values of "t," the 
unit ramp signal has a value of 0. 

Parabolic Unit Signal 

The definition of a unit parabolic signal, p(t), is, 
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We can write unit parabolic signal, p(t) in terms of the unit step signal, u(t) as,  

 

The following Figure 8.7 shows the unit parabolic signal. 

 

Figure 8.7: Illustrates the unit parabolic signal with respect to time. 

Therefore, all positive values of "t," including zero, exhibit the unit parabolic signal. 
Additionally, throughout this time, its value rises non-linearly with respect to t. For all 
negative values of "t," the unit parabolic signal has a value of "0." 

Let's talk about the first order system's temporal response in the chapter. Take a look at the 
closed loop control system block diagram below.  

We know that the transfer function of the closed loop control system has unity negative 
feedback as,  

 

Substitute, G(s) = in the above equation. 

 

The power of s is one in the denominator term. Hence, the above transfer function is of the 
first order and the system is said to be the first order system. 

We can re-write the above equation as 

 

Where, 

C(s) is the Laplace transform of the output signal c(t), 

R(s) is the Laplace transform of the input signal r(t), and 

T is the time constant. Tis 
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Follow these steps to get the response (output) of the first order system in the time domain. 

Take the Laplace transform of the input signal r(t). 

Consider the equation, C'(s) = ST+1 R(s) 

Substitute R(s) value in the above equation. 

Do partial fractions of C(s) if required. 

Apply inverse Laplace transform to C'(s). 

First-order system's impulse response 

Think of the unit impulse signal as the primary order system's input. 

So, r(t)=δ(t) (t) 

Put the Laplace transform to use on both sides. R(s) =1. 

Consider the equation,  

 

Substitute, R(s) = 1 in the above equation. 

 

Transform the aforementioned equation into one of the Laplace transforms' standard forms. 

 

ApplyingInverseLaplaceTransformonboththesides, 

 

TheunitimpulseresponseisshowninthefollowingFigure in 8.8. 

Figure 8.8: Illustrates the unit impulse response. 
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For positive values of’t,' the unit impulse response, c(t), is indeed an exponentially decaying 
signal, and also for negative values of 't,' it is zero. 

First Order Step Response System 

Think of the unit step signal as the initial order system's input. So, r(t)=u (t). 

R(s) = S 

Consider the equation, 

 

Substitute, R(s) = in the above equation, 

 

Do partial fractions of C(s), 

 

The denominator phrase is the same on both sides. Consequently, they will cancel each other 
out. So, compare the terms in the numerator. 

1=A(sT+1)+Bs 

A = 1 is obtained by equating the constant terms on the both sides. A = 1 should be 
substituted, and the coefficients of the s terms on both sides should be equal. 

0=T+B \s⇒B=−T 

Replace C with a partial fraction expansion where A = 1 and B = T. (s). 

 

Use inverse Laplace transformation from both angles. 

Theunitstepresponse,c(t)hasboth thetransientandthesteadystateterms. 
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Thetransienttermintheunitstepresponse is- 

 

 The unit step response's steady state term is: The unit step reaction is shown in the 
accompanying Figure 8.9. 

 

Figure 8.9: Illustrates the unit step reaction is shown in the accompanying. 

At t = 0 and for all other negative values of t, the unit step response, c(t), has a value of zero. 
It starts out at 0 and increases steadily until it reaches one in a steady state. Therefore, the 
steady state value is influenced by the size of the input. 

System First Order Ramp Response 

Think of the unit ramp signal as the initial order system's input. 

Hence, r(t)=t u (t) 

Laplace transform should be used on both sides. 

Do partial fraction of C(s), 

 

 

The denominator phrase is the same on both sides. Consequently, they will cancel each other 
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out. So, compare the terms in the numerator. 

 

By equating the constant terms on both sides, we arrive at A = 1. A should be changed to 1, 
and the coefficient of the s terms should be same on both sides. 

0=T+B⇒B=−T 

Replacing B with T in a similar manner will equalize the coefficient of the s2 terms on both 
sides. You'll get C=T2 

Replace C=T2 in the partial fraction expansion of C with A=1, B=T, and (s). 

 Use inverse Laplace transformation from both angles. 

 

 

Both the transient as well as the steady state elements are included in the unit ramp response, 
c(t). The unit ramp response's transient term is. 

Thesteadystatetermintheunitramp responseis 

 

TheFigure 8.10belowistheunit rampresponse: 

 

Figure 8.10: Illustrates thefigurebelowistheunit rampresponse. 

For all positive values of t, the unit ramp response, c(t), follows the unit ramp input signal. 
However, the output signal differs by T units from the input signal. 
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ParabolicResponseofFirstOrderSystem 

 Consider of the units parabolic signal as the first order system's input. 

So, 

 

Apply Laplace transform on both the sides. 

 

Consider the equation,  

 

Substitute R(s) = in the above equation, 

 

Do partial fractions of C'(s), 

 

After simplifying, you will get the values of A, B, C and D as 1, -T, T² and - T³ respectively. 
Substitute these values in the above partial fraction expansion of C(s), 

 

ApplyinverseLaplacetransformonboththe sides. 

 

Both the transient and steady state components are included in the unit parabolic response, 

c(t). The unit parabolic response's transient term is. 

 

Within the unit parabolic response, the steady state term is 

As a result of these reactions, we may infer that first order control systems with ramp and 
parabolic inputs are unstable since they continue to grow indefinitely. Due to the limited 
output of these responses, first order control systems are stable given impulse and step inputs. 
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But there is no steady state name for the impulse response. In order to analyze control 
systems based on their responses, the step signal is thus often utilized in the time domain. 

Let's talk about the second order system's temporal response in this chapter. Take a look at 
the closed loop control system block diagram below. A unity negative feedback is attached to 
an open loop transfer function, n2 / s(s+2n), in this example. 

 

We know that the transfer function of the closed loop control system having unity negative 
feedback as, 

 

The denominator term's power of "s" is two. As a result, the system is referred to as a second 
order system since the aforementioned transfer function is from the second order. 

Thecharacteristicequationis- 

 

The roots of characteristic equation are, 

 

When = 0, the two roots are fictitious, 

When = 1, the two roots were real and equal. 

Thetworootsarerealbutnotequalwhenδ >1. 

Thetworootsarecomplexconjugatewhen0 <δ<1.Wecanwrite C(s)equationas, 
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Where, 

The output signal's Laplace transform is represented by C(s) (t) 

The input signal's Laplace transform is represented by R(s), the natural frequency by r(t), and 
the damping ratio by r(s). 

Get the response (output) of a second order system inside the time domain by following these 
procedures. 

Take Laplace transform of the input signal, r (t) 

Consider the equation,  

 

Substitute R(s) value in the above equation. 

Do partial fractions of C'(s) if required. 

Apply inverse Laplace transform to C'(s). 
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Second-Order Step Response System 

Think of the second order system's input as comprising the unit step signal. The unit step 
signal's Laplace transform is, 

R(s) = 1/ 

We know the transfer function of the second order closed loop control system is, 

 

Case 1: ō = 0 

Substitute, & = 0 in the transfer function, 

 

Substitute, R(s) =1/s in the above equation, 

 

Apply inverse Laplace transform on both the sides, 

 

So, the unit step response of the second order system when /delta = 0 will be a continuous 
time signal with constant amplitude and frequency. 

Case 2: ō = 1 

Substitute, /delta = 1 in the transfer function, 

 

Substitute, R(s) =1/s in the above equation, 
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Do partial fractions of C'(s), 

 

After simplifying, you will get the values of A, B and C as 1, -1 and respectively. Substitute 
these values in the above partial fraction expansion of C'(s), 

 

 

Apply inverse Laplace transform on both the sides, 

 

So, the unit step response of the second order system will try to reach the step input in steady 
state. 

Case 3: 0 < 5 < 1 

We can modify the denominator term of the transfer function as follows, 

 

The transfer function becomes, 

 

Substitute, R(s) =1/s in the above equation, 
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Do partial fractions of C(s), 

 

After simplifying, you will get the values of A, B and C as 1, -1 and - 28wn respectively. 
Substitute these values in the above partial fraction expansion of C(s), 

 

 

 

Apply inverse Laplace transform on both the sides, 

 

-If √1 – 62 = sin (), then’d’ will be cos (8). Substitute these values in the above equation, 

 

 

Therefore, when is between zero and one, the unit step response of the second order system 
exhibits damped oscillations (decreasing amplitude)[1]–[6]. 

Case4:δ> 1 
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The transfer function's denominator term may be changed as follows

 

The transfer function becomes, 

 

Substitute, R(s) = 1/s in the above equation, 

 

C'(s) = Do partial fractions of C'(s), 

 

After simplifying, you will get the values of A, B and C as 1, 1. 

 

and respectively. Substitute these values in above partial fraction expansion of C'(s), 

 

Apply inverse Laplace transform on both the sides, 
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Due to overdamping, the second order system's unit step response when > 1 will never exceed 
step input in the steady state. 

Second-order r system impulse response 

Any one of these two approaches may be used to determine the impulse response of the 
second order system. 

Follow the steps involved in deriving step response by assuming R(s) to have a value of 1 
rather than 1/s. 

Make the step response distinction.The following table displays the second order system's 
impulse response for four different damping ratio situations. 

 

 

Let's discuss about the second order system's time domain requirements in this chapter. The 
following graphic displays the step response of the second order system for the underdamped 
situation. This diagram depicts every time domain definition[7]–[10]. The term "transient 
response" refers to the reaction before to the settling period, while the term "steady state 
response" refers to the response after the settling time in Figure 9.1. 

 

Figure 9.1: diagram depicts every time domain. 
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Delay Period 

It is the amount of time needed from the zero instant for the reaction to reach half of its 
ultimate value. The symbol for it is tdtd. When " is between zero and one, take into 
consideration the step response of the second order system for t 0. 

 

The final value of the step response is one. 

Therefore, at t=ta, the value of the step response will be 0.5. Substitute, these values in the 
above equation. 

 

By using linear approximation, you will get the delay time to as, 

 

RiseTime 

It measures how long it takes a reaction to increase from 0% to 100% of its ultimate value. 
This is true for underdamped systems. Consider the duration from 10% to 90% of the final 
value again for overdamped systems. The symbol for rise time is tr. 

c(t) = 0 at time t = t1 = 0. 

We are aware that the step response's ultimate value is one. As a result, step response has a 
value of 1 at time t=t2. Replace these values in the equation below. 

 

Substitute t₁ and to values in the following equation of rise time, 



 

 

 

105 Control System 

 

I may infer from the preceding equation that the relationship between the rising time (tr) and 
the damped frequency (d) is inverse. 

Peak Period 

It is the amount of time needed for the reaction to first reach its highest value. The symbol for 
it is tp. The response's initial derivate is zero at t=tp. 

 They are aware that the second order system's step response in the underdamped scenario is. 

 

 

Differentiate c(t) with respect to 't', 
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Substitute, ttp and de(t) dt 0 in the above equation, 

 

 

One may infer from the aforementioned equation that the relationship between the peak time 
tp and the damped frequency d is inverse. 

Maximum Overshoot 

Maximum overshoot Mp is described as the difference between the reaction at its peak and the 
response's overall value. Additionally known as the greatest overshoot. 

It may be expressed mathematically as Mp=c(tp) c() 

Where c(tp) denotes the response's peak value and c() denotes the response's ultimate (steady 
state) value. 

The result of c(t) at time t=tp is. 

 

 

We know that, 
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o, we will get c(tp) as, 

 

Substitute the values of c(tp) and c(∞) in the peak overshoot equation, 

 

Percentage of peak overshoot % Mp can be calculated by using this formula. 

 

From Using the equation above, can can deduce that when the damping ratio rises, the 
percentage of peak overshoot%Mp will decrease. 

Resolving period 

It is the amount of time necessary for the reaction to stabilize and remain within the 
designated tolerance ranges around the final result. The tolerance bands typically range 
between 2% and 5%. Ts is used to indicate the settling time. 

Thesettlingtimefor5%tolerancebandis. 

 

Thesettlingtimefor2%tolerancebandis. 

Where 1/n is the value of the time constant, 

The damping ratio has an inverse relationship with the settling time ts and the time constant. 

The system gain has no bearing on the settling time ts or the time constant. This implies that 
even if the system gain changes, the settling time ts and time constant won't. 

Example 

When the unit step signal is supplied as an input to this control system, let's discover the time 
domain requirements of the control system with the closed loop transfer function. 

 They are aware of the second order closed loop control system's typical form of the transfer 
function as. 
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One may calculate the un-damped natural frequency n as 2 rad/sec and the damping ratio as 
0.5 by equating these equal transfer functions.The equation for damped frequency d is known 
as. 

 

 

 

 

To get the values for time domain specifications for a particular transfer function, substitute 
the aforementioned requisite values into each time domain specification's formula and 
simplify.The formulas for time domain requirements, required value substitutions, and final 
values are shown in the following table.
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Stable state error is the difference between the output of the control system and the expected 
response at steady state. The symbol for it is ess. The following is how the final value 
theorem may be used to determine steady state error. 

 

 

Where E(s) is the error signal's Laplace transform, and e (t) 

Let's go through how to determine steady state faults for control systems with unity feedback 
and without it one at a time. 
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Steady State Errors in Feedback Systems in Unity 

Take a look at the closed loop control system block diagram below, which has a single 
negative feedback signal (Figure 9.2). 

 

Figure 9.2 Steady State Errors in Feedback Systems in Unity 

Where, 

= R(s) is the Laplace transform of the reference Input signal r(t) 

=C(s) is the Laplace transform of the output signal c(t) 

We know the transfer function of the unity negative feedback closed loop control system as, 

 

 

 

The output of the summing point is, 

 

Substitute C(s) value in the above equation, 
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Substitute E(s) value in the steady state error formula, 

 

For common input signals including unit step, unit ramp, and unit parabolic signals, the 
following table displays steady state errors and error constants. 

 

Where Kp, Kv, and Ka stand for the relevant position, velocity, and acceleration error 
constants. 

Note: Multiply the relevant steady state error by the amplitude of any of the aforementioned 
input signals whose amplitude is different from unity[1]–[6]. 

Note − since it only occurs at the origin, we are unable to determine the steady state error for 
the unit impulse signal. Therefore, because t signifies infinity, we are unable to compare the 
impulse response with both the unit impulse input. 

Example 

(5+ Let us find the steady state error for an input signal r (t) = 5+2t+ = 5(s+4) s²(s+1) (s+20) 
of unity negative feedback control system with G(s): = 2) u(t) 

The given input signal is a combination of three signals step, ramp and parabolic. The 
following table shows the error constants and steady state error values for these three signals. 



 

 

 

113 Control System 

 

Wewillgettheoverallsteadystateerror,byaddingtheabovethreesteadystateerrors. 

ess=ess1+ess2+ess3 

⇒ess=0+0+1=1⇒ess=0+0+1=1 

Therefore,wegotthesteadystateerroressas1 forthisexample. 

SteadyStateErrors forNon-UnityFeedbackSystems 

Considerthefollowingblockdiagramofclosedloopcontrolsystem,whichishavingnonunitynegativ
efeedback in Figure 9.3. 

 

Figure 9.3: Illustrates the Blockdiagramofclosedloopcontrolsystem. 

Only for feedback systems with unity, can we calculate steady state errors. Therefore, the 
non-unity feedback system has to be changed to the unity feedback system. In the block 
diagram above, add one unity positive feedback line and one unity negative feedback path to 
account for this. The updated block diagram appears as follows in Figure 9.4. 

 

 

Figure 9.4: Illustrates the updated block diagram closed loop control system. 
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By leaving the unity negative feedback in its current state, simplify the block diagram above. 
This is the abbreviated block diagram in Figure 10.3. 

 

Figure 9.5: Illustrates the leaving the unity negative feedback in its current state. 

The block diagram of the unity negative feedback closed loop control system is similar to this 
one. In this case, the single block's transfer function is G(s) / [1+G(s)H(s)G(s)] rather than G. 
(s). The steady state error formula for unity negative feedback systems may now be used to 
compute the steady state errors[7]–[12]. 

Note: For unstable closed loop systems, determining the steady state errors is useless. 
Therefore, only closed loop stable systems must be considered for calculating steady state 
errors. This implies that before identifying the steady state faults, we must determine if the 
control system is stable. We will go through stability-related ideas in the next chapter. 
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StabilityAnalysisinS-Domain 

It's crucial to understand stability. Let's talk about system stability and system kinds based on 
stability in this chapter. 

Stability 

If a system's output is under control, it is considered to be stable. It is believed to be unstable 
if not. For a given bounded input, a stable system generates a bounded output. The reaction of 
a stable system is shown in the next picture in Figure 10.1. 

 

Figure 10.1: Illustrates the reaction of a stable system. 

This is the first order control system's reaction to the unit step input. This response's values 
range from 0 to 1. It is hence bounded output. We are aware that for all positive values of t, 
including zero, the unit step signal has a value of 1. Input is thus bounded. Since both the 
input and the output are bounded, the first order control system is stable[1]–[3]. 

Systems based on Types of Stability 

1. According to their stability, the systems may be categorized as follows. 

2. Unquestionably stable system 

3. System that is only stably stable 

4. Possibly unstable system 

5. System that is utterly stable 

The system is referred to as being perfectly stable if it remains stable over the whole range of 
system component values. If all of the open loop transfer function's poles are located on the 
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left half of the's' plane, the open loop control system is perfectly stable. Similarly, if all of the 
closed loop transfer function's poles are located in the left side of the's' plane, the closed loop 
control system is completely stable. 

Constrained Stability System 

A system is said to be conditionally stable if it is stable throughout a range of values for each 
system component. 

System with Marginal Stability 

A system is considered moderately stable if it produces an output signal with constant 
amplitude and constant frequency of oscillations given limited input. If any two poles of a 
open loop transfer function are present on the hypothetical axis, the open loop control system 
is only partially stable. Similar to this, if any two poles of a closed loop transfer function are 
located on the imaginary axis, the closed loop control system is only partially stable. Let's 
talk about the Routh-Hurwitz stability criterion-based stability analysis in the's' domain in 
this chapter. In order to determine the stability of closed loop control systems, we need the 
characteristic equation in this criteria. 

Routh-Hurwitz Stability Criterion 

Having one required requirement and one sufficient condition for stability is the Routh-
Hurwitz stability criteria. Any control system that doesn't fulfill the prerequisite requirement 
is unstable, according to our definition. However, if the required condition is met, the control 
system may or may not be stable. In order to determine if the control system is stable or not, 
the adequate condition is useful. 

Condition required for Routh-Hurwitz Stability 

The characteristic polynomial's coefficients must be positive in order for the condition to 
exist. This indicates that there should be negative real portions in all of the characteristic 
equation's roots. 

Considerthe characteristicequationofthe order‘n’is- 

Notably, the nth order characteristic equation shouldn't include any missing terms. This 
implies that there shouldn't be any zero-valued coefficients in the nth order characteristic 
equation. 

Condition sufficient for Routh-Hurwitz Stability 

The Routh array's first column should include only entries with the same sign, and this is the 
necessary requirement. This implies that all of the entries in the Routh array's first column 
must be either positive or negative. 

Array Routh Method 

The control system is stable if all of the roots of a characteristic equation can be found on the 
left half of the's' plane. The control system is unstable if at least one characteristic equation 
root is located in the right-half of the "s" plane. To determine the weather control system is 
steady or unstable, we must locate the characteristic equation's roots. However, as order rises, 
it becomes more difficult to identify the characteristic equation's roots. We thus have the 
Routh array technique to solve this issue. The characteristic equation's roots do not need to be 
calculated using this approach. Create the Routh table first, then look up the number of sign 
changes in the first column. The number of sign shifts in the first column of a Routh table 
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indicates the number of characteristic equation roots present in the right half of the's' plane 
and the instability of the control system. 

To construct the Routh table, follow these steps. 

The coefficients of a characteristic polynomial as shown in the table below should fill the 
first two rows of the Routh array. Up to the coefficient of s0, start with the sn coefficient. 

The items listed in the table below should be inserted into the remaining rows of the Routh 
array. Keep going until you reach the first column element of row s0s0, which is an. In this 
case, a represents the characteristic polynomial's s0 coefficient. 

Note: If any of the row components in the Routh table have a common factor, you may divide 
the row elements by that factor to simplify things. The Routh array of the nth order 
characteristics polynomial is shown in the table below. 

 

 

 

Example: 

Letusfindthestabilityofthecontrolsystemhavingcharacteristicequation, 

 

Step1−Verifythe necessaryconditionforthe Routh-Hurwitzstability.Allthecoefficients 
ofthecharacteristicpolynomial, arepositive.So,thecontrolsystemsatisfiesthenecessary 
condition. 
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Step2−FormtheRoutharrayforthe givencharacteristicpolynomial. 

 

 

Step 3: Confirm the Routh-Hurwitz stability's necessary conditions. 

The Routh array's first column contains only positive items. In the first column of the Routh 
array, there is no change in sign. The control mechanism is hence stable. 

Individual Routh Array Cases 

While constructing the Routh table, we could encounter two different kinds of scenarios. It is 
challenging to finish the Routh table from these two examples. 

These are the two exceptional cases: 

In the Routh's array, zero is the initial entry in any row. 

The Routh's array has zero items in every row. 

Let's now go through each of these two situations' challenges individually. 

The Routh's array's first element in any row is zero[4]–[13]. 

If any row in the Routh's array only has the first element set to zero and at least one other 
element does have a value other than zero, the first element should be changed to a tiny 
positive integer,, in that row. Afterward, go on with completing Routh's table. By replacing 
tends to zero, determine the number of sign changes within the first column of Routh's table. 

Example 

 

Letusfindthestabilityofthecontrolsystemhavingcharacteristicequation, 
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Step1−Verifythe necessaryconditionforthe Routh-Hurwitzstability.Allthecoefficients 
ofthecharacteristicpolynomial, are optimistic. As a result, the control system met the 
prerequisite. 

 

Form the Routh array for the provided characteristic polynomial in step two. 

 

 

 

The common factor for the s3 items in the row is 2. So, we split each of these components by 
2. Only the first element in row s2 is zero in special instance I Therefore, change it to and 
continue completing this same Routh table by replacing it with. 

 

 

Step3−Verifythe sufficientconditionforthe Routh-Hurwitzstability. 
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As₁tendstozero,theRouthtablebecomeslikethis. 

 

The first column of the Routh table has two sign changes. The control system is thus 
unsteady. 

The Routh's array has zero items in every row. 

Take these two actions in this situation. – 

The row right above the row of zeros has an auxilary equation, A(s), which should be written 
down. 

the difference between the auxiliary equation A(s) and s. With these coefficients, complete 
the zeros in the row. 

Example 

Let's determine if a control system with a characteristic equation is stable, 

 

Step 1: Confirm the Routh-Hurwitz stability's preconditions. 

The provided characteristic polynomial has only positive coefficients. As a result, the control 
system met the prerequisite. Form the Routh array for the provided characteristic polynomial 
in step two. 

 

The row s¹ elements have the common factor of 3. So, all these elements are divided by 3. 
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Special case (ii) - All the elements of row s³ are zero. So, write the auxiliary equation, A(s) of 
the row s¹. 

 

 

Place these coefficients in row s³, 

 

Step 3: Confirm the Routh-Hurwitz stability's necessary conditions. 

The first column of the Routh table has two sign changes. The control system is thus 
unsteady. 

We may determine if the closed loop poles are in the left half of the's' plane, the right half of 
the's' plane, or on a hypothetical axis using the Routh-Hurwitz stability criteria. Thus, we are 
unable to determine the kind of control system. The root locus method may be used to get 
around this restriction. 

Root-locus Method 

We can see the closed loop poles' route in the root locus graphic. As a result, we can 
determine the kind of control system. In order to determine the stability of the closed loop 
control system, we shall employ an open loop transfer function in this method. 

Principles of Root Locus 

The Root locus, which may be changed by altering system gain K from zero to infinity, is the 
location of the roots of the characteristic equation. 

Weknowthat,thecharacteristicequationoftheclosedloopcontrolsystemis, 

 

We can represent G(s)H(s) as, 
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Where, 

K represents the multiplying factor 

N(s) represents the numerator term having (factored) nth order polynomial of 's'. 

D(s) represents the denominator term having (factored) mth order polynomial of 's'. 

Substitute, G(s)H(s) value in the characteristic equation, 

 

Case 1 - K=0 

If K = 0, then D(s) = 0. 

That means, the closed loop poles are equal to open loop poles when K is zero. 

Case 2 - K = ∞ 

Re-write the above characteristic equation as, 

 

Substitute, K = ∞ in the above equation, 

 

If K = ∞, then N(s) = 0. It means the closed loop poles are equal to the open loop zeros when 
K is infinity. 

Fromabovetwocases,wecanconcludethattherootlocusbranchesstartatopenlooppolesandendatop
enloopzeros. 

AngleConditionandMagnitudeCondition 

The angles are met by the points on the root locus branches. In order to determine if a point 
exists on the root locus branch or not, the angle condition is utilized. Utilizing the magnitude 
condition, we can determine the value of K for the locations on the root locus branches. Since 
the angle requirement is satisfied, we can employ the magnitude condition for the points. 

The following equation represents a closed loop control system. 
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The angle condition is the point at which the angle of the open loop transfer function is 
anoddmultipleof1800. 

MagnitudeofG(s),H(s)G(s)H(s)is. 

 

The point at which the angle requirement is met and the magnitude of the open loop transfers 
function is just one is known as the magnitude condition. The root locus is shown graphically 
in the s-domain and has symmetrical properties around the real axis. Due to the fact that the 
open loop poles and zeroes are present in the s-domain and have values that might be either 
real or complex conjugate pairs. Let's talk about how to create (draw) the root locus in this 
chapter. 

Rules for Building a Root Locus 

Use these guidelines while creating a root locus. 

Rule 1: In the s' plane, find the open loop poles and zeros. 

Rule 2: Count the branches at the root locus. 

We are aware that the open loop zeros and poles mark the beginning and end of the root locus 
branches. In other words, the number of finite open loop poles P or zeros Z, whichever is 
bigger, equals the number of root locus branches N. 

The number of root locus branches N may be expressed mathematically as N=P if PZ N=Z if 
PZ. 

Rule 3: Locate and sketch the true axis root and locus branches. 

A point is on the root locus if the angle of a open loop transfer function there is an odd 
multiple of 1800. A point here on real axis is on the root locus branch if an odd number of a 
open loop poles plus zeros are present to its left. The branch of points that meets this 
requirement is therefore the true axis of a root locus branch. 

Rule 4: Determine the asymptote's centroid and angle. 

The root locus branches all begin at finite open loop poles and finish at finite open loop zeros 
if P=Z. 

In the event where P>Z, then PZ number of root locus branches begin at finite open loop 
poles and finish at infinite open loop zeros, as opposed to Z number of root locus branches 
beginning at finite open loop poles and ending at finite open loop zeros. 

In the event where P > Z, P number of root locus branches begin at finite open loop poles and 
finish at finite open loop zeros, while Z number of root locus branches begin at infinite open 
loop poles and conclude at finite open loop zeros. 

Therefore, when P > Z, some of the root locus branches reach infinity. The orientation of 
these root locus branching is provided by asymptotes. Centroid is the location where 
asymptotes cross the real axis. 
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Wecancalculatethecentroidα byusingthisformula, 

Rule 5: Locate the spots where the branches of the root locus cross a hypothetical axis. Using 
the Routh array approach and a specific case, we can determine the position where the root 
locus branch crosses the imaginary axis and the value of K at that location (ii). 

The root locus branch contacts the imaginary axis if all elements in any row of the Routh 
array is zero, and vice versa. Determine the row such that if we set the first element to zero, 
the items in the whole row will also be set to zero. Determine K's value for this combo. Put 
this K value in the auxiliary equation as a replacement. You will discover where the root 
locus branch crosses a hypothetical axis. 

Find break-away and break-in points according to Rule 6. 

There will be a break-away point between these three open loop poles if there is a true axis 
root locus branch between them. A break-in point will be present between two open loop 
zeros when there is a real axis root locus branch present between them. Note: Only the true 
axis root locus branches have break-away and break-in locations. To locate break-away and 
break-in spots, follow these instructions. 

From the characteristic equation 1+G(s)H(s)=0, write K in terms of s. K should be 
differentiated with respect to s then set to zero. Replace these ss numbers in the equation 
above. The break points are ss values in which the K value is positive. Rule 7: Determine the 
angles of departure and arrival. At the complex conjugate open loop poles and zeros, 
respectively, the angle of departure as well as the angle of arrival may be determined. The 
angle of departure (d) formula is, 

 

Example 

Letusnowdrawtherootlocusofthecontrolsystemhavingopenlooptransfer function, 
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Step1−thegivenopenloop transferfunctionhasthreepoles ats=0, 

s=-1,s=-
5.Itdoesn’thaveanyzero.Therefore,thenumberofrootlocusbranchesisequaltothenumberofpoles 
oftheopenloop transferfunction in Figure 10.2.  N=P=3 

 

Figure 10.2: Illustrates thenumberofrootlocusbranchesisequaltothenumberofpoles 
oftheopenloop transferfunction. 

The accompanying diagram shows where the three poles are. One branch of the root locus on 
the real axis may be found on the line segment between s=1 and s=0. The line segment 
towards the left of s=5 represents the other branch of the root locus here on real axis. 

Step 2: Using the provided equations, they will determine the values of the centroid as well as 
the angle of asymptotes. Centroid. 

Theangleofasymptotesare, 

 

The next graphic displays the centroid and three asymptotes in Figure 10.3. 

 

Figure 10.3: Illustrates the displays the centroid and three asymptotes. 



 
127 Control System 

Step 3: Two root locus branches cross the hypothetical axis because two asymptotes have 
angles of 600600 and 30003000. The root locus branches cross the imaginary axis at where 
there will be one break-away point on the real axis root locus branches between both the 
poles s =1 and s=0 using the Routh array technique and special case (ii). Following the 
instructions for calculating the break-away point will result in s = 0.473. Figure 10.4 displays 
the root locus diagram again for specified control system. 

 

Figure 10.4: Illustrates the root locus diagram again for specified control system. 

This will allow you to watch the motion of the closed loop transfer function's poles and 
generate the root locus diagram for any control system. 

We may learn the range of K values for various forms of damping from the root locus 
diagrams. Root Locus Effects of Adding Open Loop Poles and Zeros, By combining the open 
loop poles and zeros, the root locus in the's' plane may be moved. Some root locus branches 
will migrate toward the right side of the "s" plane if a pole is included in the open loop 
transfer function. The damping ratio decreases as a result. Which indicates that the time 
domain parameters such as delay time td, rising time tr, and peak time tp decrease as the 
damped frequency d rises. But it affects the stability of the system. The left side of the "s" 
plane will be where some of the root locus branches go if we include a zero inside the open 
loop transfer function. Thus, it will improve the stability of the control system. The damping 
ratio rises in this situation. Which indicates that the time domain parameters such as delay 
time td, rising time tr, and peak time tp grow while the damped frequency d decreases. 
Therefore, we may add (include) the open loop poles or zeros to the transfer function 
dependent on the demand. 
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Questions for Practice 

 

1. How to define concept of control system? 

2. How many types of feedback control loop? 

3. How many types of feedback system? 

4. What are effects of parametric variations on output? 

5. What are advantages of open-loop control system? 

6. How to measure modelling in the frequency domain? 

7. What are electromechanical system transfer function? 

8. How are represented time-invariant differential equation? 

9. How to calculate number of poles, zeros and transfer function? 

10. How to identifying the transfer function? 

11. How to identifying feedback relationship? 

12. How to calculate the summing points in algebra? 
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