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CHAPTER 1 

INTRODUCTION OF THE DISTRIBUTED SYSTEM 
 

Dr. A. Jayachandran, Professor, 
Department of Computer Science & Engineering,  

Presidency University, Bangalore, Karnataka, India. 
Email Id- ajayachandran@presidencyuniversity.in 

 

The pace at which computer systems change was, is, and continues to be overwhelming. 

From 1945, when the modern computer era began, until about 1985, computers were large 

and expensive. Moreover, for lack of a way to connect them, these computers operated 
independently from one another. Starting in the mid-1980s, however, two advances in 

technology began to change that situation. The first was the development of powerful 

microprocessors. Initially, these were 8-bit machines, but soon 16-bit, 32-bit, and 64-bit CPUs 
became common. With multicore CPUs, we now are prefacing the challenge of adapting 

and developing programs to exploit parallelism. In any case, the current generation of machines 

have the computing power of the mainframes deployed 30 or 40 years ago, but for 1/1000th 

of the price or less. 

The second development was the invention of high-speed computer networks. Local-area 
networks or LANs allow thousands of machines within a building to be connected in such 

a way that small amounts of information can be transferred in a few microseconds or so. 
Larger amounts of data can be moved between machines at rates of billions of bits per 

second (bps). Wide-area networks or WANs  allow hundreds of millions of machines all 

over the earth to be connected at speeds varying from tens of thousands to hundreds of 

millions bps [1]. 

Parallel to the development of increasingly powerful and networked ma- chines, we have also 
been able to witness miniaturization of computer systems with perhaps the smartphone as the 

most impressive outcome. Packed with sensors, lots of memory, and a powerful CPU, these 

devices are nothing less than full-fledged computers. Of course, they also have networking 
capabilities. Along the same lines, so-called plug computers are finding their way to the 

Market. These small computers, often the size of a power adapter, can be plugged directly 

into an outlet and offer near-desktop performance. 

The result of these technologies is that it is now not only feasible, but easy, to put together 

a computing system composed of a large number of networked computers, be they large 

or small. These computers are generally geographically dispersed, for which reason they 

are usually said to form a distributed system. The size of a distributed system may vary from 
a handful of devices, to millions of computers. The interconnection network may be wired, 

wireless, or a combination of both. Moreover, distributed systems are often highly dynamic, 

in the sense that computers can join and leave, with the topology and performance of the 
underlying network almost continuously changing.  In this chapter, we provide an initial 

exploration of distributed systems and their design goals, and follow that up by discussing 
some well-known types of systems. 

Distributed System 

Various definitions of distributed systems have been given in the literature, none of them 

satisfactory, and none of them in agreement with any of the others. For our purposes it is 
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sufficient to give a loose characterization. A distributed system is a collection of autonomous 

computing elements that appears to its users as a single coherent system. This definition refers 
to two characteristic features of distributed systems. The first one is that a distributed system 

is a collection of computing elements each being able to behave independently of each other. 
A computing element, which we will generally refer to as a node, can be either a hardware 

device or a software process [2]. A second feature is that users be they people or 

applications believe they are dealing with a single system.  This means that one way or 

another the autonomous nodes need to collaborate. How to establish this collaboration 

lies at the heart of developing distributed systems. Note that we are not making any 
assumptions concerning the type of nodes. In principle, even within a single system, they 

could range from high-performance mainframe computers to small devices in sensor 

networks. Likewise, we make no assumptions concerning the way that nodes are 
interconnected. 

Collection of Autonomous Computing Elements 

Modern distributed systems can, and often will, consist of all kinds of nodes, ranging from 

very big high-performance computers to  small plug computers or even smaller devices. A 

fundamental principle is that nodes can act independently from each other, although it 
should be obvious that if they ignore each other, then there is no use in putting them into 

the same distributed system. In practice, nodes are programmed to achieve common goals, 
which are realized by exchanging messages with each other. A node reacts to in- coming 

messages, which are then processed and, in turn, leading to further communication through 

message passing. 

An important observation is that, as a consequence of dealing with inde- pendent nodes, each 

one will have its own notion of time. In other words, we cannot always assume that there is 
something like a global clock. This lack of a common reference of time leads to fundamental 

questions regarding the synchronization and coordination within a distributed system, which 

we will come to discuss extensively. The fact that we are dealing with a collection of nodes 
implies that we may also need to manage the membership and organization of that collection. 

In other words, we may need to register which nodes may or may not belong to the system, 

and also provide each member with a list of nodes it can directly communicate with. 

Managing group membership can be exceedingly difficult, if only for reasons of admission 

control. To explain, we make a distinction between open and closed groups. In an open 

group, any node is allowed to join the distributed system, effectively meaning that it can send 

messages to any other node in the system. In contrast, with a closed group, only the 
members of that group can communicate with each other and a separate mechanism is 

needed to let a node join or leave the group [3]. It is not difficult to see that admission 

control can be difficult. First, a mechanism is needed to authenticate a node, and as we 
shall see in Chap- ter 9, if not properly designed, managing authentication can easily 

create a scalability bottleneck. Second, each node must, in principle, check if it is indeed 

communicating with another group member and not, for example, with an intruder 

aiming to create havoc. Finally, considering that a member can easily communicate with 

nonmembers, if confidentiality is an issue in the communication within the distr ibuted 
system, we may be facing trust issues. Concerning the organization of the collection, 

practice shows that a distributed system is often organized as an overlay network.  In this 
case, a node is typically a software process equipped with a list of other processes it can 

directly send messages to. It may also be the case that a neigh- bor needs to be first looked 
up. Message passing is then done through TCP/IP or UDP channels, higher-level facilities 

may be available as well. There are roughly two types of overlay networks: 
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Structured overlay: In this case, each node has a well-defined set of neighbors with whom it 

can communicate. For example, the nodes are organized in a tree or logical ring. 

Unstructured overlay: In these overlays, each node has a number of references to randomly 

select other nodes. 

In any case, an overlay network should, in principle, always be connected, meaning that 

between any two nodes there is always a communication path allowing those nodes to route 

messages from one to the other. A well-known class of overlays is formed by peer-to-peer 

(P2P) networks. It is important to realize that the organization of nodes requires special 

effort and that it is sometimes one of the more intricate parts of distributed-systems 
management. 

Single Coherent System 

As mentioned, a distributed system should appear as a single coherent system. In some cases, 
researchers have even gone so far as to say that there should be a single-system view, meaning 

that end users should not even notice that they are dealing with the fact that processes, data, 

and control are dispersed across a computer network. Achieving a single-system view is often 

asking too much, for which reason, in our definition of a distributed system, we have opted for 

something weaker, namely that it appears to be coherent. Roughly speaking, a distributed 
system is coherent if it behaves according to the expectations of its users. More specifically, in 

a single coherent system the collection of nodes as a whole operates the same, no matter 
where, when, and how interaction between a user and the system takes place.  

Offering a single coherent view is often challenging enough. For example, it requires that an 

end user would not be able to tell exactly on which computer a process is currently executing, 
or even perhaps that part of a task has been spawned off to another process executing 

somewhere else. Likewise, where data is stored should be of no concern, and neither should 
it matter that the system may be replicating data to enhance performance. This so called 

distribution transparency, is an important design goal of distributed systems. In a sense, it is  

akin to the approach taken in many Unix-like operating systems in which resources are 
accessed through a unifying file-system interface, effectively hiding the differences between 

files, storage devices, and main memory, but also networks. 

However, striving for a single coherent system introduces an important trade-off. As we 

cannot ignore the fact that a distributed system consists of multiple, networked nodes, it is 

inevitable that at any time only a part of the system fails. This means that unexpected 

behavior in which, for example, some applications may continue to execute successfully 

while others come to a grinding halt, is a reality that needs to be dealt with. Although 
partial failures are inherent to any complex system, in distributed systems they are 

particularly difficult to hide. It lead Turing-Award winner Leslie Lamport, to describe a 

distributed system one in which the failure of a computer you didn’t even know existed can 
render your own computer unusable [4]. 

Middleware and Distributed Systems 

To assist the development of distributed applications, distributed systems are often organized 

to have a separate layer of software that is logically placed on top of the respective operating 

systems of the computers that are part of the system. This organization is shown in Figure 1, 
leading to what is known as middleware. 
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Figure 1: Represented that a Distributed System Organized in a Middleware Layer. 

According to the above figure, four networked computers and three applications, of which 
application B is distributed across computers 2 and 3. Each application is offered the same 

interface. The distr ibuted system provides the means for components of a single distr ibuted 

application to communicate with each other, but also to let different applications 

communicate.  At the same time, it hides, as best and reasonably as possible, the 

differences in hardware and operating systems from each application. 

In a sense, middleware is the same to a distributed system as what an operating system is 

to a computer: a manager of resources offering its applications to efficiently share and 
deploy those resources across a network. Next to resource management, it offers services 

that can also be found in most operating systems, including: 

a. Facilities for inter application communication. 

b. Security services. 

c. Accounting services. 

d. Masking of and recovery from failures. 

The main difference with their operating-system equivalents, is that middleware services 

are offered in a networked environment. Note also that most services are useful to many 
applications. In this sense, middleware can also be viewed as a container of commonly 

used components and functions that now no longer have to be implemented by applications 
separately. To further illustrate these points, let us briefly consider a few examples of typical 

middleware services. 

i. Communication: 

A common communication service is the so-called Remote Procedure Call (RPC). An RPC 

service, allows an application to invoke a function that is implemented and executed on a 
remote computer as if it was locally available. To this end, a developer need merely specify 

the function header expressed in a special programming language, from which the RPC 

subsystem can then generate the necessary code that establishes remote invocations. 

ii. Transactions 

Many applications make use of multiple services that are distributed among several 

computers. Middleware generally offers special support for executing such services in an 

all-or-nothing fashion, commonly referred to as an atomic transaction. In this case, the 

application developer need only specify the remote services involved, and by following a 
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standardized protocol, the middleware makes sure that every service is invoked, or none 

at all. 

iii. Service Composition  

It is becoming increasingly common to develop new applications by taking existing 
programs and gluing them together. This is notably the case for many Web-based applications, 

in particular those known as Web services Web-based middleware can help by standardizing 

the way Web services are accessed and providing the means to generate their functions in  

a specific order. A simple example of how service composition is deployed is formed by 

mashups Web pages that combine and aggregate data from different sources. Well-known 
mashups are those based on Google maps in which maps are enhanced with extra 

information such as trip planners or real-time weather forecasts. 

iv. Reliability 

As a last example, there has been a wealth of research on pro- viding enhanced functions 

for building reliable distributed applications. The Horus toolkit allows a developer to build 

an application as a group of processes such that any message sent by one process is 

guaranteed to be received by all or no other process. As it turns out, such guarantees can 

greatly simplify developing distributed applications and are typically implemented as part 
of the middleware. 

v. Design Goals 

Just because it is possible to build distributed systems does not necessarily mean that it is 

a good idea. In this section we discuss four important goals that should be met to make 

building a distributed system worth the effort. A distributed system should make resources 
easily accessible; it should hide the fact that resources are distributed across a network; it 

should be open; and it should be scalable. 
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CHAPTER 2 

SUPPORTING RESOURCE SHARING 
 

Dr.S.P.Anandaraj, Professor and Hod, 
Department of Computer Science and Engineering,  

Presidency University, Bangalore, Karnataka, India 
Email Id- anandaraj@presidencyuniversity.in 

 

An important goal of a distributed system is to make it easy for users (and applications) to 

access and share remote resources. Resources can be virtually anything, but typical examples 

include peripherals, storage facilities, data, files, services, and networks, to name just a 
few. There are many reasons for wanting to share resources. One obvious reason is that of 

economics. For example, it is cheaper to have a single high-end reliable storage facility be 

shared than having to buy and maintain storage for each user separately. 

Connecting users and resources also makes it easier to collaborate and exchange information, 

as is illustrated by the success of the Internet with its simple protocols for exchanging files, 

mail, documents, audio, and video. The connectivity of the Internet has allowed 

geographically widely dispersed groups of people to work together by means of all kinds of 

groupware, that is, software for collaborative editing, teleconferencing, and so on, as is 
illustrated by multinational software-development companies that have outsourced much of 

their code production to Asia [5]. 

However, resource sharing in distributed systems is perhaps best illustrated by the success of 

file-sharing peer-to-peer networks like Bit Torrent. These distributed systems make it 

extremely simple for users to share files across the Internet. Peer-to-peer networks are 

often associated with distr ibution of media files such as audio and video. In other cases, the 

technology is used for distributing large amounts of data, as in the case of software updates, 
backup services, and data synchronization across multiple servers. 

Making Distribution Transparent 

An important goal of a distr ibuted system is to hide the fact that its processes and resources 
are physically distributed across multiple computers possibly separated by large distances. 

In other words, it tries to make the distribution of processes and resources transparent, that 

is, invisible, to end users and applications. 

Types of Distribution Transparency 

The concept of transparency can be applied to several aspects of a distributed system, of which 

the most important ones are listed in Table 1. We use the term object to mean either a process 

or a resource. 

Table 1: Represented that the Different forms of Transparency in a Distributed 
System 

Sr. No. Transparency Description 

1.  Access 
Hide differences in data representation and how an 

object is accessed 
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2.  Location Hide where an object is located 

3.  Relocation 
Hide that an object may be moved to another location 

while in use 

4.  Migration Hide that an object may move to another location 

5.  Replication Hide that an object is replicated 

6.  Concurrency 
Hide that an object may be shared by several 

independent users 

7.  Failure Hide the failure and recovery of an object 

 

Access transparency deals with hiding differences in data representation and the way that 

objects can be accessed. At a basic level, we want to hide differences in machine architectures, 

but more important is that we reach agreement on how data is to be represented by different 

machines and operating systems. For example, a distributed system may have computer 

systems that run different operating systems, each having their own file-naming 
conventions. Differences in naming conventions, differences in file operations, or 

differences in how low-level communication with other processes is to take place, are 

examples of access issues that should preferably be hidden from users and applications. 

An important group of transparency types concerns the location of a pro- cess or resource. 

Location transparency refers to the fact that users cannot tell where an object is physically 

located in the system. Naming plays an important role in achieving location transparency. In 

particular, location transparency can often be achieved by assigning only logical names to re- 

sources, that is, names in which the location of a resource is not secretly encoded. An example 
of a name is the uniform resource locator (URL), which gives no clue about the actual location 

of Prentice Hall’s main Web server. The URL also gives no clue as to whether the file 
index.html has always been at its current location or was recently moved there. For example, 

the entire site may have been moved from one data center to another, yet users should not 

notice. The latter is an example of relocation transparency, which is becoming increasingly 

important in the context of cloud computing to which we return later in this chapter. 

Where relocation transparency refers to being moved by the distributed system, migration 
transparency is offered by a distributed system when it supports the mobility of processes 

and resources initiated by users, with- out affecting ongoing communication and 

operations.  A typical example is communication between mobile phones: regardless 
whether two people are actually moving, mobile phones will allow them to continue their  

conversation. Other examples that come to mind include online tracking and tracing of 

goods as they are being transported from one place to another, and teleconferencing 

(partly) using devices that are equipped with mobile Internet. 

As we shall see, replication plays an important role in distributed systems. For example, 

resources may be replicated to increase availability or to improve performance by placing 

a copy close to  the place where it is accessed. Replication transparency deals with hiding 
the fact that several copies of a resource exist, or that several processes are operating in some 

form of lockstep mode so that one can take over when another fails. To hide replication 

from users, it is necessary that all replicas have the same name. Consequently, a system 
that supports replication transparency should generally support location transparency as 

well, because it would otherwise be impossible to refer to replicas at different locations. 
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We already mentioned that an important goal of distributed systems is to allow sharing 

of resources. In many cases, sharing resources is done in a cooperative way, as in the case 
of communication channels. However, there are also many examples of competitive 

sharing of resources. For example, two independent users may each have stored their files 
on the same file server or may be accessing the same tables in a shared database. In such 

cases, it is important that each user does not notice that the other is making use of the 

same resource. This phenomenon is called concurrency transparency. An important issue is 

that concurrent access to a shared resource leaves that resource in a consistent state. 

Consistency can be achieved through locking mechanisms, by which users are, in turn, given 
exclusive access to the desired resource. A more refined mechanism is to make use of 

transactions, but these may be difficult to implement in a distributed system, notably when 

scalability is an issue. 

Last, but certainly not least, it is important that a distributed system provides failure 

transparency. This means that a user or application does not notice that some piece of the 

system fails to work properly, and that the system subsequently and automatically recovers 

from that failure. Masking failures is one of the hardest issues in distributed systems and is 

even impossible when certain apparently realistic assumptions.  The main difficulty in 
masking and transparently recovering from failures lies in the inability to distinguish between 

a dead process and a painfully slowly responding one. For example, when contacting a busy 
Web server, a browser will eventually time out and report that the Web page is unavailable. At 

that point, the user cannot tell whether the server is actually down or that the network is badly 

congested. 
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CHAPTER 3 

DEGREE OF DISTRIBUTION TRANSPARENCY 
 

Ms.Bhavya, Assistant Professor, 
Department of Computer Science & Engineering,  

Presidency University, Bangalore, Karnataka, India 
Email Id- bhatullabhavya@presidencyuniversity.in 

 

Although distribution transparency is generally considered preferable for any distr ibuted 

system, there are situations in which attempting to blindly hide all distribution aspects 

from users is not a good idea. A simple example is requesting your electronic newspaper 
to appear in your mailbox before 7 AM local time, as usual, while you are currently at the 

other end of the world living in a different time zone. Your morning paper will not be the 

morning paper you are used to. 

Likewise, a wide-area distributed system that connects a process in San Francisco to a 

process in Amsterdam cannot be expected to hide the fact that Mother Nature will not 

allow it to send a message from one process to the other in less than approximately 35 

milliseconds. Practice shows that it actually takes several hundred milliseconds using a 

computer network. Signal transmission is not only limited by the speed of light, but also by 
limited processing capacities and delays in the intermediate switches. 

There is also a trade-off between a high degree of transparency and the performance of a 
system. For example, many Internet applications repeatedly try to contact a server before 

finally giving up. Consequently, attempting to mask a transient server failure before trying 

another one may slow down the system as a whole. In such a case, it may have been better 

to give up earlier, or at least let the user cancel the attempts to make contact. 

Another example is where we need to guarantee that several replicas, located on different 
continents, must be consistent all the time. In other words, if one copy is changed, that change 

should be propagated to all copies before allowing any other operation. It is clear that a 

single update operation may now even take seconds to complete, something that cannot be 
hidden from users. 

Finally, there are situations in which it is not at all obvious that hiding distribution is a good 

idea. As distributed systems are expanding to devices that people carry around and where the 

very notion of location and context awareness is becoming increasingly important, it may be 

best to actually expose distribution rather than trying to hide it. An obvious example is 

making use of location-based services, which can often be found on mobile phones, such as 

finding the nearest Chinese take-away or checking whether any of your friends are nearby. 

There are also other arguments against distribution transparency. Recognizing that full 

distribution transparency is simply impossible, we should ask ourselves whether it is even 

wise to pretend that we can achieve it. I t may be much better  to make distribution explicit 
so that the user and application developer are never tricked into believing that there is such 

a thing as transparency. The result will be that users will much better understand the 
behavior of a distributed system, and are thus much better prepared to deal with this 

behavior.  

The conclusion is that aiming for distribution transparency may be a nice goal when 

designing and implementing distributed systems, but that it should be considered 
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together with other issues such as performance and comprehensibility. The price for 

achieving full transparency may be surprisingly high. 

Being Open 

Another important goal of distributed systems is openness. An open distributed system is 
essentially a system that offers components that can easily be used by, or integrated into other 

systems. At the same time, an open distributed system itself will often consist of 

components that originate from elsewhere. 

Interoperability, Composability and Extensibility  

To be open means that components should adhere to standard rules that describe the syntax 
and semantics of what those components have to offer (i.e., which service they provide). 

A general approach is to define services through interfaces using an Interface Definition 

Language (IDL). Interface definitions written in an IDL nearly always capture only the 
syntax of services. In other words, they specify precisely the names of the functions that 

are available together with types of the parameters, return values, possible exceptions that 

can be raised, and so on. The hard part is specifying precisely what those services do, that 

is, the semantics of interfaces. In practice, such specif ications are given in an informal way 

by means of natural language. 

If properly specified, an interface definition allows an arbitrary process that needs a certain 

interface, to talk to another process that provides that interface. It also allows two 
independent parties to build completely different implementations of those interfaces, 

leading to two separate components that operate in exactly the same way. 

Proper specifications are complete and neutral. Complete means that everything that is 
necessary to make an implementation has indeed been specified. However, many interface 

definitions are not at all complete, so that it is necessary for a developer to add 
implementation-specific details. Just as important is the fact that specifications do not 

prescribe what an implementation should look like; they should be neutral.  

a. Interoperability characterizes the extent by which two implementations of systems or 
components from different manufacturers can co-exist and work together by merely 

relying on each other’s services as specified by a common standard. 

b. Portability characterizes to what extent an application developed for a distributed system 

A can be executed, without modification, on a different distributed system ‘B’ that 

implements the same interfaces as ‘A’. 

Another important goal for an open distributed system is that it should be easy to configure 

the system out of different components. Also, it should be easy to add new components or 
replace existing ones without affecting those components that stay in place. In other words, 

an open distributed system should also be extensible. For example, in an extensible system, 

it should be relatively easy to add parts that run on a different operating system, or even to 
replace an entire file system. 

Separating Policy from Mechanism 

To achieve flexibility in open distributed systems, it is crucial that the system be organized 

as a collection of relatively small and easily replaceable or adaptable components. This 

implies that we should provide definitions of not only the highest-level interfaces, that is, 
those seen by users and applications, but also definitions for interfaces to internal parts of 

the system and describe how those parts interact. This approach is relatively new. Many 
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older and even contemporary systems are constructed using a monolithic approach in 

which components are only logically separated but implemented as one, huge program. 
This approach makes it hard to replace or adapt a component without affecting the entire 

system. Monolithic systems thus tend to be closed instead of open. 

The need for changing a distributed system is often caused by a component that does not 

provide the optimal policy for a specific user or application. As an example, consider 

caching in Web browsers. There are many different parameters that need to be considered: 

i. Storage 

Where is data to be cached? Typically, there will be an in-memory cache next to storage 
on disk. In the latter  case, the exact position in the local file system needs to be considered. 

ii. Exemption 

When the cache fills up, which data is to be removed so that newly fetched pages can be 
stored? 

iii. Sharing 

Does each browser make use of a private cache, or is a cache to be shared among browsers of 

different users? 

iv. Refreshing  

When does a browser check if cached data is still up-to-date? Caches are most effective 

when a browser can return pages without having to contact the original Web site. However, 
this bears the risk of returning stale data. Note also that refresh rates are highly dependent 

on which data is actually cached: whereas timetables for trains hardly change, this is not 

the case for Web pages showing current highway- traffic conditions, or worse yet, stock 
prices. 

What we need is a separation between policy and mechanism. In the case of Web caching, 
for example, a browser should ideally provide facilities for only storing documents and at 

the same time allow users to decide which documents are stored and for how long. In practice, 

this can be implemented by offering a rich set of parameters that the user can set (dynamically). 
When taking this a step further, a browser may even offer facilities for plugging in policies that 

a user has implemented as a separate component. 

Being Scalable 

For many of us, worldwide connectivity through the Internet is as common as being able 

to send a postcard to anyone anywhere around the world. Moreover, where until recently 

we were used to having relatively powerful desktop computers for office applications and 

storage, we are now witnessing that such applications and services are being placed in what 
has been coined “the cloud,” in turn leading to an increase of much smaller networked 

devices such as tablet computers. With this in mind, scalability has become one of the most 

important design goals for developers of distributed systems. 
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Scalability Dimensions 

Scalability of a system can be measured along at least three different dimensions: 

i. Size Scalability 

A system can be scalable with respect to its size, meaning that we can easily add more 
users and resources to the system without any noticeable loss of performance. 

ii. Geographical Scalability 

A geographically scalable system is one in which the users and resources may lie far apart, 

but the fact that communication delays may be significant is hardly noticed. 

iii. Administrative Scalability  

An administratively scalable system is one that can still be easily managed even if it spans 

many independent adminis trative organizations. Let us take a closer look at each of these 

three scalability dimensions. 

Size Scalability 

When a system needs to scale, very different types of problems need to be solved. Let us 

first consider scaling with respect to size. If more users or resources need to be supported, 

we are often confronted with the limitations of centralized services, although often for very 

different reasons. For example, many services are centralized in the sense that they are 
implemented by means of a single server running on a specif ic machine in the distr ibuted 

system.  In a more modern setting, we may have a group of collaborating servers co-located 
on a cluster of tightly coupled machines physically placed at the same location. The 

problem with this scheme is obvious: the server, or group of servers, can simply become a 

bottleneck when it needs to process an increasing number of requests. To illustrate how this 
can happen, let us assume that a service is implemented on a single machine. In that case 

there are essentially three root causes for becoming a bottleneck: 

a. The computational capacity, limited by the CPUs 

b. The storage capacity, including the I /O transfer rate 

c. The network between the user and the centralized service 

Let us first consider the computational capacity. Just imagine a service for computing 

optimal routes taking real-time traffic information into account. It is not difficult to imagine 

that this may be primarily a compute-bound service requiring several (tens of) seconds to 

complete a request. If there is only a single machine available, then even a modern high end 

system will eventually run into problems if the number of requests increases beyond a 

certain point. 

Likewise, but for different reasons, we will run into problems when having a service that is 
mainly I/O bound. A typical example is a poorly designed centralized search engine. The 

problem with content-based search queries is that we essentially need to match a query 

against an entire data set. Even with advanced indexing techniques, we may still face the 
problem of having to process a huge amount of data exceeding the main-memory capacity 

of the machine running the service. As a consequence, much of the processing time will be 

determined by the relatively slow disk accesses and transfer of data between disk and main 

memory. Simply adding more or higher-speed disks will prove not to be a sustainable 

solution as the number of requests continues to increase. 
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Finally, the network between the user and the service may also be the cause of poor 

scalability. Just imagine a video-on-demand service that needs to stream high-quality video 
to multiple users. A video stream can easily require a bandwidth of 8 to 10 Mbps, meaning 

that if a service sets up point-to-point connections with its customers, it may soon hit the 
limits of the network capacity of its own outgoing transmission lines. There are several 

solutions to attack size scalability which we discuss below after having looked into 

geographical and administrative scalability. 

Geographical Scalability 

Geographical scalability has its own problems. One of the main reasons why it is still difficult 
to scale existing distributed systems that were designed for local-area networks is that many of 

them are based on synchronous communication. In this form of communication, a party 

requesting service, generally referred to as a client, blocks until a reply is sent back from the 
server implementing the service. More specifically, we often see a communication pattern 

consisting of many client-server interactions as may be the case with database transactions. 

This approach generally works fine in LANs where communication between two machines 

is often at worst a few hundred microseconds. However, in a wide-area system, we need 

to take into account that interposes communication may be hundreds of milliseconds, three 
orders of magnitude slower. Building applications using synchronous communication in  

wide-area systems requires a great deal of care and not just a little patience, notably with 
a rich interaction pattern between client and server. Another problem that hinders 

geographical scalability is that communication in wide-area networks is inherently much 

less reliable than in local-area networks. In addition, we also need to deal with limited 
bandwidth. The effect is that solutions developed for local-area networks cannot always 

be easily ported to a wide-area system. A typical example is streaming video. In a home 
network, even when having only wireless links, ensuring a stable, fast stream of high-

quality video frames from a media server to a display is quite simple. Simply placing that 

same server far away and using a standard TCP connection to the display will surely fail: 
bandwidth limitations will instantly surface, but also maintaining the same level of 

reliability can easily cause headaches. 

Yet another issue that pops up when components lie far apart is the fact that wide-area 

systems generally have only very limited facilities for multipoint communication. In 

contrast, local-area networks often support efficient broadcasting mechanisms. Such 

mechanisms have proven to be extremely useful for discovering components and services, 

which is essential from a management point of view. In wide-area systems, we need to 
develop separate services, such as naming and directory services to which queries can be sent. 

These support services, in  turn, need to be scalable as well and in many cases no obvious 

solutions exist as we will encounter in later chapters. 

Administrative Scalability 

Finally, a difficult, and in many cases open, question is how to scale a distributed system across 

multiple, independent administrative domains. A major problem that needs to be solved is that 

of conflicting policies with respect to resource usage (and payment), management, and 

security. To illustrate, for many years scientists have been looking for solutions to share their 
equipment in what is known as a computational grid. In these grids, a global distributed system 

is constructed as a federation of local distributed systems, allowing a program running on a 
computer at organization A to directly access resources at organization B. 

For example, many components of a distributed system that reside within a single domain 
can often be trusted by users that operate within that same domain. In such cases, system 
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administration may have tested and certified applications, and may have taken special 

measures to ensure that such components cannot be tampered with. In essence, the users 
trust their system administrators. However, this trust does not expand naturally across 

domain boundaries. 

If a distributed system expands to another domain, two types of security measures need to 

be taken. First, the distributed system has to protect itself against malicious attacks from 

the new domain. For example, users from the new domain may have only read access to  

the file system in its original domain. Likewise, facilities such as expensive image setters 

or high- performance computers may not be made available to  unauthorized users. Second, 
the new domain has to protect itself against malicious attacks from the distributed system. 

A typical example is that of downloading programs such as applets in Web browsers. 

Basically, the new domain does not know what to expect from such foreign code. 

As a counterexample of distributed systems spanning multiple administrative domains that 

apparently do not suffer from administrative scalability problems, consider modern file-

sharing peer-to-peer networks. In these cases, end users simply install a program 

implementing distributed search and download functions and within minutes can start 

downloading files. Other examples include peer-to-peer applications for telephony over the 
Internet such as Skype and peer-assisted audio-streaming applications such as spotify What 

these distr ibuted systems have in common is that end users, and not administrative entities, 
collaborate to keep the system up and running. At best, underlying administrative 

organizations such as Internet Service Providers (ISPs) can police the network traffic that 

these peer-to-peer systems cause, but so far such efforts have not been very effective. 

  



 

15 Distributed System 

CHAPTER 4 

SCALING TECHNIQUES 
 

Dr. Pallavi R., Associate Professor, 
Department of Computer Science and Engineering,  

Presidency University, Bangalore, Karnataka, India 
Email Id- pallavi.r@presidencyuniversity.in 

 

Having discussed some of the scalability problems brings us to the question of how those 

problems can generally be solved. In most cases, scalability problems in distributed systems 

appear as performance problems caused by limited capacity of servers and network. Simply 
improving their capacity (e.g., by increasing memory, upgrading CPUs, or replacing network 

modules) is often a solution, referred to as scaling up. When it comes to scaling out, that is, 

expanding the distributed system by essentially deploying more machines, there are basically 
only three techniques we can apply: hiding communication latencies, distribution of work, and 

replication. 

Hiding Communication Latencies 

Hiding communication latencies is applicable in the case of geographical scalability. The 

basic idea is simple: try to avoid waiting for responses to remote-service requests as much 
as possible. For example, when a service has been requested at a remote machine, an 

alternative to waiting for a reply from the server is to do other useful work at the requester’s 
side. Essentially, this means constructing the requesting application in such a way that it uses 

only asynchronous communication. When a reply comes in, the application is interrupted 

and a special handler is called to complete the previously issued request. Asynchronous 

communication can often be used in batch-processing systems and parallel applications in  

which independent tasks can be scheduled for execution while another task is waiting for 
communication to complete. Alternatively, a new thread of control can be started to perform 

the request. Although it blocks waiting for the reply, other threads in the process can 

continue.  

However, there are many applications that cannot make effective use of asynchronous 

communication. For example, in interactive applications when a user sends a request he will 

generally have nothing better to do than to wait for the answer. In such cases, a much better 

solution is to reduce the overall communication, for example, by moving part of the 

computation that is normally done at the server to the client process requesting the service. A 

typical case where this approach works is accessing databases using forms. Filling in forms can 

be done by sending a separate message for each field and waiting for an acknowledgment from 
the server, as shown in Figure 2(a). For example, the server may check for syntactic errors 

before accepting an entry. A much better solution is to ship the code for filling in the form, and 

possibly checking the entries, to the client, and have the client return a completed form, as 
shown in Figure 2(b). This approach of shipping code is widely supported by the Web by 

means of Java applets and JavaScript. 
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(a) 

 

(b) 

Figure 2: The difference between letting (a) a server or (b) a c lient check forms as 
they are being filled. 

Partit ioning and Distribution 

Another important scaling technique is partitioning and distribution, which involves taking 

a component, splitting it into smaller parts, and subsequently spreading those parts across 

the system. A good example of partitioning and distribution is the Internet Domain Name 
System (DNS). The DNS name space is hierarchically organized into a tree of domains, 

which are divided into no overlapping zones, as shown for the original DNS. The names 

in each zone are handled by a single name server. Without going into too many details 

now we return to DNS extensively one can think of each path name being the name of a 

host in the Internet, and is thus associated with a network address of that host. Basically, 

resolving a name means returning the network address of the associated host. Consider, for 

example, the name flits.cs.vu.nl. To resolve this name, it is first passed to the server of zone Z1 
as display in Figure 3, which returns the address of the server for zone Z2, to which the rest of 

name, flits.cs.vu, can be handed. The server for Z2 will return the address of the server for 

zone Z3, which is capable of handling the last part of the name and will return the address of 
the associated host. 

 

Figure 3: Display the Example of Dividing the DNS Name Space into Zones. 

This examples illustrates how the naming service, as provided by DNS, is distr ibuted 

across several machines, thus avoiding that a single server has to deal with all requests for 

name resolution. As another example, consider the World Wide Web. To most users, the 
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Web appears to be an enormous document-based information system in which each document 

has its own unique name in the form of a URL. Conceptually, it may even appear as if there 
is only a single server. However, the Web is physically partitioned and distributed across a 

few hundred million servers, each handling a number of Web documents. The name of the 
server handling a document is encoded into that document’s URL. It is only because of this 

distribution of documents that the Web has been capable of scaling to its current size. 

Replication 

Considering that scalability problems often appear in the form of performance degradation, 

it is generally a good idea to actually replicate components across a distributed system. 
Replication not only increases availability, but also helps to balance the load between 

components leading to better performance. Also, in geographically widely dispersed 

systems, having a copy nearby can hide much of the communication latency problems 
mentioned before. Caching is a special form of replication, although the distinction 

between the two is often hard to make or even artificial. As in the case of replication, 

caching results in making a copy of a resource, generally in the proximity of the client 

accessing that resource. However, in contrast to replication, caching is a decision made by 

the client of a resource and not by the owner of a resource. 

There is one serious drawback to caching and replication that may adversely affect 

scalability. Because we now have multiple copies of a resource, modifying one copy makes 
that copy different from the others. Consequently, caching and replication leads to  

consistency problems. To what extent inconsistencies can be tolerated depends highly on 

the usage of a resource. For example, many Web users find it acceptable that their browser 
returns a cached document of which the validity has not been checked for the last few 

minutes. However, there are also many cases in which strong consistency guarantees need to 
be met, such as in the case of electronic stock exchanges and auctions. The problem with 

strong consistency is that an update must be immediately propagated to all other copies. 

Moreover, if two updates happen concurrently, it is often also required that updates are 
processed in the same order everywhere, introducing an additional global ordering problem. 

Replication therefore often requires some global synchronization mechanism. 

Unfortunately, such mechanisms are extremely hard or even impossible to implement in a 

scalable way, if alone because network latencies have a natural lower bound. Consequently, 

scaling by replication may introduce other, inherently nonsalable solutions. When 

considering these scaling techniques, one could argue that size scalability is the least 

problematic from a technical point of view. In many cases, increasing the capacity of a 
machine will save the day, although perhaps there is a high monetary cost to pay. 

Geographical scalability is a much tougher problem as network latencies are naturally 

bound from below.  

As a consequence, we may be forced to copy data to locations close to where clients are, 

leading to problems of maintaining copies consistent. Practice shows that combining 

distribution, replication, and caching techniques with different forms of consistency 

generally leads to acceptable solutions. Finally, administrative scalability seems to be the 

most difficult problem to solve, partly because we need to deal with nontechnical issues, such 
as politics of organizations and human collaboration. The introduction and now widespread 

use of peer-to-peer technology has successfully demonstrated what can be achieved if end 
users are put in control However, peer-to-peer networks are obviously not the universal 

solution to all administrative scalability problems.  
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Pitfalls  

It should be clear by now that developing a distributed system is a formidable task. As we will 
see many times throughout this book, there are so many issues to consider at the same 

time that it seems that only complexity can be the result. Nevertheless, by following a 
number of design principles, distributed systems can be developed that strongly adhere to the 

goals we set out in this chapter. 

Distributed systems differ from traditional software because components are dispersed across 

a network. Not taking this dispersion into account during design time is what makes so many 

systems needlessly complex and results in flaws that need to be patched later on. Peter Deutsch, 
at the time working at Sun Microsystems, formulated these flaws as the following false 

assumptions that everyone makes when developing a distributed application for the first time: 

a. The network is reliable 

b. The network is secure 

c. The network is homogeneous 

d. The topology does not change 

e. Latency is zero 

f. Bandwidth is infinite 

g. Transport cost is zero 

h. There is one administrator 

Note how these assumptions relate to properties that are unique to distributed systems: 

reliability, security, heterogeneity, and topology of the network; latency and bandwidth; 

transport costs; and f inally administrative domains. When developing no distr ibuted 
applications, most of these issues will most likely not show up. Most of the principles we 

discuss in  this book relate immediately to these assumptions. In all cases, we will be 
discussing solutions to problems that are caused by the fact that one or more assumptions 

are false. For example, reliable networks simply do not exist and lead to the impossibility of 

achieving failure transparency. We devote an entire chapter to deal with the fact that 
networked communication is inherently insecure. We have already argued that distributed 

systems need to be open and take heterogeneity into account. Likewise, when discussing 

replication for solving scalability problems, we are essentially tackling latency and 

bandwidth problems. We will also touch upon management issues at various points 

throughout this book. 

Types of Distributed Systems 

Before starting to discuss the principles of distributed systems, let us first take a closer 
look at the various types of distributed systems. We make a distinction between 

distributed computing systems, distributed information systems, and pervasive systems 

which are naturally distributed. 

High Performance Distributed Computing 

An important class of distributed systems is the one used for high-performance computing 

tasks. Roughly speaking, one can make a distinction between two subgroups. In cluster 

computing the underlying hardware consists of a collection of similar workstations or PCs, 
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closely connected by means of a high-speed local-area network. In addition, each node runs 

the same operating system. The situation becomes very different in the case of grid computing. 
This subgroup consists of distributed systems that are often constructed as a federation of 

computer systems, where each system may fall under a different administrative domain, and 
may be very different when it comes to hardware, software, and deployed network technology. 

From the perspective of grid computing, a next logical step is to simply outsource the 

entire infrastructure that is needed for compute-intensive applications. In essence, this is 

what cloud computing is all about: providing the facilities to dynamically construct an 

infrastructure and compose what is needed from available services. Unlike grid computing, 
which is strongly associated with high-performance computing, cloud computing is much 

more than just providing lots of resources. We discuss it briefly here, but will return to various 

aspects throughout the book. 

Cluster Computing 

Cluster computing systems became popular when the price or performance ratio of 

personal computers and workstations improved. At a certain point, it became financially 

and technically attractive to build a supercomputer using off-the-shelf technology by simply 

hooking up a collection of relatively simple computers in a high-speed network. In virtually 
all cases, cluster computing is used for parallel programming in which a single compute 

intensive program is run in parallel on multiple machines. One widely applied example of a 
cluster computer is formed by Linux- based Beowulf clusters, of which the general 

configuration. Each cluster consists of a collection of compute nodes that are con- trolled 

and accessed by means of a single master node. The master typically handles the allocation 
of nodes to a particular parallel program, maintains a batch queue of submitted jobs, and 

provides an interface for the users of the system. As such, the master actually runs the 
middleware needed for the execution of programs and management of the cluster, while 

the compute nodes are equipped with a standard operating system extended with typical 

middleware functions for communication, storage, fault tolerance, and so on. Apart from 
the master node, the compute nodes are thus seen to be highly identical. 

An even more symmetric approach is followed in the MOSIX system MOSIX attempts to  

provide a single-system image of a cluster, meaning that to a process a cluster computer  

offers the ultimate distribution transparency by appearing to be a single computer. As we 

mentioned, pro- viding such an image under all circumstances is impossible. In the case 

of MOSIX, the high degree of transparency is provided by allowing processes to  

dynamically and preemptively migrate between the nodes that make up the cluster. Process 
migration allows a user to start an application on any node, after which it can transparently 

move to other nodes, for example, to make efficient use of resources. 

However, several modern cluster computers have been moving away from these symmetric 
architectures to more hybrid solutions in which the middleware is functionally partitioned 

across different nodes. The advantage of such a separation is obvious having compute nodes 

with dedicated, lightweight operating systems will most likely provide optimal performance 

for compute-intensive applications. Likewise, storage functionality can most likely be 

optimally handled by other specially configured nodes such as file and directory servers. 
The same holds for other dedicated middleware services, including job management, database 

services, and perhaps general Internet access to external services. 

Grid Computing 

A characteristic feature of traditional cluster computing is its homogeneity. In most cases, 
the computers in a cluster are largely the same, have the same operating system, and are 
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all connected through the same network. However, as we just discussed, there has been a 

trend towards more hybrid architectures in which nodes are specifically configured for certain 
tasks. This diversity is even more prevalent in grid computing systems: no assumptions are 

made concerning similarity of hardware, operating systems, networks, administrative 
domains, security policies, etc. A key issue in a grid-computing system is that resources from 

different organizations are brought together to allow the collaboration of a group of people 

from different institutions, indeed forming a federation of systems. Such a collaboration is 

realized in the form of a virtual organization. The processes belonging to the same virtual 

organization have access rights to the resources that are provided to that organization. 
Typically, resources consist of compute servers (including supercomputers, possibly 

implemented as cluster computers), storage facilities, and databases. In addition, special 

networked devices such as telescopes, sensors, etc., can be provided as well. Given its nature, 
much of the software for realizing grid computing evolves around providing access to  

resources from different administrative domains, and to only those users and applications 

that belong to a specific virtual organization. For this reason, focus is often on architectural 

issues.  

The architecture consists of four layers. The lowest fabric layer provides interfaces to  
local resources at a specific site. Note that these interfaces are tailored to allow sharing of 

resources within a virtual organization. Typically, they will provide functions for querying 
the state and capabilities of a resource, along with functions for actual resource management. 

The connectivity layer consists of communication protocols for supporting grid 

transactions that span the usage of multiple resources. For example, protocols are needed 
to transfer data between resources, or to simply access a resource from a remote location. 

In addition, the connectivity layer will contain security protocols to authenticate users 
and resources. Note that in many cases human users are not authenticated; instead, 

programs acting on behalf of the users are authenticated. In this sense, delegating r ights 

from a user to programs is an important function that needs to be supported in the 
connectivity layer. 

The resource layer is responsible for managing a single resource. It uses the functions provided 

by the connectivity layer and calls directly the interfaces made available by the fabric layer. 

For example, this layer will offer functions for obtaining configuration information on a 

specific resource, or, in general, to perform specific operations such as creating a process or 

reading data. The resource layer is thus seen to be responsible for access control, and hence 

will rely on the authentication performed as part of the connectivity layer. The next layer in 
the hierarchy is the collective layer. It deals with handling access to multiple resources and 

typically consists of services for resource discovery, allocation and scheduling of tasks 

onto multiple resources, data replication, and so on. Unlike the connectivity and resource 
layer, each consisting of a relatively small, standard collection of protocols, the collective 

layer may consist of many different protocols reflecting the broad spectrum of services it may 

offer to a virtual organization. 

Finally, the application layer consists of the applications that operate within a virtual 

organization and which make use of the grid computing environment. Typically the 
collective, connectivity, and resource layer form the heart of what could be called a grid 

middleware layer. These layers jointly provide access to and management of resources that 
are potentially dispersed across multiple sites. An important observation from a middleware 

perspective is that in grid computing the notion of a site or administrative unit is common. This 
prevalence is emphasized by the gradual shift toward a service-oriented architecture in which 

sites offer access to the various layers through a collection of Web services. This, by now, 
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has led to the definition of an alternative architecture known as the Open Grid Services 

Architecture (OGSA). OGSA is based upon the original ideas as formulated yet having gone 
through a standardization process makes it complex, to say the least. OGSA 

implementations generally follow Web service standards. 
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While researchers were pondering on how to organize computational grids that were easily 
accessible, organizations in charge of running data centers were facing the problem of 

opening up their resources to customers. Eventually, this lead to the concept of utility 
computing by which a customer could upload tasks to a data center and be charged on a 

per-resource basis. Utility computing formed the basis for what is now called cloud 

computing. 

Cloud computing is characterized by an easily usable and accessible pool of virtualized 

resources. Which and how resources are used can be configured dynamically, providing 
the basis for scalability: if more work needs to be done, a customer can simply acquire 

more resources. The link to utility computing is formed by the fact that cloud computing is 

generally based on a pay-per-use model in which guarantees are offered by means of 
customized service level agreements (SLAs). 

 

Figure 1: Represented that the Organizat ion of Clouds 

In practice, clouds are organized into four layers, as shown in Figure 1. 

i. Hardware 

The lowest layer is formed by the means to manage the necessary hardware: processors, 
routers, but also power and cooling systems. It is generally implemented at data centers and 

contains the resources that customers normally never get to see directly. 

ii. Infrastructure 

This is an important layer forming the backbone for most cloud computing platforms. It 

deploys virtualization techniques to provide customers an infrastructure consisting of virtual 
storage and computing resources. Indeed, nothing is what it seems: cloud computing 

evolves around allocating and managing vir tual storage devices and virtual servers. 
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iii. Platform 

One could argue that the platform layer provides to a cloud- computing customer what an 
operating system provides to application developers, namely the means to easily develop and 

deploy applications that need to run in a cloud. In practice, an application developer is offered 
a vendor-specific API, which includes calls to uploading and executing a program in that 

vendor’s cloud. In a sense, this is comparable the Unix exec family of system calls, which take 

an executable file as parameter and pass it to the operating system to be executed. Also like 

operating systems, the platform layer provides higher-level abstractions for storage and 

such. For example, as we discuss in more detail later, the Amazon S3 storage system is 
offered to the application developer in the form of an API allowing locally created files to  

be organized and stored in buckets. A bucket is somewhat comparable to a directory. By 

storing a file in a bucket, that file is automatically uploaded to the Amazon cloud[6]. 

iv. Application  

Actual applications run in this layer and are offered to users for further customization. 

Well-known examples include those found in office suites (text processors, spreadsheet 

applications, presentation applications, and so on). It is important to realize that these 

applications are again executed in the vendor’s cloud. As before, they can be compared to 
the traditional suite of applications that are shipped when installing an operating system. 

Cloud-computing providers offer these layers to their customers through various interfaces 
including command-line tools, programming interfaces, and Web interfaces, leading to 

three different types of services: 

a. Infrastructure-as-a-Service (IaaS) covering the hardware and infrastructure layer 

b. Platform-as-a-Service (PaaS) covering the platform layer 

c. Software-as-a-Service (SaaS) in which their applications are covered 

As of now, making use of clouds is relatively easy, and we discuss in later chapters more 

concrete examples of interfaces to cloud providers. As a consequence, cloud computing as a 

means for outsourcing local computing infrastructures has become a serious option for many 
enterprises. However, there are still a number of serious obstacles including provider lock-in, 

security and privacy issues, and dependency on the availability of services, to mention a few 

Also, because the details on how specific cloud computations are actually carried out are 

generally hidden, and even perhaps unknown or unpredictable, meeting performance demands 

may be impossible to arrange in advance. Cloud computing is no longer a hype, and 

certainly a serious alternative to maintaining huge local infrastructures, yet there is still a 

lot of room for improvement.  

Distributed Information Systems 

Another important class of distributed systems is found in organizations that were 

confronted with a wealth of networked applications, but for which interoperability turned 
out to be a painful experience. Many of the existing middleware solutions are the result of 

working with an infrastructure in which it was easier to integrate applications into an 

enterprise-wide information system. We can distinguish several levels at which integration 

can take place. In many cases, a networked application simply consists of a server running that 

application often including a database and making it available to remote programs, called 
clients. Such clients send a request to the server for executing a specific operation, after which 

a response is sent back. Integration at the lowest level allows clients to wrap a number of 
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requests, possibly for different servers, into a single larger request and have it executed as a 

distributed transaction. The key idea is that all, or none of the requests are executed. As 
applications became more sophisticated and were gradually separated into independent 

components notably distinguishing database components from processing components, it 
became clear that integration should also take place by letting applications communicate 

directly with each other. This has now lead to a huge industry that concentrates on Enterprise 

Application Integration (EAI). 
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To clarify our discussion, we concentrate on database applications. In practice, operations on 

a database are carried out in the form of transactions. Programming using transactions requires 

special primitives that must either be supplied by the underlying distributed system or by the 
language runtime system. The exact list of primitives depends on what kinds of objects are 

being used in the transaction. In a mail system, there might be primitives to send, receive, 

and forward mail. In an accounting system, they might be quite different. READ and WRITE 
are typical examples, however. Ordinary statements, procedure calls, and so on, are also 

allowed inside a transaction. In particular, remote procedure calls (RPCs), that is, procedure 

calls as mention in Table 1, to remote servers, are often also encapsulated in a transaction, 

leading to what is known as a transactional RPC. 

Table 1: Represented that the Example Primitives for Transactions. 

Sr. No. Primitive Description 

 BEGIN_TRANSACTION Mark the start of a transaction 

 END_TRANSACTION Terminate the transaction and try to commit 

 ABORT_TRANSACTION 
Kill the transaction and restore the old 

values 

 READ Read data from a file, a table, or otherwise 

 WRITE Write data to a file, a table, or otherwise 

 

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit the scope of a 

transaction. The operations between them form the body of the transaction. The characteristic 

feature of a transaction is either all of these operations are executed or none are executed. These 

may be system calls, library procedures, or bracketing statements in a language, depending on 
the implementation. This all-or-nothing property of transactions is one of the four characteristic 

properties that transactions have. More specifically, transactions adhere to the so-called ACID 
properties: 

a. Atomic: To the outside world, the transaction happens indivisibly 

b. Consistent: The transaction does not violate system invariants 

c. Isolated: Concurrent transactions do not interfere with each other 

d. Durable: Once a transaction commits, the changes are permanent 

In distributed systems, transactions are often constructed as a number of sub transactions, 
jointly forming a nested transaction the top-level transaction may fork off children that run in 
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parallel with one another, on different machines, to gain performance or simplify programming. 

Each of these children may also execute one or more sub transactions, or fork off its own 
children. Sub transactions give rise to a subtle, but important, problem. Imagine that a 

transaction starts several sub transactions in parallel, and one of these commits, making its 
results visible to the parent transaction. After further computation, the parent aborts, 

restoring the entire system to the state it had before the top-level transaction started. 

Consequently, the results of the sub transaction that committed must nevertheless be 

undone. Thus the permanence referred to above applies only to top-level transactions[7]. 

Since transactions can be nested arbitrarily deep, considerable administration is needed to 
get everything right. The semantics are clear, however. When any transaction or sub-

transaction starts, it is conceptually given a private copy of all data in the entire system for 

it to manipulate as it wishes. If it aborts, its private universe just vanishes, as if it had never 
existed. If it commits, its private universe replaces the parent’s universe. Thus if a sub 

transaction commits and then later a new sub transaction is started, the second one sees the 

results produced by the first one. Likewise, if an enclosing transaction aborts, all its 

underlying sub transactions have to be aborted as well. And if several transactions are 

started concurrently, the result is as if they ran sequentially in some unspecif ied order. 

Nested transactions are important in distributed systems, for they provide a natural way of 

distributing a transaction across multiple machines. They follow a logical division of the 
work of the original transaction. For example, a transaction for planning a trip by which 

three different flights need to be reserved can be logically split up into three sub 

transactions. Each of these sub transactions can be managed separately and independently 
of the other two. 

In the early days of enterprise middleware systems, the component that handled distr ibuted 
(or nested) transactions formed the core for integrating applications at the server or 

database level. This component was called a transaction processing monitor or TP monitor 

for short. Its main task was to allow an application to access multiple server or databases 
by offering it a transactional programming model. 

An important observation is that applications wanting to coordinate several sub transactions 

into a single transaction did not have to implement this coordination themselves. By simply 

making use of a TP monitor, this coordination was done for them. This is exactly where 

middleware comes into play: it implements services that are useful for many applications 

avoiding that such services have to be implemented over and over again by application 

developers.  

Enterprise Application Integration 

As mentioned, the more applications became decoupled from the databases they were built 

upon, the more evident it became that facilities were needed to integrate applications 
independently from their databases. In particular, ap- plication components should be able to 

communicate directly with each other and not merely by means of the request/reply behavior 

that was supported by transaction processing systems. This need for interapplication 

communication led to many different communication models, the main idea was that existing 

applications could directly exchange information. 

Several types of communication middleware exist. With remote procedure calls (RPC), an 

application component can effectively send a request to another application component by 
doing a local procedure call, which results in the request being packaged as a message and sent 

to the caller. Likewise, the result will be sent back and returned to the application as the result 
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of the procedure call. As the popularity of object technology increased, techniques were 

developed to allow calls to remote objects, leading to what is known as remote method 
invocations (RMI). An RMI is essentially the same as an RPC, except that it operates on 

objects instead of functions. 

RPC and RMI have the disadvantage that the caller and callee both need to be up and 

running at the time of communication. In addition, they need to know exactly how to refer 

to each other. This tight coupling is often experienced as a serious drawback, and has led to 

what is known as message- oriented middleware, or simply MOM. In this case, applications 

send messages to logical contact points, often described by means of a subject. Likewise, 
applications can indicate their interest for a specific type of message, after which the 

communication middleware will take care that those messages are delivered to those 

applications. These so-called publish/subscribe systems form an important and expanding 
class of distributed systems [8]. 

Pervasive Systems 

The distributed systems discussed so far are largely characterized by their stability: nodes 

are fixed and have a more or less permanent and high-quality connection to a network. To a 

certain extent, this stability is realized through the various techniques for achieving 
distribution transparency. For example, there are many ways how we can create the illusion 

that only occasionally components may fail. Likewise, there are all kinds of means to hide 
the actual network location of a node, effectively allowing users and applications to believe 

that nodes stay put. 

However, matters have changed since the introduction of mobile and embedded computing 
devices, leading to what are generally referred to as pervasive systems. As its name suggests, 

pervasive systems are intended to naturally blend into our environment. What makes them 
unique in comparison to the computing and information systems described so far, is that the 

separation between users and system components is much more blurred. There is often no 

single dedicated interface, such as a screen/keyboard combination. Instead, a pervasive system 
is often equipped with many sensors that pick up various aspects of a user’s behavior. Likewise, 

it may have a myriad of actuators to provide information and feedback, often even purposefully 

aiming to steer behavior.  

Many devices in pervasive systems are characterized by being small, battery-powered, 

mobile, and having only a wireless connection, although not all these characteristics apply 

to all devices. These are not necessarily restrictive characteristics, as is illustrated by 

smartphones and their role in what is now coined as the Internet of Internet. Nevertheless, 
notably the fact that we often need to deal with the intricacies of wireless and mobile 

communication, will require special solutions to make a pervasive system as transparent or 

unobtrusive as possible. In the following, we make a distinction between three different 
types of pervasive systems, although there is considerable overlap between the three types: 

ubiquitous computing systems, mobile systems, and sensor networks. This distinction 

allows us to focus on different aspects of pervasive systems.  

Ubiquitous computing systems 

So far,   we have been talking about pervasive systems to emphasize that its elements have 
spread through in many parts of our environment. In a ubiquitous computing system we go one 

step further: the system is pervasive and continuously present.  
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The latter means that a user will be continuously interacting with the system, often not even 

being aware that interaction is taking place. Poslad [2009] describes the core requirements for 
a ubiquitous computing system roughly as follows: 

a. Distribution: Devices are networked, distributed, and accessible in a transparent 
manner. 

b. Interaction: Interaction between users and devices is highly unobtrusive. 

c. Context awareness: The system is aware of a user’s context in order to optimize 

interaction 

d. Autonomy: Devices operate autonomously without human intervention, and are 
thus highly self-managed 

e. Intelligence: The system as a whole can handle a wide range of dynamic actions 

and interactions 

Let us briefly consider these requirements from a distributed-systems perspective: 

Distribution 

As mentioned, a ubiquitous computing system is an example of a distributed system: the 

devices and other computers forming the nodes of a system are simply networked and 

work together to form the illusion of a single coherent system. Distribution also comes 
naturally: there will be devices close to users such as sensors and actuators, connected to 

computers hidden from view and perhaps even operating remotely in a cloud. Most, if not all, 
of the requirements regarding distribution transparency should therefore hold. 

Interaction 

When it comes to interaction with users, ubiquitous computing systems differ a lot in 
comparison to the systems we have been discussing so far. End users play a prominent role in 

the design of ubiquitous systems, meaning that special attention needs to be paid to how the 
interact  between users and core system takes place. For ubiquitous computing systems, much 

of the interaction by humans will be implicit, with an implicit action being defined as one “that 

is not primarily aimed to interact with a computerized system but which such a system 
understands as input”. In other words, a user could be mostly unaware of the fact that input is 

being provided to a computer system. From a certain perspective, ubiquitous computing can 

be said to seemingly hide interfaces. 

A simple example is where the settings of a car’s driver’s seat, steering wheel, and mirrors 

is fully personalized. If Bob takes a seat, the system will recognize that it is dealing with 

Bob and subsequently makes the appropriate adjustments. The same happens when Alice 

uses the car, while an unknown user will be steered toward making his or her own 
adjustments. This example already illustrates an important role of sensors in ubiquitous 

computing, namely as input devices that are used to identify a situation a specific person 

apparently wanting to drive, whose input analysis leads to actions making adjustments. In turn, 
the actions may lead to natural reactions, for example that Bob slightly changes the seat 

settings. The system will have to take all implicit and explicit actions by the user into 

account and react accordingly. 
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Reacting to the sensory input, but also the explicit input from users is more easily said than 

done. What a ubiquitous computing system needs to do, is to take the context in which 

interactions take place into account. Context awareness also differentiates ubiquitous 
computing systems from the more traditional systems we have been discussing before as 

“any information that can be used to characterize the situation of entities that is whether a 

person, place or object) that are considered relevant to the interaction between a user and 
an application, including the user and the application themselves.” In practice, context is 

often characterized by location, identity, time, and activity: the where, who, when, and what. 

A system will need to have the necessary (sensory) input to determine one or several of these 

context types. 

Autonomy 

An important aspect of most ubiquitous computing systems is that explicit systems 

management has been reduced to a minimum. In a ubiquitous computing environment there 
is simply no room for a systems administrator to keep everything up and running. As a 

consequence, the system as a whole should be able to act autonomously, and automatically 

react to changes. This requires a myriad of techniques of which several will be discussed 

throughout this book. To give a few simple examples, think of the following: 

i. Address Allocation

In order for networked devices to communicate, they need an IP address. Addresses can 

be allocated automatically using protocols like the Dynamic Host Configuration Protocol 

(DHCP). 

ii. Adding Devices

It should be easy to add devices to an existing system. A step towards automatic 

configuration is realized by the Universal Plug and Play Protocol (UPnP). Using UPnP, devices 

can discover each other and make sure that they can set up communication channels 

between them. 

iii. Automatic Updates

Many devices in a ubiquitous computing system should be able to regularly check through 
the Internet if their software should be updated. If so, they can download new versions of their 

components and ideally continue where they left off. Admittedly, these are very simple 

examples, but the picture should be clear that manual intervention is to be kept to a 
minimum. We will be discussing many techniques related to self-management in detail 

throughout the book. 
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iv. Intelligence 

Finally, it mentions that ubiquitous computing systems often use methods and techniques 
from the f ield of artificial intelligence. What this means, is that in many cases a wide range 

of advanced algorithms and models need to be deployed to handle incomplete input, 
quickly react to a changing environment, handle unexpected events, and so on. The extent 

to which this can or should be done in a distr ibuted fashion is crucial from the perspective 

of distr ibuted systems. Unfortunately, distributed solutions for many problems in the field 

of artificial intelligence are yet to be found, meaning that there may be a natural tension 

between the first requirement of networked and distributed devices, and advanced 
distributed information processing. 

Mobile Computing Systems 

As mentioned, mobility often forms an important component of pervasive systems, and 
many, if  not all aspects that we have just discussed also apply to mobile computing. There 

are several issues that set mobile computing aside to pervasive systems in general. First, 

the devices that form part of a mobile system may vary widely. Typically, mobile 

computing is now done with devices such as smartphones and tablet computers. However, 

completely different types of devices are now using the Internet Protocol (IP) to  
communicate, placing mobile computing in a different perspective. Such devices include 

remote controls, pagers, active badges, car equipment, various GPS-enabled devices, and 
so on. A characteristic feature of all these devices is that they use wireless communication. 

Mobile implies wireless so it seems although there are exceptions to the rules. 

Second, in mobile computing the location of a device is assumed to change over time. A 
changing location has its effects on many issues. For example, if the location of a device 

changes regularly, so will perhaps the services that are locally available. As a consequence, 
we may need to pay special attention to dynamically discovering services, but also letting 

services announce their presence. In a similar vein, we often also want to know where a device 

actually is. This may mean that we need to know the actual geographical coordinates of a 
device such as in tracking and tracing applications, but it may also require that we are able to 

simply detect its network position. 

Changing locations also has a profound effect on communication. To illustrate, consider a 

(wireless) mobile ad hoc network, generally abbreviated as a MANET. Suppose that two 

devices in a MANET have discovered each other in the sense that they know each other’s 

network address. How do we route messages between the two? Static routes are generally 

not sustainable as nodes along the routing path can easily move out of their neighbor’s 
range, invalidating the path. For large MANETs, using a priori set-up paths is not a viable 

option. What we are dealing with here are so-called disruption- tolerant networks: 

networks in which connectivity between two nodes can simply not be guaranteed. Getting 
a message from one node to another may then be problematic, to say the least [9]. 

The trick in such cases, is not to attempt to set up a communication path from the source 

to the destination, but to rely on two principles. Obviously, any type of flooding will 

impose redundant communication, but this may be the price we have to pay. Second, in a 

disruption-tolerant network, we let an intermediate node store a received message until it 
encounters another node to which it can pass it on. In other words, a node becomes a 

temporary carrier of a message, as sketched in Figure 2. Eventually, the message should 
reach its destination. It is not difficult to imagine that selectively passing messages to  

encountered nodes may help to ensure efficient delivery. For example, if nodes are known to 
belong to a certain class, and the source and destination belong to the same class, we may 
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decide to pass messages only among nodes in that class. Likewise, it may prove efficient to 

pass messages only to well-connected nodes, that is, nodes who have been in range of many 
other nodes in the recent past. 

Figure 2: Represented that the Passing messages in a Disruption 
Tolerant Network. 

Sensor Networks 

Our last example of pervasive systems is sensor networks. These networks in many cases 
form part of the enabling technology for pervasiveness and we see that many solutions for 

sensor networks return in pervasive applications. What makes sensor networks interesting 

from a distributed system’s perspective is that they are more than just a collection of input 

devices. Instead, as we shall see, sensor nodes often collaborate to efficiently process the 

sensed data in an application-specific manner, making them very different from, for 
example, and traditional computer networks. 

A sensor network generally consists of tens to hundreds or thousands of relatively small 
nodes, each equipped with one or more sensing devices. In addition, nodes can often act 

as actuators a typical example being the automatic activation of sprinklers when a fire has 

been detected. Many sensor networks use wireless communication, and the nodes are often 

battery powered. Their limited resources, restricted communication capabilities, and 

constrained power consumption demand that efficiency is high on the list of design 
criteria. When zooming into an individual node, we see that, conceptually, they do not 

differ a lot from “normal” computers: above the hardware there is a software layer akin to 

what traditional operating systems offer, including low level network access, access to 
sensors and actuators, memory management, and so on. Normally, support for specific 

services is included, such as localization, local storage think of additional flash devices, 

and convenient communication facilities such as messaging and routing. However, similar 

to other networked computer systems, additional support is needed to effectively deploy sensor 

network applications. In distributed systems, this takes the form of middleware. 

One typical aspect in programming support is the scope provided by communication 

primitives. This scope can vary between addressing the physical neighborhood of a node, and 
providing primitives for system wide communication. In addition, it may also be possible to 

address a specific group of nodes. Likewise, computations may be restricted to an individual 

node, a group of nodes, or affect all nodes. To illustrate, use so-called abstract regions 

allowing a node to identify a neighborhood from where it can, for example, gather 

information: 
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Line 1.        region = k_nearest_region.create(8); 

Line 2 .        reading = get_sensor_reading(); 

Line 3.        region.putvar(reading_key, reading); 

Line 4.        max_id = region.reduce(OP_MAXID, reading_key); 

In line 1, a node first creates a region of its eight nearest neighbors, after which it fetches a 

value from its sensor(s). This reading is subsequently written to the previously defined region 

to be defined using the key reading_key. In line 4, the node checks whose sensor reading in 

the defined region was the largest, which is returned in the variable max_id. 

As another related example, consider a sensor network as implementing a distributed database, 
which is, according to one of four possible ways of accessing data. This database view is quite 

common and easy to understand when realizing that many sensor networks are deployed 

for measurement and surveillance applications. In these cases, an operator would like to  
extract information from a part of the network by simply issuing queries such as “What is 

the northbound traffic load on highway 1 as Santa Cruz?” Such queries resemble those of 

traditional databases. In this case, the answer will probably need to be provided through 

collaboration of many sensors along highway, while leaving other sensors untouched. 

To organize a sensor network as a distributed database, there are essentially two extremes, 
sensors do not cooperate but simply send their data to a centralized database located at the 

operator’s site. The other extreme is to forward queries to relevant sensors and to let each 
compute an answer, requiring the operator to aggregate the responses. 

Neither of these solutions is very attractive. The first one requires that sensors send all 

their measured data through the network, which may waste network resources and energy. 
The second solution may also be wasteful as it discards the aggregation capabilities of 

sensors which would allow much less data to be returned to the operator. 

What is needed are facilities for in- network data processing, similar to the previous example 

of abstract regions. In-network processing can be done in numerous ways. One obvious one is 

to forward a query to all sensor nodes along a tree encompassing all nodes and to 
subsequently aggregate the results as they are propagated back to the root, where the initiator 

is located. Aggregation will take place where two or more branches of the tree come together. 

As simple as this scheme may sound, it introduces difficult questions: 

• How do we (dynamically) set up an efficient tree in a sensor network? 

• How does aggregation of results take place? Can it be controlled? 

• What happens when network links fail? 

These questions have been partly addressed in Tiny-DB, which implements a declarative 
interface to wireless sensor networks. In essence, Tiny-DB can use any tree-based routing 

algorithm. An intermediate node will collect and aggregate the results from its children, 

along with its own findings, and send that toward the root. To make matters efficient, 

queries span a period of time allowing for careful scheduling of operations so that network 

resources and energy are optimally consumed[10]. 
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However, when queries can be initiated from different points in the network, using single-

rooted trees such as in Tiny-DB may not be efficient enough. As an alternative, sensor networks 
may be equipped with special nodes where results are forwarded to, as well as the queries 

related to those results. To give a simple example, queries and results related to temperature 
readings may be collected at a different location than those related to humidity measurements. 

This approach corresponds directly to the notion of publish or subscribe systems.
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Distributed systems are often complex pieces of software of which the components are by 
definition dispersed across multiple machines. To master their complexity, it is crucial that 

these systems are properly organized. There are different ways on how to view the 

organization of a distributed system, but an obvious one is to make a distinction between, on 

the one hand, the logical organization of the collection of software components, and on the 

other hand the actual physical realization. The organization of distributed systems is mostly 

about the software components that constitute the system. These software architectures tell 

us how the various software components are to be organized and how they should interact. 
In this chapter we will first pay attention to some commonly applied architectural styles 

toward organizing computer systems [11]. An important goal of distributed systems is to  

separate applications from underlying platforms by providing a middleware layer. Adopting 
such a layer is an important architectural decision, and its main purpose is to provide 

distribution transparency. However, trade-offs need to be made to achieve transparency, 
which has led to various techniques to adjust the middleware to the needs of the 

applications that make use of it. We discuss some of the more commonly applied 

techniques, as they affect the organization of the middleware itself. 

The actual realization of a distributed system requires that we instantiate and place software 

components on real machines. There are many different choices that can be made in doing 
so. The final instantiation of a software architecture is also referred to as a system 

architecture. In this chapter we will look into traditional centralized architectures in which 

a single server implements most of the software components, while remote clients can 

access that server using simple communication means. In addition, we consider 

decentralized peer-to-peer architectures in which all nodes more or less play equal roles. 
Many real-world distr ibuted systems are often organized in a hybrid fashion, combining 

elements from centralized and decentralized architectures. We discuss a few typical examples. 

Architectural Styles 

We start our discussion on architectures by first considering the logical organization of a 

distributed system into software components, also referred to as its software architecture. 

Research on software architectures has matured considerably and it is now commonly 

accepted that designing or adopting an architecture is crucial for the successful development 

of large software systems. 

For our discussion, the notion of an architectural style is important. Such a style is 

formulated in terms of components, the way that components are connected to each other, 
the data exchanged between components, and finally how these elements are jointly 

configured into a system. A component is a modular unit with well-defined required and 

provided interfaces that is replaceable within its environment. That a component can be 

replaced, and, in particular, while a system continues to operate, is important. This is due to  
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the fact that in many cases, it is not an option to shut down a system for maintenance. 

At best, only parts of it may be put temporarily out of order. Replacing a component can 
be done only if its interfaces remain untouched. 

A somewhat more difficult concept to grasp is that of a connector, which is generally 
described as a mechanism that mediates communication, coordination, or cooperation 

among components. For example, a connector can be formed by the facilities for (remote) 

procedure calls, message passing, or streaming data. In other words, a connector allows for 

the flow of control and data between components. Using components and connectors, we 

can come to various configurations, which, in turn, have been classified into architectural 
styles. Several styles have by now been identified, of which the most important ones for 

distributed systems are: 

• Layered architectures

• Object-based architectures

• Resource-centered architectures

• Event-based architectures

Application Layering 

Let us now turn our attention to the logical layering of applications. Considering that a large 

class of distributed applications is targeted toward supporting user or application access to 

databases, many people have advocated a distinction between three logical levels, essentially 

following a layered architectural style: 

• The application-interface level

• The processing level

• The data level

In line with this layering, we see that applications can often be constructed from roughly three 

different pieces: a part that handles interaction with a user or some external application, a 

part that operates on a database or file system, and a middle part that generally contains the 

core functionality of the application. This middle part is logically placed at the processing level. 
In contrast to user interfaces and databases, there are not many aspects common to the 

processing level. Therefore, we shall give a number of examples to make this level clearer. 

As a first example, consider an Internet search engine. Ignoring all the animated banners, 

images, and other fancy window dressing, the user interface of a search engine can be very 

simple: a user types in a string of keywords and is subsequently presented with a list of 
titles of Web pages. The back end is formed by a huge database of Web pages that have 

been perfected and indexed. The core of the search engine is a program that transforms the 
user’s string of keywords into one or more database queries. It subsequently ranks the 

results into a list, and transforms that list into a series of HTML pages. This information 

retrieval part is typically placed at the processing level. As a second example, consider a 
decision support system for stock brokerage. Analogous to a search engine, such a system 

can be divided into the following three layers: 

• A front end implementing the user interface or offering a programming

interface to external applications.
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• A back end for accessing a database with the financial data. 

• The analysis programs between these two. 

Analysis of financial data may require sophisticated methods and techniques from 
statistics and artificial intelligence. In some cases, the core of a financial decision support 

system may even need to be executed on high- performance computers in order to achieve 
the throughput and responsiveness that is expected from its users. 

As a last example, consider a typical desktop package, consisting of a word processor, a 

spreadsheet application, communication facilities, and so on. Such “office” suites are generally 

integrated through a common user interface that supports integrated document management, 

and operates on files from the user’s home directory. In an office environment, this home 
directory is often placed on a remote file server. In this example, the processing level consists 

of a relatively large collection of programs, each having rather simple processing capabilities 

[12]. 

The data level contains the programs that maintain the actual data on which the 

applications operate. An important property of this level is that data are often persistent, 

that is, even if no application is running, data will be stored somewhere for next use. In its 

simplest form, the data level consists of a file system, but it is also common to use a full-

fledged database. Besides merely storing data, the data level is generally also responsible 

for keeping data consistent across different applications. When databases are being used, 

maintaining consistency means that metadata such as table descriptions, entry constraints 
and application-specific metadata are also stored at this level. For example, in the case of 

a bank, we may want to generate a notification when a customer’s credit card debt reaches 

a certain value. This type of information can be maintained through a database trigger that 
activates a handler for that trigger at the appropriate moment. 

Object based and Service Oriented Architectures 

A far more loose organization is followed in object-based architectures. In essence, each 

object corresponds to what we have defined as a component, and these components are 

connected through a procedure call mechanism. In the case of distributed systems, a 
procedure call can also take place over a network, that is, the calling object need not be 

executed on the same machine as the called object. 

Object-based architectures are attractive because they provide a natural way of 

encapsulating data called an object’s state and the operations that can be performed on that 

data which are referred to as an object’s methods into a single entity. The interface offered 

by an object conceals implementation details, essentially meaning that we, in principle, 

can consider an object completely independent of its environment. As with components, 
this also means that if the interface is clearly defined and left otherwise untouched, an object 

should be replaceable with one having exactly the same interface. 

This separation between interfaces and the objects implementing these interfaces allows us 
to place an interface at one machine, while the object itself resides on another machine. This 

organization, which is shown in Figure 2.6 is commonly referred to as a distributed object. 

When a client binds to a distributed object, an implementation of the object’s interface, 

called a proxy, is then loaded into the client’s address space. A proxy is analogous to a client 

stub in RPC systems. The only thing it does is marshal method invocations into messages 
and unmarshal reply messages to return the result of the method invocation to the client. The 

actual object resides at a server machine, where it offers the same interface as it does on the 
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client machine. Incoming invocation requests are first passed to a server stub, which 

unmarshals them to make method invocations at the object’s interface at the server. The 
server stub is also responsible for marshaling replies and forwarding reply messages to the 

client-side proxy. 

The server-side stub is often referred to as a skeleton as it provides the bare means for letting 

the server middleware access the user-defined objects. In practice, it often contains incomplete 

code in the form of a language-specific class that needs to be further specialized by the 

developer. According to the Figure 12A characteristic, but somewhat counterintuitive feature 

of most distributed objects is that their state is not distributed: it resides at a single machine. 
Only the interfaces implemented by the object are made available on other machines. Such 

objects are also referred to as remote objects. In a general distributed object, the state itself may 

be physically distributed across multiple machines, but this distribution is also hidden from 
clients behind the object’s interfaces. One could argue that object-based architectures form 

the foundation of encapsulating services into independent units. Encapsulation is the keyword 

here: the service as a whole is realized as a self-contained entity, although it can possibly 

make use of other services. By clearly separating various services such that they can operate 

independently, we are paving the road toward service-oriented architectures, generally 
abbreviated as SOAs [13]. 

In a service-oriented architecture, a distributed application or system is essentially 
constructed as a composition of many different services. Not all of these services may 

belong to the same administrative organization. We already came across this phenomenon 

when discussing cloud computing: it may very well be that an organization running its 
business application makes use of storage services offered by a cloud provider. These storage 

services are logically completely encapsulated into a single unit, of which an interface is 
made available to customers. 

Of course, storage is a rather basic service, but more sophisticated situations easily come to 

mind. Consider, for example, a Web shop selling goods such as e-books. A simple 
implementation following the application layering we discussed previously, may consist of 

an application for processing orders, which, in turn, operates on a local database containing the 

e-books. Order processing typically involves selecting items, registering and checking the 

delivery channel, but also making sure that a payment takes place. The latter can be handled 

by a separate service, run by a different organization, to which a purchasing customer is 

redirected for the payment, after which the e-book organization is notified so that it can 

complete the transaction. 

In this way, we see that the problem of developing a distributed system is partly one of 

service composition, and making sure that those services operate in harmony. Indeed, this 

problem is completely analogous to the enterprise application integration issues. Crucial is, 
and remains, that each service offers a well-defined (programming) interface. In practice, 

this also means that each service offers its own interface, in turn, possibly making the 

composition of services far from trivial. 



 
39 Distributed System 

CHAPTER 9 

RESOURCE BASED ARCHITECTURES 
 

Dr. Gopal K Shyam, Professor and HoD, 
Department of Computer Science and Engineering,  

Presidency University, Bangalore, Karnataka, India 
Email Id- gopalkirshna.shyam@presidencyuniversity.in 

 

As an increasing number of services became available over the Web and the development of 

distributed systems through service composition became more important, researchers started 

to rethink the architecture of mostly Web-based distributed systems. One of the problems with 
service composition is that connecting various components can easily turn into an integration 

nightmare. As an alternative, one can also view a distributed system as a huge collection of 

resources that are individually managed by components. Resources may be added or removed 
by applications, and likewise can be retrieved or modified. This approach has now been widely 

adopted for the Web and is known as Representational State Transfer (REST). There are four 

key characteristics of what are known as RESTful architecture: 

a. Resources are identified through a single naming scheme 

b. All services offer the same interface, consisting of at most four operations, as shown in 
Table 1. 

c. Messages sent to or from a service are fully self-described. 

Table 1: Illustrated that the Four Operations Available in RESTful Architectures. 

Sr. No. Operation Description 

1.  PUT Create a new resource 

2.  GET Retrieve the state of a resource in some representation 

3.  DELETE Delete a resource 

4.  POST Modify a resource by transferring a new state 

 

Publish Subscribe Architectures 

As systems continue to grow and processes can more easily join or leave, it becomes 

important to have an architecture in which dependencies between processes become as 
loose as possible. A large class of distributed systems have adopted an architecture in  

which there is a strong separation between processing and coordination. The idea is to view 

a system as a collection of autonomously operating processes. In this model, coordination 
encompasses the communication and cooperation between processes. It provide a 

taxonomy of coordination models that can be applied equally too many types of distr ibuted 

systems. Slightly adapting their terminology, we make a distinction between models along 

two different dimensions, temporal and referential, as shown in Table 2. 
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Tab le 2: Represented that the Examples of Different forms of Coordinat ion. 

Sr. No. 
Temporally 

Coupled 

Temporally 

Decoupled 

1. Referentially Coupled Direct Mailbox 

2. Referentially Decoupled Event based Shared data space 

When processes are temporally and referentially coupled, coordination takes place in a 

direct way, referred to as direct coordination. The referential coupling generally appears 

in the form of explicit referencing in communication. For example, a process can 

communicate only if it knows the name or identifier of the other processes it wants to  
exchange information with. Temporal coupling means that processes that are 

communicating will both have to be up and running. In real life, talking over cell phones, 

is an example of direct communication.  A different type of coordination occurs when 
processes are temporally decoupled, but referentially coupled, which we refer to as 

mailbox coordination. In this case, there is no need for two communicating processes to  

be executing at the same time in order to let communication take place. Instead, 

communication takes place by putting messages in a mail- box. Because it is necessary to  

explicitly address the mailbox that will hold the messages that are to be exchanged, there 
is a referential coupling. 

The combination of referentially decoupled and temporally coupled systems form the 
group of models for event-based coordination. In referentially decoupled systems, 

processes do not know each other explicitly. The only thing a process can do is publish a 

notification describing the occurrence of an event for example that it wants to coordinate 

activities, or that it just produced some interesting results. Assuming that notifications 

come in all sorts and kinds, processes may subscribe to a specific kind of notification. In 
an ideal event-based coordination model, a published notification will be delivered exactly 

to those processes that have subscribed to it. However, it is generally required that the 

subscriber is up-and-running at the time the notification was published [14]. 

A well-known coordination model is the combination of referentially and temporally 

decoupled processes, leading to what is known as a shared data space. The key idea is that 

processes communicate entirely through tuples, which are structured data records 

consisting of a number of fields, very similar to a row in a database table. Processes can 

put any type of tuple into the shared data space. In order to retrieve a tuple, a process 
provides a search pattern that is matched against the tuples. Any tuple that matches is 

returned. Shared data spaces are thus seen to implement an associative search mechanism 
for tuples. When a process wants to extract a tuple from the data space, it specifies the 

values of the fields it is interested in. Any tuple that matches that specif ication is then 

removed from the data space and passed to the process. 

Shared data spaces are often combined with event-based coordination: a process 

subscribes to certain tuples by providing a search pattern; when a process inserts a tuple 
into the data space, matching subscribers are notified. In both cases, we are dealing with 

publish subscribe architecture, and indeed, the key characteristic feature is that processes 

have no explicit reference to each other. The difference between a pure event-based 
architectural style, and that of a shared data space. We have also shown an abstraction of 

the mechanism by which publishers and subscribers are matched, known as an event bus. 

An important aspect of publish-subscribe systems is that communication takes place by 
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describing the events that a subscriber is interested in. As a consequence, naming plays a 

crucial role. We return to naming later, but for now the important issue is that in many 
cases, data items are not explicitly identified by senders and receivers. 

Let us first assume that events are described by a series of attr ibutes. A notification 
describing an event is said to be published when it is made available for other processes to  

read. To that end, a subscription needs to be passed to the middleware, containing a 

description of the event that the subscriber is interested in. Such a description typically 

consists of some pairs, which is common for so-called topic-based publish- subscribe 

systems. As an alternative, in content-based publish-subscribe systems, a subscription may 
also consist of pairs. In this case, the specified attribute is expected to take on values within 

a specified range. Descriptions can sometimes be given using all kinds of predicates 

formulated over the attributes, very similar in nature to SQL-like queries in the case of 
relational databases. Obviously, the more complex a description is, the more difficult it will 

be to test whether an event matches a description. 

We are now confronted with a situation in which subscriptions need to be matched against 

notifications. In many cases, an event actually corresponds to data becoming available. In 

that case, when matching succeeds, there are two possible scenarios. In the first case, the 
middleware may decide to forward the published notification, along with the associated 

data, to its current set of subscribers, that is, processes with a matching subscription. As an 
alternative, the middleware can also forward only a notification at which point subscribers 

can execute a read operation to retrieve the associated data item. 

In those cases in which data associated with an event are immediately forwarded to 
subscribers, the middleware will generally not offer storage of data. Storage is either  

explicitly handled by a separate service, or is the responsibility of subscribers. In other 
words, we have a referentially decoupled, but temporally coupled system. 

This situation is different when notifications are sent so that subscribers need to explicitly 

read the associated data. Necessarily, the middleware will have to store data items. In these 
situations there are additional operations for data management. It is also possible to attach 

a lease to a data item such that when the lease expires that the data item is automatically 

deleted. 

Events can easily complicate the processing of subscriptions. To illustrate, consider a 

subscription such as “notify when room is unoccupied and the door is unlocked.” Typically, a 

distributed system supporting such subscriptions can be implemented by placing independent 

sensors for monitoring room occupancy and those for registering the status of a door lock. 
Following the approach sketched so far, we would need to compose such primitive events into 

a publishable data item to which processes can then subscribe. Event composition turns out to 

be a difficult task, notably when the primitive events are generated from sources dispersed 
across the distributed system. 

Clearly, in publish-subscribe systems such as these, the crucial issue is the efficient and 

scalable implementation of matching subscriptions to notifications. From the outside, 

publish subscribe architecture provides lots of potential for building very large-scale 

distributed systems due to the strong decoupling of processes. On the other hand, devising 
scalable implementations without losing this independence is not a trivial exercise, notably 

in the case of content-based publish-subscribe systems.  

Events can easily complicate the processing of subscriptions to illustrate, consider a 

subscription such as “notify is unoccupied and the door is unlocked.” Typically, a distributed 
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system supporting such subscriptions can be implemented by placing independent sensors for 

monitoring room occupancy and those for registering the status of a door lock. Following 
the approach sketched so far, we would need to compose such primitive events into a 

publishable data item to which processes can then subscribe. Event composition turns out to be 
a difficult task, notably when the primitive events are generated from sources dispersed across 

the distributed system. 

Clearly, in publish-subscribe systems such as these, the crucial issue is the efficient and 

scalable implementation of matching subscriptions to notifications. From the outside, 

publish subscribe architecture provides lots of potential for building very large-scale 
distributed systems due to the strong decoupling of processes. On the other hand, devising 

scalable implementations without losing this independence is not a trivial exercise, notably 

in the case of content-based publish-subscribe systems. 

Middleware Organization 

In the previous section we discussed a number of architectural styles that are often used as 

general guidelines to build and organize distributed systems. Let us now zoom into the actual 

organization of middleware, that is, independent of the overall organization of a distributed 

system or application. In particular, there are two important types of design patterns that are 
often applied to the organization of middleware: wrappers and interceptors. Each targets 

different problems, yet addresses the same goal for middleware: achieving openness. 
However, it can be argued that the ultimate openness is achieved when we can compose 

middleware at runtime. 

Interceptors 

Conceptually, an interceptor is nothing but a software construct that will break the usual 

flow of control and allow other application specific code to be executed. Interceptors are 
a primary means for adapting middleware to the specific needs of an application. As 

such, they play an important role in making middleware open. To make interceptors 

generic may require a substantial implementation effort, as illustrated and it is unclear  
whether in such cases generality should be preferred over restricted applicability and 

simplicity. Also, in many cases having only limited interception facilities will improve 

management of the software and the distributed system as a whole [15]. 

To make matters concrete, consider interception as supported in many object-based 

distributed systems. The basic idea is simple: an object A can call a method that belongs to  

an object B, while the latter resides on a different machine than A. As we explain in detail 

later in the book, such a remote-object invocation is carried out in three steps: 

a. Object A is offered a local interface that is exactly the same as the interface offered by

object B. A calls the method available in that interface.

b. The call by A is transformed into a generic object invocation, made possible through a
general object-invocation interface offered by the middleware at the machine where A

resides.

c. Finally, the generic object invocation is transformed into a message that is sent through

the transport-level network interface as offered by A’s local operating system.

After the first step, the call B.doit (val) is transformed into a generic call such as invoke (B, 

&doit, val) with a reference to B’s method and the parameters that go along with the call. 



 
43 Distributed System 

Now imagine that object B is replicated. In that case, each replica should actually be 

invoked. This is a clear point where interception can help. What the request-level 
interceptor will do, is simply call invoke for each of the replicas. The beauty of this all is 

that the object A need not be aware of the replication of B, but also the object middleware 
need not have special components that deal with this replicated call. Only the request-level 

interceptor, which may be added to the middleware needs to know about B’s replication. 

In the end, a call to a remote object will have to be sent over the network. In practice, this 

means that the messaging interface as offered by the local operating system will need to be 

invoked. At that level, a message-level interceptor may assist in transferring the invocation to 
the target object. For example, imagine that the parameter val actually corresponds to a huge 

array of data. In that case, it may be wise to fragment the data into smaller parts to have it 

assembled again at the destination. Such a fragmentation may improve performance or 
reliability. Again, the middleware need not be aware of this fragmentation; the lower-level 

interceptor will transparently handle the rest of the communication with the local operating 

system. 

Modifiable Middleware 

What wrappers and interceptors offer are means to extend and adapt the middleware. The need 
for adaptation comes from the fact that the environment in which distributed applications are 

executed changes continuously. Changes include those resulting from mobility, a strong 
variance in the quality-of- service of networks, failing hardware, and battery drainage, amongst 

others. Rather than making applications responsible for reacting to changes, this task is placed 

in the middleware. Moreover, as the size of a distributed system increases, changing its parts 
can rarely be done by temporarily shutting it down. What is needed is being able to make 

changes on-the-fly. 

These strong influences from the environment have brought many de- signers of middleware 

to consider the construction of adaptive software. In speaking of modifiable middleware to 

express that middleware may not only need to be adaptive, but that we should be able to 
purposefully modify it without bringing it down. In this context, interceptors can be thought of 

offering a means to adapt the standard flow of control. Replacing software components at 

runtime is an example of modifying a system. And indeed, perhaps one of the most popular 

approaches toward modifiable middleware is that of dynamically constructing middleware 

from components. 

Component-based design focuses on supporting modifiability through composition. A system 

may either be configured statically at design time, or dynamically at runtime.  The latter 
requires support for late binding, a technique that has been successfully applied in 

programming language environments, but also for operating systems where modules can be 

loaded and unloaded at will. Research is now well underway to automatically select the best 
implementation of a component during runtime but again, the process remains complex for 

distributed systems, especially when considering that replacement of one component requires 

to know exactly what the effect of that replacement on other components will be. In many 

cases, components are less independent as one may think. 

The bottom line is that in order to accommodate dynamic changes to the software that makes 
up middleware, we need at least basic support to load and unload components at runtime. In 

addition, for each component explicit specifications of the interfaces it offers, as well the 
interfaces it requires, are needed. If state is maintained between calls to a component, then 

further special measures are needed. By-and-large, it should be clear that organizing 
middleware to be modifiable requires very special attention. 
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Now that we have briefly discussed some commonly applied architectural styles, let us take a 

look at how many distributed systems are actually organized by considering where software 

components are placed. Deciding on software components, their interaction, and their 
placement leads to an instance of a software architecture, also known as a system architecture. 

We will discuss centralized and decentralized organizations, as well as various hybrid forms. 

Centralized organizations 

Despite the lack of consensus on many distributed systems issues, there is one issue that many 

researchers and practitioners agree upon: thinking in terms of clients that request services from 

servers helps understanding and managing the complexity of distributed systems. In the 

following, we first consider a simple layered organization, followed by looking at multi-layered 

organizations. 

Simple Client Server Architecture 

In the basic client-server model, processes in a distributed system are divided into two (possibly 
overlapping) groups. A server is a process implementing a specific service, for example, a file 

system service or a database service. A client is a process that requests a service from a server 

by sending it a request and subsequently waiting for the server’s reply. This client-server 

interaction, also known as request-reply behavior. Communication between a client and a 

server can be implemented by means of a simple connectionless protocol when the 
underlying network is fair ly reliable as in many local-area networks. In these cases, when 

a client requests a service, it simply packages a message for the server, identifying the service 

it wants, along with the necessary input data. The message is then sent to the server. The 
latter, in turn, will always wait for an incoming request, subsequently process it, and 

package the results in a reply message that is then sent to the client. Using a connectionless 

protocol has the obvious advantage of being efficient.  

As long as messages do not get lost or corrupted, the request or reply protocol just sketched 

works fine. Unfortunately, making the protocol resistant to occasional transmission failures 

is not trivial. The only thing we can do is possibly let the client resend the request when no 

reply message comes in. The problem, however, is that the client cannot detect whether the 
original request message was lost, or that transmission of the reply failed. If the reply was lost, 

then resending a request may result in performing the operation twice. If the operation was 

something like “transfer $10,000 from my bank account,” then clearly, it would have been 
better that we simply reported an error instead. On the other hand, if the operation was “tell 

me how much money I have left,” it would be perfectly acceptable to resend the request. 
When an operation can be repeated multiple times without harm, it is said to be idempotent. 

Since some requests are idempotent and others are not it should be clear that there is no single 
solution for dealing with lost messages. 
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As an alternative, many client-server systems use a reliable connection- oriented protocol. 

Although this solution is not entirely appropriate in  a local-area network due to relatively 
low performance, it works perfectly fine in wide-area systems in which communication is 

inherently unreliable. For example, virtually all Internet application protocols are based on 
reliable TCP/IP connections. In this case, whenever a client requests a service, it first sets 

up a connection to the server before sending the request. The server generally uses that 

same connection to send the reply message, after which the connection is torn down. The 

trouble may be that setting up and tearing down a connection is relatively costly, especially 

when the request and reply messages are small. 

The client-server model has been subject to many debates and controversies over the years. 

One of the main issues was how to draw a clear distinction between a client and a server. Not 

surprisingly, there is often no clear distinction. For example, a server for a distributed database 
may continuously act as a client because it is forwarding requests to different file servers 

responsible for implementing the database tables. In such a case, the database server itself only 

processes the queries. 

Multitier Architectures 

The distinction into three logical levels as discussed so far, suggests a number of possibilities  
for physically distributing a client-server application across several machines. The 

simplest organization is to have only two types of machines: 

i. A client machine containing only the programs implementing (part of) the user-

interface level. 

ii. A server machine containing the rest, that is, the programs implementing the processing 
and data level. 

In this organization everything is handled by the server while the client is essentially no more 
than a dumb terminal, possibly with only a convenient graphical interface. There are, however, 

many other possibilities. As explained many distributed applications are divided into the three 

layers: 

i. User Interface Layer, 

ii. Processing Layer, 

iii. Data Layer. 

One approach for organizing clients and servers is then to distribute these layers across 

different machines. As a first step, we make a distinction between only two kinds of machines: 

client machines and server machines, leading to what is also referred to as a (physically) two-

tiered architecture. One possible organization is to have only the terminal-dependent part 
of the user interface on the client machine, as shown in Figure 17(a), and give the 

applications remote control over the presentation of their data. An alternative is to place the 

entire user-interface software on the client side, as shown in Figure 17(b). In such cases, we 
essentially divide the application into a graphical front end, which communicates with the rest 

of the application residing at the server through an application-specific protocol.  

In this model, the front end the client software does no processing other than necessary for 

presenting the application’s interface. Continuing along this line of reasoning, we may also 

move part of the application to the front end. An example where this makes sense is where 
the application makes use of a form that needs to be filled in entirely before it can be 

processed. The front end can then check the correctness and consistency of the form, and 
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where necessary interact with the user. Another example of the organization is that of a word 

processor in which the basic editing functions execute on the client side where they operate 
on locally cached, or in-memory data, but where the advanced support tools such as checking 

the spelling and grammar execute on the server side. 

In many client-server environments, the organizations are particularly popular. These 

organizations are used where the client machine is a PC or workstation, connected through 

a network to a distr ibuted f ile system or database. Essentially, most of the application is 

running on the client machine, but all operations on files or database entries go to the 

server. For example, many banking applications run on an end-user’s machine where the 
user prepares transactions and such. Once finished, the application contacts the database on 

the bank’s server and uploads the transactions for further processing. Represents the situation 

where the client’s local disk contains part of the data. For example, when browsing the 
Web, a client can gradually build a huge cache on local disk of most recent inspected Web 

pages. When distinguishing only client and server machines as we did so far, we miss the point 

that a server may sometimes need to act as a client, leading to a (physically) three-tiered 

architecture. 

In this architecture, traditionally programs that form part of the processing layer are 
executed by a separate server, but may additionally be partly distributed across the client 

and server machines. A typical example of where a three-tiered architecture is used is in  
transaction processing. A separate process, called the transaction processing monitor, 

coordinates all transactions across possibly different data servers. 

Another, but very different example were we often see a three-tiered architecture is in the 
organization of Web sites. In this case, a Web server acts as an entry point to a site, passing 

requests to an application server where the actual processing takes place. This application 
server, in turn, interacts with a database server. For example, an application server may be 

responsible for running the code to inspect the available inventory of some goods as offered 

by an electronic bookstore.  

Decentralized Organizations: Peer-To-Peer Systems 

Multitier client-server architectures are a direct consequence of dividing distr ibuted 

applications into a user interface, processing components, and data-management 

components. The different tiers correspond directly with the logical organization of 

applications. In many business environments, distributed processing is equivalent to 

organizing a client-server application as a multitier architecture. We refer to this type of 

distribution as vertical distribution. The characteristic feature of vertical distribution is that it 
is achieved by placing logically different components on different machines. The term is 

related to the concept of vertical fragmentation as used in distributed relational databases, 

where it means that tables are split column wise, and subsequently distributed across multiple 
machines. 

Again, from a systems-management perspective, having a vertical distribution can help: 

functions are logically and physically split across multiple machines, where each machine 

is tailored to a specific group of functions. However, vertical distribution is only one way 

of organizing client-server applications. In modern architectures, it is often the distribution of 
the clients and the servers that counts, which we refer to as horizontal distribution. In this 

type of distribution, a client or server may be physically split up into logically equivalent 
parts, but each part is operating on its own share of the complete data set, thus balancing 

the load. In this section we will take a look at a class of modern system architectures that 
support horizontal distribution, known as peer-to-peer systems. 
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From a high-level perspective, the processes that constitute a peer-to-peer system are all equal. 

This means that the functions that need to be carried out are represented by every process 
that constitutes the distributed system. As a consequence, much of the interaction between 

processes is symmetric: each process will act as a client and a server at the same time. 
Given this symmetric behavior, peer-to-peer architectures evolve around the question how 

to organize the processes in an overlay network. A network in which the nodes are formed by 

the processes and the links represent the possible communication channels (which are often 

realized as TCP connections). A node may not be able to communicate directly with an 

arbitrary other node, but is required to send messages through the available communication 
channels. Two types of overlay networks exist: those that are structured and those that are 

not. 

Structured Peer-to-Peer Systems 

As its name suggests, in a structured peer-to-peer system the nodes that is processes are 

organized in an overlay that adheres to a specific, deterministic topology: a ring, a binary tree, 

a grid, etc. This topology is used to efficiently look up data. Characteristic for structured 

peer-to-peer systems, is that they are generally based on using a so-called semantic-free 

index. What this means is that each data item that is to be maintained by the system, is 
uniquely associated with a key, and that this key is subsequently used as an index. To this 

end, it is common to use a hash function, so that we get: 

key(data item) = hash(data item’s value). 

The peer-to-peer system as a whole is now responsible for storing (key, value) pairs.   To this 

end, each node is assigned an identifier from the same set of all possible hash values, and 
each node is made responsible for storing data associated with a specific subset of keys. 

In essence, the system is thus seen to implement a distributed hash table, generally 
abbreviated to a DHT. 

Following this approach now reduces the essence of structured peer-to- peer systems to 

being able to look up a data item by means of its key.  That is, the system provides an 
efficient implementation of a function lookup that maps a key to an existing node: 

existing node = lookup(key). 

This is where the topology of a structured peer-to-peer system plays a crucial role. Any node 

can be asked to look up a given key, which then boils down to efficiently routing that lookup 

request to the node responsible for storing the data associated with the given key. 

To clarify these matters, let us consider a simple peer-to-peer system with a fixed number of 

nodes, organized into a hypercube. A hypercube is an n-dimensional cube. To expand the 
hypercube to five dimensions, we would add another set of two interconnected cubes to the 

figure, connect the corresponding edges in the two halves, and so on.  

Hierarchically Organized peer-to-peer Networks 

Notably in unstructured peer-to-peer systems, locating relevant data items can become 

problematic as the network grows. The reason for this scalability problem is simple: as there is 

no deterministic way of routing a lookup request to a specific data item, essentially the only 

technique a node can resort to is searching for the request by means of flooding or randomly 

walking through the network. As an alternative many peer-to-peer systems have proposed to 
make use of special nodes that maintain an index of data items. 
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There are other situations in which abandoning the symmetric nature of peer-to-peer 

systems is sensible. Consider a collaboration of nodes that offer resources to each other. For 
example, in a collaborative content delivery network (CDN), nodes may offer storage for 

hosting copies of Web documents allowing Web clients to access pages nearby, and thus to 
access them quickly. What is needed is a means to find out where documents can be stored 

best. In that case, making use of a broker that collects data on resource usage and availability 

for a number of nodes that are in each other’s proximity will allow to quickly select a node 

with sufficient resources. 

Nodes such as those maintaining an index or acting as a broker are generally referred to as 
super peers. As the name suggests, super peers are often also organized in a peer-to-peer 

network, leading to a hierarchical organisa tion. A simple example of such an organization. 

In this organization, every regular peer, now referred to as a weak peer, is connected as a 
client to a super peer. All communication from and to a weak peer proceeds through that 

peer’s associated super peer. 

In many cases, the association between a weak peer and its super peer is fixed: whenever 

a weak peer joins the network, it attaches to one of the super peers and remains attached 

until it leaves the network. Obviously, it is expected that super peers are long-lived 
processes with high availability. To compensate for potential unstable behavior of a super 

peer, backup schemes can be deployed, such as pairing every super peer with another one 
and requiring weak peers to attach to both. 

Having a fixed association with a super peer may not always be the best solution. For example, 

in the case of file-sharing networks, it may be better for a weak peer to attach to a super 
peer that maintains an index of files that the weak peer is currently interested in. In that case, 

chances are bigger that when a weak peer is looking for a specific file, its super peer will know 
where to find it describe a relatively simple scheme in which the association between weak 

peer and strong peer can change as weak peers discover better super peers to associate with. In 

particular, a super peer returning the result of a lookup operation is given preference over other 
super peers. 

As we have seen, peer-to-peer networks offer a flexible means for nodes to join and leave 

the network. However, with super-peer networks a new problem is introduced, namely how to 

select the nodes that are eligible to become super peer. Super peers that can be used to get 

started when a weak peer starts from scratch. It appears that the address of each of these 

default super peers is hard-coded in the Skype software. An address consists of an (IP 

address, port number)-pair. Each weak peer has a local list of addresses of reachable super 
peers, called its host cache. If none of the cached super peers is reachable, it tries to connect to 

one of the default super peers. The host cache is designed to accommodate a few hundred 

addresses. To connect to the Skype network, a weak peer is required to establish a TCP 
connection with a super peer. This is important, notably when a peer is operating behind a 

firewall, as the super peer can assist in actually contacting that peer. 

Let us first consider the situation that one peer A wants to contact another (weak) peer B for 

which it has a contact address. We need to distinguish three cases, all related to the situation 

whether or not peers are behind (NATed) firewalls. Both A and B are on the public  
Internet: Being on the public Internet means that A and B can be directly contacted. In 

this case, a TCP connection is set up between A and B which is used to exchange control 
packets. The actual call takes place using UDP packets between negotiated ports at the 

caller and callee, respectively. 
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A operates behind a Firewall, while B is on the Public Internet 

In this case, A will first set up a TCP connection to a super peer S, after which S will set up 
a TCP connection to B. Again, the TCP connections are used to transfer control packets 

between A and B (via S), after which the actual call will take place through UDP and directly 
between A and B without flowing through S. However, it seems that S is needed to discover 

the correct pair of port numbers for the firewall at A to allow for UDP packet exchanges. In 

principle, this should also be possible with assistance of B. 

Both A and B operate  Behind a F irewall 

This is the most challenging situation, certainly if we also assume that the firewalls restrict 
UDP traffic. In this case, A will connect to an online super peer S through TCP, after which 

S will set up a TCP connection to B. These connections are used for exchanging control 

packets. For the actual call, another super peer is contacted that will act as a relay R: A 
sets up a connection to R, and so will B. All voice traffic is then subsequently forwarded 

over the two TCP connections, and through R. 

How do users find each other? As mentioned, the first thing a weak peer needs to do is 

establish a TCP connection with a super peer. That super peer is either found in the local 

host cache, or obtained through one of the default super peers. In order to search for a 
specific user, a weak peer contacts its super peer, which will return a number of other peers 

to ask. If that did not lead to any results, the super peer returns another (this time longer) 
list of peers to which the search request should be forwarded. This process is repeated until 

the user is found or the requester concludes the user does not exist. Indeed, this can be 

viewed as a form of policy-based search as we mentioned above. Finding a user means that 
its address, or that of its associated super peer is returned. In principle, if the searched user is 

online, a VOIP connection can then be established.  

Hybrid Architectures 

So far, we have focused on client-server architectures and a number of peer-to- peer 

architectures. Many distributed systems combine architectural features, as we already came 
across in super-peer networks. In this section we take a look at some specific classes of 

distributed systems in which client-server solutions are combined with decentralized 

architectures. 

Edge Server Systems 

An important class of distributed systems that is organized according to a hybrid 

architecture is formed by edge-server systems. These systems are deployed on the Internet 

where servers are placed “at the edge” of the network. This edge is formed by the boundary 
between enterprise networks and the actual Internet, for example, as provided by an 

Internet Service Provider (ISP). Likewise, where end users at home connect to the Internet 

through their ISP, the ISP can be considered as residing at the edge of the Internet. This 
leads to a general organization like the one. 

End users, or clients in general, connect to the Internet by means of an edge server. The 

edge server’s main purpose is to serve content, possibly after applying filtering and 

transcoding functions. More interesting is the fact that a collection of edge servers can be 

used to optimize content and application distribution. The basic model is that for a specific 
organization, one edge server acts as an origin server from which all content originates. 
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This concept of edge-server systems is now often taken a step further: taking cloud 

computing as implemented in a data center as the core, additional servers at the edge of the 
network are used to assist in computations and storage, essentially leading to distr ibuted 

cloud systems. In the case of fog computing, even end-user devices form part of the system 
and are (partly) controlled by a cloud-service provide. 

Collaborative distributed systems 

Hybrid structures are notably deployed in collaborative distributed systems. The main issue in 

many of these systems is to first get started, for which often a traditional client-server scheme 

is deployed. Once a node has joined the system, it can use a fully decentralized scheme for 
collaboration. To make matters concrete, let us consider the widely popular BitTorrent  

file-sharing system. BitTorrent is a peer-to-peer file downloading system. Its principal 

working. The basic idea is that when an end user is looking for a file, he downloads chunks 
of the file from other users until the downloaded chunks can be assembled together yielding 

the complete file. An important design goal was to ensure collaboration. In most file-

sharing systems, a significant fraction of participants merely download files but otherwise 

contribute close to nothing a phenomenon referred to as free riding. To prevent this situation, 

in BitTorrent a file can be downloaded only when the downloading client is providing 
content to someone else. 

To download a file, a user needs to access a global directory, which is generally just one 
of a few well-known Web sites. Such a directory contains references to what are called 

torrent files. A torrent file contains the information that is needed to download a specific file. 

In particular, it contains a link to what is known as a tracker, which is a server that is 
keeping an accurate account of active nodes that have (chunks of) the requested file. An 

active node is one that is currently downloading the file as well. Obviously, there will be 
many different trackers, although there will generally be only a single tracker per file (or 

collection of files). 

Once the nodes have been identified from where chunks can be down- loaded, the 
downloading node effectively becomes active. At that point, it will be forced to help 

others, for example by providing chunks of the file it is downloading that others do not 

yet have. This enforcement comes from a very simple rule: if node P notices that node Q is 

downloading more than it is uploading, P can decide to decrease the rate at which it sends 

data to Q. This scheme works well provided P has something to download from Q. For this 

reason, nodes are often supplied with references to many other nodes putting them in a better  

position to trade data. 

Clearly, BitTorrent combines centralized with decentralized solutions. As it turns out, the 

bottleneck of the system is, not surprisingly, formed by the trackers. In an alternative 

implementation of BitTorrent, a node also joins a separate structured peer-to-peer system 
to assist in tracking file downloads. In effect, a central tracker’s load is now distr ibuted 

across the participating nodes, with each node acting as a tracker for a relatively small set 

of torrent files.  The original function of the tracker coordinating the collaborative 

downloading of a file is retained. However, we note that in many BitTorrent systems used 

today, the tracking functionality has actually been minimized to a one-time provisioning 
of peers currently involved in downloading the file. From that moment on, the newly 

participating peer will communicate only with those peers and no longer with the initial 
tracker.  
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Many distributed files systems are organized along the lines of client-server architectures, 

with Sun Microsystem’s Network File System (NFS) being one of the most widely-deployed 

ones for Unix systems. Here, we concentrate on NFSv3, the widely-used third version of 
NFS [Callaghan, 2000] and NFSv4, the most recent, fourth version. We will discuss the 

differences between them as well. 

The basic idea behind NFS is that each f ile server provides a standardized view of its local 
file system. In other words, it should not matter how that local file system is implemented; 

each NFS server supports the same model. This approach has been adopted for other 

distributed files systems as well. NFS comes with a communication protocol that allows 

clients to access the files stored on a server, thus allowing a heterogeneous collection of 

processes, possibly running on different operating systems and machines, to share a 
common file system. 

The model underlying NFS and similar systems is that of a remote file service . In this 
model, clients are offered transparent access to a file system that is managed by a remote 

server. However, clients are normally unaware of the actual location of files. Instead, they 

are offered an interface to a file system that is similar to the interface offered by a 

conventional local file system. In particular, the client is offered only an interface containing 

various file operations, but the server is responsible for implementing those operations. 
This model is therefore also referred to as the remote access model. 

In contrast, in the upload/download model a client accesses a file locally after having 

downloaded it from the server, when the client is finished with the file, it is uploaded back 
to the server again so that it can be used by another client. The Internet’s FTP service can be 

used this way when a client downloads a complete file, modifies it, and then puts it back. 

NFS has been implemented for a large number of different operating systems, although 

the UNIX versions are predominant. For virtually all modern UNIX systems, NFS is generally 

implemented following the layered architecture. 

A client accesses the file system using the system calls provided by its local operating system. 

However, the local UNIX file system interface is replaced by an interface to the Virtual 
File System (VFS), which by now is a de facto standard for interfacing to different 

(distributed) file systems. Virtually all modern operating systems provide VFS, and not 

doing so more or less forces developers to largely implement huge parts of an operating 
system when adopting a new file-system structure. With NFS, operations on the VFS 

interface are either passed to a local file system, or passed to a separate component known as 
the NFS client, which takes care of handling access to files stored at a remote server. In 

NFS, all client-server communication is done through so-called remote procedure calls 
(RPCs). An RPC is essentially a standardized way to let a client on machine. A make an 

ordinary call to a procedure that is implemented on another machine B. The NFS client 

implements the NFS file system operations as remote procedure calls to the server. Note 
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that the operations offered by the VFS interface can be different from those offered by the 

NFS client. The whole idea of the VFS is to hide the differences between various file 
systems. On the server side, we see a similar organization. The NFS server is responsible 

for handling incoming client requests. The RPC component at the server converts 
incoming requests to regular VFS file operations that are subsequently passed to the VFS 

layer. Again, the VFS is responsible for implementing a local file system in which the 

actual files are stored. 

An important advantage of this scheme is that NFS is largely independent of local file systems 

as display in Table 3. In principle, it really does not matter whether the operating system at the 
client or server implements a UNIX file system, a Windows file system, or even an old MS-

DOS file system. The only important issue is that these file systems are compliant with the file 

system model offered by NFS. For example, MS-DOS with its short file names cannot be used 
to implement an NFS server in a fully transparent way.  

Table 3: An incomplete  list of NFS file  system operations. 

Operation v3 v4 Description 

create Yes No Create a regular file 

create No Yes Create a nonregular file 

link Yes Yes Create a hard link to a file 

symlink Yes No Create a symbolic link to a file 

mkdir Yes No Create a subdirectory in a given directory 

mknod Yes No Create a special file 

rename Yes Yes Change the name of a file 

remove Yes Yes Remove a file from a file system 

rmdir Yes No Remove an empty subdirectory from a 

directory 

open No Yes Open a file 

close No Yes Close a file 

lookup Yes Yes Look up a file by means of a file name 

readdir Yes Yes Read the entries in a directory 

readlink Yes Yes Read the path name stored in a symbolic 

link 

getattr Yes Yes Get the attribute values for a file 

setattr Yes Yes Set one or more attribute values for a file 

read Yes Yes Read the data contained in a file 

write Yes Yes Write data to a file 
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Version 4 allows clients to open and close (regular) files. Opening a nonexistent file has the 

side effect that a new file is created. To open a file, a client provides a name, along with various 
values for attributes. For example, a client may specify that a file should be opened for write 

access. After a file has been successfully opened, a client can access that file by means of its 
file handle. That handle is also used to close the file, by which the client tells the server that it 

will no longer need to have access to the file. The server, in turn, can release any state it 

maintained to provide that client access to the file. 

The lookup operation is used to look up a file handle for a given path name. In NFSv3, the 

lookup operation will not resolve a name beyond what is called a mount point. For 
example, assume that the name /remote/vu refers to a mount point in a naming graph. When 

resolving the name /remote/vu/mbox, the lookup operation in NFSv3 will return the file handle 

for the mount point /remote/vu along with the remainder of the path name (i.e., mbox). The 
client is then required to explicitly mount the file system that is needed to complete the name 

lookup. A file system in this context is the collection of files, attributes, directories, and data 

blocks that are jointly implemented as a logical block device. 

In version 4, matters have been simplif ied. In this case, lookup will attempt to resolve the 

entire name, even if this means crossing mount points. Note that this approach is possible 
only if a file system has already been mounted at mount points.  The client is able to detect 

that a mount point has been crossed by inspecting the file system identifier that is later  
returned when the lookup completes. 

There is a separate operation readdir to read the entries in a directory. This operation returns a 

list of (name, file handle), pairs along with attribute values that the client requested. The 
client can also specify how many entries should be returned. The operation returns an offset 

that can be used in a subsequent call to readdir in order to read the next series of entries. 
Operation read link is used to read the data associated with a symbolic link. Normally, this 

data corresponds to a path name that can be subsequently looked up. Note that the lookup 

operation cannot handle symbolic links. Instead, when a symbolic link is reached, name 
resolution stops and the client is required to first call read link to find out where name 

resolution should continue. 

Files have various attributes associated with them. Again, there are important differences 

between NFS version 3 and 4. Typical attributes include the type of the file telling whether 

we are dealing with a directory, a symbolic link, a special file, etc., the f ile length, the 

identifier of the file system that contains the file, and the last time the file was modified. 

File attributes can be read and set using the operations getattr and setattr, respectively. 

Finally, there are operations for reading data from a file, and writing data to a file. Reading 

data by means of the operation read is completely straightforward. The client specif ies the 

offset and the number of bytes to be read. The client is returned the actual number of bytes 
that have been read, along with additional status information (e.g., whether the end-of-file 

has been reached). 

Writing data to a file is done using the write operation. The client again specifies the position 

in the file where writing should start, the number of bytes to be written, and the data. In 

addition, it can instruct the server to ensure that all data are to be written to stable storage. NFS 
servers are required to support storage devices that can survive power supply failures, operating 

system failures, and hardware failures. 
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The Web 

The architecture of Web-based distributed systems is not fundamentally dif- ferent from 
other distributed systems. However, it is interesting to see how the initial idea of 

supporting distributed documents has evolved since its inception in 1990s.  Documents 
turned from being purely static and pas- sive to dynamically generated content. 

Furthermore, in recent years, many organizations have begun supporting services instead 

of just documents. 

Simple Web-based systems 

Many Web-based systems are still organized as relatively simple client-server architectures. 
The core of a Web site is formed by a process that has access to a local file system storing 

documents. The simplest way to refer to a document is by means of a reference called a 

Uniform Resource Locator (URL). It specifies where a document is located by embedding 
the DNS name of its associated server along with a file name by which the server can look 

up the document in its local file system. Furthermore, a URL specifies the application-level 

protocol for transferring the document across the network. 

A client interacts with Web servers through a browser, which is responsible for properly 

displaying a document. Also, a browser accepts input from a user mostly by letting the user 
select a reference to another document, which it then subsequently fetches and displays. 

The communication between a browser and Web server is standardized: they both adhere 
to the HyperText Transfer Protocol (HTTP). This leads to the overall organization. 

Let us zoom in a bit into what a document actually is. Perhaps the simplest form is a standard 

text file. In that case, the server and browser have barely anything to do: the server copies 
the file from the local file system and transfers it to the browser. The latter, in turn, merely 

displays the content of the file ad verbatim without further ado. 

More interesting are Web documents that have been marked up, which is usually done in 

the HyperText Markup Language, or simply HTML. In that case, the document includes 

various instructions expressing how its content should be displayed, similar to what one 
can expect from any decent word- processing system although those instructions are normally 

hidden from the end user. For example, instructing text to be emphasized is done by the 

following markup: 

<emph>Emphasize this text</emph> 

There are many more of such markup instructions. The point is that the browser 

understands these instructions and will act accordingly when dis- playing the text. 

Documents can contain much more than just markup instructions. In particular, they can 
have complete programs embedded of which Javascript is the one most often deployed. In 

this case, the browser is warned that there is some code to execute as in:  

<script type=’’text/javascript’’>. ...................... </script> 

And as long as the browser as an appropriate embedded interpreter for the specified 

language, everything between “<script>” and “</script>” will be executed as any other 

other program. The main benefit of including scripts is that it allows for much better  

interaction with the end user, including sending information back to the server. (The latter, 

by the way, has always been supported in HTML through forms.) Much more can be said 
about Web documents, but this is not the place to do so. A good introduction on how to 

build Web-based applications can be found. 
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Multitiered architectures 

The Web started out as the relatively simple two-tiered client-server system shown in 
Figure 2.27. By now, this simple architecture has been extended to support much more 

sophisticated means of documents. In fact, one could justafiably argue that the term 
“document” is no longer appropriate. For one, most things that we get to see in our browser 

has been generated on the spot as the result of sending a request to a Web server.  Content 

is stored in a database at the server’s side, along with client-side scripts and such, to be 

composed on-the-fly into a document which is then subsequently sent to the client’s 

browser. Documents have thus become completely dynamic. 

One of the first enhancements to the basic architecture was support for simple user 

interaction by means of the Common Gateway Interface or sim- ply CGI . CGI defines a 

standard way by which a Web server can execute a program taking user data as input. 
Usually, user data come from an HTML form; it specifies the program that is to be 

executed at the server side, along with parameter values that are filled in by the user. Once 

the form has been completed, the program’s name and collected parameter values are sent 

to the serve. When the server sees the request, it starts the program named in the request and 

passes it the parameter values. At that point, the program simply does its work and generally 
returns the results in the form of a document that is sent back to the user’s browser to be 

displayed. 

CGI programs can be as sophisticated as a developer wants. After processing the data, the 

program generates an HTML document and returns that document to the server. The server 

will then pass the document to the client. An interesting observation is that to the server, it 
appears as if it is asking the CGI program to fetch a document. In other words, the server does 

nothing but delegate the fetching of a document to an external program. 

The main task of a server used to be handling client requests by simply fetching 

documents. With CGI programs, fetching a document could be delegated in such a way 

that the server would remain unaware of whether a document had been generated on the 
fly, or actually read from the local file system. Note that we have just described a two-

tiered organization of server-side software. 

However, servers nowadays do much more than just fetching documents. One of the most 

important enhancements is that servers can also process a document before passing it to the 

client. In particular, a document may contain a server-side script, which is executed by the 

server when the document has been fetched locally. The result of executing a script is sent 

along with the rest of the document to the client. The script itself is not sent. In other words, 
using a server-side script changes a document by essentially replacing the script with the 

results of its execution. To make matters concrete, take a look at a very simple example of 

dynamically generating a document. Assume a file is stored at the server with the 
following content: 

<strong>  <?php echo $_SERVER[’REMOTE_ADDR’]; ?> </s trong>  

The server will examine the file and subsequently process the PHP code (be- tween “<?php” 

and “?>”) replacing the code with the address of the requesting client. Much more 

sophisticated settings are possible, such as accessing a local database and subsequently 
fetching content from that database to be combined with other dynamically generated 

content. 
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In this chapter, we take a closer look at how the different types of processes play a crucial 
role in distributed systems. The concept of a process originates from the field of operating 

systems where it is generally defined as a program in execution. From an operating-system 

perspective, the management and scheduling of processes are perhaps the most important 

issues to deal with. However, when it comes to distributed systems, other issues turn out 

to be equally or more important. 

We start with extensively discussing threads and their role in distributed systems. As it 

turns out, threads play a crucial role in obtaining performance in multicore and 
multiprocessor environments, but also help in structuring clients and servers. There are 

many cases where we see threads being replaced by processes and using the underlying 

operating system for guaranteeing protection and facilitating communication. 
Nevertheless, when performance is at stake, threads continue to play an important role 

[16]. 

In recent years, the concept of virtualization has regained much popu- larity. Virtualization 

allows an application, and possibly also its complete environment including the operating 

system, to run concurrently with other applications, but highly independent of the 
underlying hardware and plat- forms, leading to a high degree of portability. Moreover, 

virtualization helps in isolating failures caused by errors or security problems. It is an 
important concept for distributed systems, and we pay attention to it in a separate section. 

Client-server organizations are important in distributed systems. In this chapter, we take a 

closer look at typical organizations of both clients and servers. We also pay attention to  

general design issues for servers, including those typically used in object-based distr ibuted 

systems. A widely used Web server is Apache, to which we pay separate attention. The 
organization of server clusters remains important, especially when they need to collaborate 

provide the illusion of a single system. We will discuss examples of how to achieve this 

perspective, including wide-area servers like PlanetLab. 

An important issue, especially in wide-area distributed systems, is moving processes between 

different machines. Process migration or more specifically, code migration, can help in  

achieving scalability, but can also help to dynamically configure clients and servers. What 

is actually meant by code migration and what its implications are is also discussed in this 

chapter. 

Threads 

Although processes form a building block in distributed systems, practice indicates that 
the granularity of processes as provided by the operating systems on which distr ibuted 

systems are built is not sufficient. Instead, it turns out that having a finer granularity in the 

form of multiple threads of control per process makes it much easier to build distr ibuted 
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applications and to get better performance. In this section, we take a closer look at the role 

of threads in distr ibuted systems and explain why they are so important. More on threads 
and how they can be used to build applications can be found in [Lewis and Berg, 1998; 

Stevens, 1999; Robbins and Robbins, 2003]. Herlihy and Shavit [2008] is highly 
recommended to learn more about multithreaded concurrent programming in general. 

Introduction to threads 

To understand the role of threads in distributed systems, it is important to un- derstand what a 

process is, and how processes and threads relate. To execute a program, an operating system 

creates a number of virtual processors, each one for running a different program. To keep track 
of these virtual processors, the operating system has a process table, containing entries to  

store CPU register values, memory maps, open files, accounting information, privileges, 

etc. Jointly, these entries form a process context. 

A process context can be viewed as the software analog of the hardware’s processor context. 

The latter consists of the minimal information that is automatically stored by the hardware to 

handle an interrupt, and to later return to where the CPU left off. The processor context contains 

at least the program counter, but sometimes also other register values such as the stack pointer. 

A process is often defined as a program in execution, that is, a program that is currently being 
executed on one of the operating system’s virtual processors. An important issue is that the 

operating system takes great care to ensure that independent processes cannot maliciously or 
inadvertently affect the correctness of each other’s behavior. In other words, the fact that 

multiple processes may be concurrently sharing the same CPU and other hardware resources 

is made transparent. Usually, the operating system requires hardware support to enforce this 
separation.  

This concurrency transparency comes at a price. For example, each time a process is 
created, the operating system must create a complete independent address space. Allocation 

can mean initializing memory segments by, for example, zeroing a data segment, copying 

the associated program into a text segment, and setting up a stack for temporary data. 
Likewise, switching the CPU between two processes may require some effort as well. 

Apart from saving the data as currently stored in various registers including the program 

counter and stack pointer, the operating system will also have to modify registers of the 

memory management unit (MMU) and invalidate address translation caches such as in the 

translation lookaside buffer (TLB). In addition, if the operating system supports more 

processes than it can simultaneously hold in main memory, it may have to swap processes 

between main memory and disk before the actual switch can take place. 

Like a process, a thread executes its own piece of code, independently from other threads. 

However, in contrast to processes, no attempt is made to achieve a high degree of 

concurrency transparency if this would result in performance degradation. Therefore, a 
thread system generally maintains only the minimum information to allow a CPU to be 

shared by several threads. In particular, a thread context often consists of nothing more than 

the processor context, along with some other information for thread management. For 

example, a thread system may keep track of the fact that a thread is currently blocked on a 

mutex variable, so as not to select it for execution. Information that is not strictly necessary 
to manage multiple threads is generally ignored. For this reason, protecting data against 

inappropriate access by threads within a single process is left entirely to application 
developers. We thus see that a processor context is contained in a thread context, and that, 

in turn, a thread context is contained in a process context. 
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There are two important implications of deploying threads as we just sketched. First of all, 

the performance of a multithreaded application need hardly ever be worse than that of its 
single-threaded counterpart. In fact, in many cases, multithreading even leads to a 

performance gain. Second, because threads are not automatically protected against each 
other the way processes are, development of multithreaded applications requires additional 

intellectual effort. Proper design and keeping things simple, as usual, help a lot. 

Unfortunately, current practice does not demonstrate that this principle is equally well 

understood. 

Thread usage in no distributed systems 

Before discussing the role of threads in distributed systems, let us first consider their usage in 

traditional, no distributed systems. There are several benefits to multithreaded processes that 

have increased the popularity of using thread systems. The most important benefit comes 
from the fact that in a single-threaded process, whenever a blocking system call is executed, 

the process as a whole is blocked. To illustrate, consider an application such as a spreadsheet 

program, and assume that a user continuously and interactively wants to change values. An 

important property of a spreadsheet program is that it maintains the func tional dependencies 

between different cells, often from different spreadsheets.  

Therefore, whenever a cell is modified, all dependent cells are automatically updated. 

When a user changes the value in a single cell, such a modification can trigger a large 
series of computations. If there is only a single thread of control, computation cannot 

proceed while the program is waiting for input. Likewise, it is not easy to provide input 

while dependencies are being calculated. The easy solution is to have at least two threads of 
control: one for handling interaction with the user and one for updating the spreadsheet. In 

the meantime, a third thread could be used for backing up the spreadsheet to disk while the 
other two are doing their work. 

Another advantage of multithreading is that it becomes possible to exploit parallelism when 

executing the program on a multiprocessor or multicore system. In that case, each thread 
is assigned to a different CPU or core while shared data are stored in shared main memory. 

When properly designed, such parallelism can be transparent: the process will run equally 

well on a uniprocessor system, albeit slower. Multithreading for parallelism is becoming 

increasingly important with the availability of relatively cheap multiprocessor and multicore 

computers. Such computer systems are typically used for running servers in client-server 

applications, but are by now also extensively used in devices such as smartphones[17]. 

Multithreading is also useful in the context of large applications. Such applications are 
often developed as a collection of cooperating programs, each to be executed by a separate 

process.  This approach is typical for a UNIX environment. Cooperation between programs 

is implemented by means of interposes communication (IPC) mechanisms. For UNIX systems, 
these mechanisms typically include (named) pipes, message queues, and shared memory 

segments. The major drawback of all IPC mechanisms is that communication often requires 

relatively extensive context switching, shown at three different points. 

Instead of using processes, an application can also be constructed such that different parts 

are executed by separate threads. Communication between those parts is entirely dealt with by 
using shared data. Thread switching can sometimes be done entirely in user space, although in 

other implementations, the kernel is aware of threads and schedules them. The effect can be a 
dramatic improvement in performance. 
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Finally, there is also a pure software engineering reason to use threads: many applications are 

simply easier to structure as a collection of cooperating threads. Think of applications that need 
to perform several more or less independent tasks, like our spreadsheet example discussed 

previously. 

Thread Implementation 

Threads are often provided in the form of a thread package. Such a package contains 

operations to create and destroy threads as well as operations on synchronization variables such 

as mutexes and condition variables. There are basically two approaches to implement a 

thread package. The first approach is to construct a thread library that is executed entirely in 
user space. The second approach is to have the kernel be aware of threads and schedule them. 

A user-level thread library has a number of advantages. First, it is cheap to create and 

destroy threads. Because all thread administration is kept in the user’s address space, the price 
of creating a thread is primarily determined by the cost for allocating memory to set up a 

thread stack. Analogously, destroying a thread mainly involves freeing memory for the 

stack, which is no longer used. Both operations are cheap. 

A second advantage of  user-level threads is that switching thread context can often be done 

in just a few instructions.   Basically, only the values of the CPU registers need to be stored 
and subsequently reloaded with the previously stored values of the thread to which it is 

being switched. There is no need to change memory maps, flush the TLB, do CPU 
accounting, and so on. Switching thread context is done when two threads need to 

synchronize, for example, when entering a section of shared data. However, as discussed in 

Note 3.1, much of the overhead of context switching is caused by perturbation memory caches. 

A major drawback of user-level threads comes from deploying the many- to-one threading 

model: multiple threads are mapped to a single schedulable entity. As a consequence, the 
invocation of a blocking system call will immediately block the entire process to which the 

thread belongs, and thus also all the other threads in that process. As we explained, threads 

are particularly useful to structure large applications into parts that could be logically 
executed at the same time. In that case, blocking on I/O should not prevent other parts to be 

executed in the meantime. For such applications, user-level threads are of no help. 

These problems can be mostly circumvented by implementing threads in the operating 

system’s kernel, leading to what is known as the one-to-one threading model in which 

every thread is a schedulable entity. The price to pay is that every thread operation, will 

have to be carried out by the kernel, requiring a system call. Switching thread contexts may 

now become as expensive as switching process contexts. However, in light of the fact that 
the performance of context switching is generally dictated by ineffective use of memory 

caches, and not by the distinction between the many-to-one or one-to-one threading model, 

many operating systems now offer the latter model, if only for its simplicity.  

Meanwhile, other LWPs may be looking for other runnable threads as well. If a thread needs 

to block on a mutex or condition variable, it does the necessary ad- ministration and eventually 

calls the scheduling routine. When another runnable thread has been found, a context switch 

is made to that thread. The beauty of all this is that the LWP executing the thread need not be 

informed: the context switch is implemented completely in user space and appears to the LWP 
as normal program code. 

Now let us see what happens when a thread does a blocking system call. In that case, 
execution changes from user mode to kernel mode, but still continues in the context of the 
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current LWP. At the point where the current LWP can no longer continue, the operating 

system may decide to switch context to another LWP, which also implies that a context 
switch is made back to user mode. The selected LWP will simply continue where it had 

previously left off. 

There are several advantages to using LWPs in combination with a user- level thread 

package. First, creating, destroying, and synchronizing threads is relatively cheap and 

involves no kernel intervention at all.  Second, provided that a process has enough LWPs, 

a blocking system call will not suspend the entire process. Third, there is no need for an 

application to know about the LWPs. All it sees are user-level threads. Fourth, LWPs can 
be easily used in multiprocessing environments by executing different LWPs on different 

CPUs. This multiprocessing can be hidden entirely from the application. The only 

drawback of lightweight processes in combination with user-level threads is that we still 
need to create and destroy LWPs, which is just as expensive as with kernel-level threads. 

However, creating and destroying LWPs needs to be done only occasionally, and is often 

fully controlled by the operating system[18]. 

As a final note, it is important to realize that using threads is one way of organizing 

simultaneous and concurrent executions within an application. In practice, we often see 
that applications are constructed as a collection of concurrent processes, jointly making use 

of the inter-poses facilities offered by an operating system. A good example of this approach 
is the organization of the Apache Web server, which, by default, starts with a handful of 

processes for handling incoming requests. Each process forms a single-threaded 

instantiation of the server, yet is capable of communicating with other instances through 
fairly standard means. 

Threads in Distributed Systems 

An important property of threads is that they can provide a convenient means of allowing 

blocking system calls without blocking the entire process in which the thread is running. This 

property makes threads particularly attractive to use in distributed systems as it makes it much 
easier to express communication in the form of maintaining multiple logical connections at the 

same time. We illustrate this point by taking a closer look at multithreaded clients and servers, 

respectively. 
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To establish a high degree of distribution transparency, distributed systems that operate in 

wide-area networks may need to conceal long intercrosses message propagation times. The 

round-trip delay in a wide-area network can easily be in the order of hundreds of milliseconds, 
or sometimes even seconds. The usual way to hide communication latencies is to initiate 

communication and immediately proceed with something else. A typical example where this 

happens is in Web browsers. In many cases, a Web document consists of an HTML file 
containing plain text along with a collection of images, icons, etc. To fetch each element of a 

Web document, the browser has to set up a TCP/IP connection, read the incoming data, and 

pass it to a display component. Setting up a connection as well as reading incoming data are 

inherently blocking operations. When dealing with long-haul communication, we also have the 

disadvantage that the time for each operation to complete may be relatively long. 
 

A Web browser often starts with fetching the HTML page and subsequently displays it. To 
hide communication latencies as much as possible, some browsers start displaying data 

while it is still coming in. While the text is made available to the user, including the 

facilities for scrolling and such, the browser continues with fetching other files that make 

up the page, such as the images. The latter are displayed as they are brought in. The user 

need thus not wait until all the components of the entire page are fetched before the page 
is made available. 

In effect, it is seen that the Web browser is doing a number of tasks simultaneously. As it 

turns out, developing the browser as a multithreaded client simplifies matters considerably. 
As soon as the main HTML file has been fetched, separate threads can be activated to  take 

care of fetching the other parts. Each thread sets up a separate connection to the server and 

pulls in the data. Setting up a connection and reading data from the server can be 

programmed using the standard (blocking) system calls, assuming that a blocking call 

does not suspend the entire process. Meanwhile, the user notices only delays in the 

display of images and such, but can otherwise browse through the document. 

There is another important benefit to using multithreaded Web browsers in which several 
connections can be opened simultaneously. In the previous example, several connections 

were set up to the same server. If that server is heavily loaded, or just plain slow, no real 

performance improvements will be noticed compared to pulling in the files that make up 
the page strictly one after the other. 

However, in many cases, Web servers have been replicated across multiple machines, where 
each server provides exactly the same set of Web documents. The replicated servers are 

located at the same site, and are known under the same name. When a request for a Web page 
comes in, the request is forwarded to one of the servers, often using a round-robin strategy 

or some other load- balancing technique.  When using a multithreaded client, connections 

may be set up to different replicas, allowing data to be transferred in parallel, effectively 
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establishing that the entire Web document is fully displayed in a much shorter time than 

with a no replicated server. This approach is possible only if the client can handle truly 
parallel streams of incoming data. Threads are ideal for this purpose. 

Multithreaded Servers 

Although there are important benefits to multithreaded clients, the main use of 

multithreading in distributed systems is found at the server side. Practice shows that 

multithreading not only simplifies server code considerably, but also makes it much easier  

to develop servers that exploit parallelism to attain high performance, even on uniprocessor 

systems. However, with modern multicore processors, multithreading for parallelism is 
an obvious path to follow. 

To understand the benefits of threads for writing server code, consider the organization of a 

file server that occasionally has to block waiting for the disk. The file server normally waits  
for an incoming request for a file operation, subsequently carries out the request, and then sends 

back the reply. One possible, and particularly popular organization.  Here one thread, the 

dispatcher, reads incoming requests for a file operation. The requests are sent by clients to a 

well-known end point for this server. After examining the request, the server chooses an idle 

worker thread and hands it the request. 

The worker proceeds by performing a blocking read on the local file system, which may cause 

the thread to be suspended until the data are fetched from disk. If the thread is suspended, 
another thread is selected to be executed. For example, the dispatcher may be selected to  

acquire more work. Alternatively, another worker thread can be selected that is now ready 

to run. 

Now consider how the file server might have been written in the absence of threads. One 

possibility is to have it operate as a single thread. The main loop of the file server gets a 
request, examines it, and carries it out to completion before getting the next one. While 

waiting for the disk, the server is idle and does not process any other requests. Consequently, 

requests from other clients cannot be handled. In addition, if the file server is running on a 
dedicated machine, as is commonly the case, the CPU is simply idle while the f ile server is 

waiting for the disk. The net result is that many fewer requests per time unit can be 

processed. Thus threads gain considerable performance, but each thread is programmed 

sequentially, in the usual way [19]. 

So far we have seen two possible designs:  a multithreaded file server and a single-threaded 

file server. A third alternative is to run the server as a big single-threaded finite-state 

machine.  When a request comes in, the one and only thread examines it. If it can be 
satisfied from the in-memory cache, fine, but if not, the thread must access the disk. 

However, instead of issuing a blocking disk operation, the thread schedules an 

asynchronous disk operation for which it will be later interrupted by the operating system. 
To make this work, the thread will record the status of the request namely, that it has a 

pending disk operation, and continues to see if there were any other incoming requests that 

require its attention. Once a pending disk operation has been completed, the operating system 

will notify the thread, who will then, in due time, look up the status of the associated request 

and continue processing it.  

Eventually, a response will be sent to the originating client, again using a no blocking call to 

send a message over the network. In this design, the “sequential process” model that we had 
in the first two cases is lost. Every time the thread needs to do a blocking operation, it needs 

to record exactly where it was in processing the request, possibly also storing additional state. 
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Once that has been done, it can start the operation and continue with other work. Other work 

means processing newly arrived requests, or post processing requests for which a previously 
started operation has completed. Of course, if there is no work to be done, the thread may 

indeed block. In effect, we are simulating the behavior of multiple threads and their 
respective stacks the hard way. The process is being operated as a finite-state machine that 

gets an event and then reacts to it, depending on what is in it. 

It should now be clear what threads have to offer. They make it possible to retain the idea of 

sequential processes that make blocking system calls and still achieve parallelism. Blocking 

system calls make programming easier as they appear as just normal procedure calls. In 
addition, multiple threads allow for parallelism and thus performance improvement. The 

single-threaded server retains the ease and simplicity of blocking system calls, but may 

severely hinder performance in  terms of number of requests that can be handled per 
time unit. The finite-state machine approach achieves high performance through 

parallelism, but uses no-blocking calls, which is generally hard to program and thus to 

maintain. These models are summarized in Table 1. 

Table 1: Represented that the three ways to construct a Server. 

Sr. No. Model Characteristics 

1. Multithreading Parallelism, blocking system calls 

2. Single-threaded process No parallelism, blocking system calls 

3. Finite-state machine Parallelism, no blocking system calls 

 

Again, note that instead of using threads, we can also use multiple processes to organize a 
server leading to the situation that we actually have a multiprocessor server. The 

advantage is that the operating system can offer more protection against accidental access 
to shared data. However, if processes need to communicate a lot, we may see a noticeable 

adverse effect on performance in comparison to using threads. 

Virtualization 

Threads and processes can be seen as a way to do more things at the same time. In effect,  

they allow us to build pieces of programs that appear to be executed simultaneously. On a 
single-processor computer, this simultaneous execution is, of course, an illusion. As there 

is only a single CPU, only an instruction from a single thread or process will be executed 

at a time. By rapidly switching between threads and processes, the illusion of parallelism 
is created. This separation between having a single CPU and being able to pretend there 

are more can be extended to other resources as well, leading to what is known as resource 

virtualization. This virtualization has been applied for many decades, but has received 

renewed interest as computer systems have become more commonplace and complex, 

leading to the situation that application software is mostly always outliving its underlying 

systems software and hardware. 

Principle of Virtualization 

In practice, every distributed computer system offers a programming interface to higher-level 

software. There are many different types of interfaces, ranging from the basic instruction set 

as offered by a CPU to the vast collection of application programming interfaces that are 
shipped with many current middleware systems. In its essence, virtualization deals with 
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extending or replacing an existing interface so as to mimic the behavior of another system. We 

will come to discuss technical details on virtualization shortly, but let us first concentrate on 
why virtualization is important. 

Virtualization and Distributed Systems 

One of the most important reasons for introducing virtualization back in the 1970s, was to 

allow legacy software to run on expensive mainframe hardware. The software not only 

included various applications, but in fact also the operating systems they were developed 

for. This approach toward supporting legacy software has been successfully applied on the 

IBM 370 mainframes and their successors that offered a virtual machine to which different 
operating systems had been ported. 

As hardware became cheaper, computers became more powerful, and the number of 

different operating system flavors was reducing, virtualization became less of an issue. 
However, matters have changed again since the late 1990s. First, while hardware and low-

level systems software change reasonably fast, software at higher levels of abstraction e.g., 

middleware and applications, are often much more stable.  In other words, we are facing 

the situation that legacy software cannot be maintained in the same pace as the platforms 

it relies on. Virtualization can help here by porting the legacy interfaces to the new 
platforms and thus immediately opening up the latter for large classes of existing 

programs.  

Equally important is the fact that networking has become completely pervasive.  It is hard 

to imagine that a modern computer is not connected to a network. In practice, this 

connectivity requires that system administrators maintain a large and heterogeneous 
collection of server computers, each one running very different applications, which can 

be accessed by clients. At the same time the various resources should be easily accessible 
to these applications. Virtualization can help a lot: the diversity of platforms and machines 

can be reduced by essentially letting each application run on its own virtual machine, 

possibly including the related libraries and operating system, which, in turn, run on a 
common platform. 

This last type of virtualization provides a high degree of portability and flexibility. For 

example, in  order to realize content delivery networks that can easily support replication 

of dynamic content, have argued that management becomes much easier if edge servers 

would support virtualization, allowing a complete site, including its environment to be 

dynamically copied. These arguments are still valid, and indeed, portability is perhaps the 

most important reason why virtualization plays such a key role in many distr ibuted 
systems[20]. 

Types of virtualization 

There are many different ways in which virtualization can be realized. An overview of these 
various approaches is described by Smith and Nair [2005a]. To understand the differences in 

virtualization, it is important to  realize that computer systems generally offer four different 

types of interfaces, at three different levels: 

i. An interface between the hardware and software, referred to as the instruction set
architecture (ISA), forming the set of machine instructions. This set is divided
into two subsets:
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1. Privileged instructions, which are allowed to be executed only by the operating system. 

2. General instructions, which can be executed by any program. 

i. An interface consisting of system calls as offered by an operating system. 

ii. An interface consisting of library calls, generally forming what is known as an 
application programming interface (API). In many cases, the aforementioned system 

calls are hidden by an API. 

The essence of virtualization is to mimic the behavior of these interfaces. Virtualization can 

take place in two different ways. First, we can build a runtime system that essentially 

provides an abstract instruction set that is to be used for executing applications. Instructions 
can be interpreted as is the case for the Java runtime environment, but could also be emulated 

as is done for running Windows applications on UNIX platforms. Note that in the latter  

case, the emulator will also have to mimic the behavior of system calls, which has proven 
to be generally far from trivial. This type of virtualization, leads to what call a process 

virtual machine, stressing that virtualization is only for a single process. 

An alternative approach toward virtualization, is to provide a system that is implemented 

as a layer shielding the original hardware, but offering the complete instruction set of that 

same as an interface. This leads to what is known as a native virtual machine monitor. It 
is called native because it is implemented directly on top of the underlying hardware. Note 

that the interface offered by a virtual machine monitor can be offered simultaneously to  
different programs. As a result, it is now possible to have multiple, and different guest 

operating systems run independently and concurrently on the same platform. 

A native virtual machine monitor will have to provide and regulate access to various 
resources, like external storage and networks. Like any operating system, this implies that 

it will have to implement device drivers for those resources. Rather than doing all this 
effort anew, a hosted virtual machine monitor will run on top of a trusted host operating 

system. In this case, the virtual machine monitor can make use of existing facilities provided 

by that host operating system. It will generally have to be given special privileges instead 
of running as a user-level application. Using a hosted virtual machine monitor is highly 

popular in modern distributed systems such as data centers and clouds. 

As virtual machines are becoming increasingly important in the context of reliability and 

security for (distributed) systems. As they allow for the isolation of a complete application and 

its environment, a failure caused by an error or security attack need no longer affect a 

complete machine. In addition, as we also mentioned before, portability is greatly 

improved as virtual machines provide a further decoupling between hardware and software, 
allowing a complete environment to be moved from one machine to another. 

Application of Virtual Machines to Distributed Systems 

From the perspective of distributed systems, the most important application of virtualization 
lies in cloud computing. As we already mentioned cloud providers offer roughly three different 

types of services: 

a. Infrastructure-as-a-Service (IaaS) covering the basic infrastructure 

b. Platform-as-a-Service (PaaS) covering system-level services 

c. Software-as-a-Service (SaaS) containing actual applications 
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Virtualization plays a key role in IaaS. Instead of renting out a physical machine, a cloud 

provider will rent out a virtual machine (monitor) that may, or may not, be sharing a 
physical machine with other customers. The beauty of virtualization is that it allows for 

almost complete isolation between customers, who will indeed have the illusion that they 
have just rented a dedicated physical machine. Isolation is, however, never complete, if  

only for the fact that the actual physical resources are shared, in turn leading to observable 

lower performance. 

To make matters concrete, let us consider the Amazon Elastic Compute Cloud, or simply 

EC2. EC2 allows one to create an environment consisting of several networked virtual 
servers, thus jointly forming the basis of a distributed system. To make life easy, there 

is a (large) number of pre- configured machine images available, referred to as Amazon 

Machine Images, or simply AMIs. An AMI is an installable software package consisting of 
an operating-system kernel along with a number of services. An example of a simple, basic 

AMI is a LAMP image, consisting of a Linux kernel, the Apache Web server, a MySQL 

database system, and PHP libraries.  

More elaborate images containing additional software are also available, as well as images 

based on other UNIX kernels or Windows. In this sense, an AMI is essentially the same as 
a boot disk although there are few important differences to which we return shortly. An EC2 

customer needs to select an AMI, possibly after adapting or configuring one. An AMI can 
then be launched resulting in what is called an EC2 instance: the actual virtual machine that 

can be used to host a customer’s applications. An important issue is that a customer will 

hardly ever know exactly where an instance is actually being executed. Obviously, it is 
running on a single physical machine, but where that machine is located remains hidden.  

To communicate, each instance obtains two IP addresses: a private one that can be used for 
internal communication between different instances, making use of EC2’s internal 

networking facilities, and a public IP address allowing any Internet clients to contact an 

instance. The public address is mapped to the private one using standard Network Address 
Translation (NAT) technology. A simple way to manage an instance is to make use of an 

SSH connection, for which Amazon provides the means for generating the appropriate 

keys. The EC2 environment in which an instance is executed provides different levels of 

the following services: 

a. CPU: allows to select the number and type of cores, including GPUs

b. Memory: defines how much main memory is allocated to an instance

c. Storage : defines how much local storage is allocated

d. Platform: distinguishes between 32-bit or 64-bit architectures

e. Networking: sets the bandwidth capacity that can be used

In addition, extra resources can be requested such as an additional networking interface. The 
local storage that comes with an instance is transient: when the instance stops, all the data 

stored locally is lost. In order to prevent data loss, a customer will need to explicitly save 

data to persistent store, for example, by making use of Amazon’s Simple Storage Service 

(S3). An alternative is to attach a storage device that is mapped to Amazon’s Elastic Block 

Store (Amazon EBS). Again, this is yet another service, but one that can be used in the 
form of a vir tual block device that is simply mounted as one would mount an additional 

hard disk. When an instance is stopped, all data that was stored on EBS will persist. And 
just as one would expect, an EBS device can be (re)mounted to any other instance as well. 
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It should be clear by now that, without having gone into any significant level of detail, the 

IaaS as offered by EC2 allows a customer to create a (potentially large) number of virtual 
machines, each configured with resources as needed, and capable of exchanging messages 

through an IP network. In addition, these virtual machines can be accessed from anywhere 
over the Internet provided a client has the proper credentials. As such, Amazon EC2, like 

many other IaaS providers, offers the means to configure a complete distributed system 

consisting of networked virtual servers and running customer-supplied distr ibuted 

applications. At the same time, those customers will not need to maintain any physical 

machine, which by itself is often already a huge gain as we will encounter at several occasions 
throughout this text. One can indeed argue that vir tualization lies at the core of modern 

cloud computing. 

Clients 

In the previous chapters we discussed the client-server model, the roles of clients and 

servers, and the ways they interact. Let us now take a closer look at the anatomy of clients 

and servers, respectively. We start in this section with a discussion of clients. Servers are 

discussed in the next section. 

Networked User Interfaces 

A major task of client machines is to provide the means for users to interact with remote 

servers. There are roughly two ways in which this interaction can be supported. First, for 
each remote service the client machine will have a separate counterpart that can contact the 

service over the network. A typical example is a calendar running on a user’s smartphone that 

needs to synchronize with a remote, possibly shared calendar. In this case, an application-level 
protocol will handle the synchronization. 

A second solution is to provide direct access to remote services by offering only a 
convenient user interface. Effectively, this means that the client machine is used only as 

a terminal with no need for local storage, leading to an application-neutral solution. In 

the case of networked user interfaces, everything is processed and stored at the server. This 
thin-client approach has received much attention with the increase of Internet connectivity 

and the use of mobile devices. Thin-client solutions are also popular as they ease the task 

of system management as display. 
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Client software comprises more than just user interfaces. In many cases, parts of the 

processing and data level in a client-server application are executed on the client side as 

well. A special class is formed by embedded client software, such as for automatic teller 
machines (ATMs), cash registers, barcode readers, TV set-top boxes, etc. In these cases, the 

user interface is a relatively small part of the client software, in contrast to the local 

processing and communication facilities. Besides the user interface and other application-
related software, client soft- ware comprises components for achieving distribution 

transparency. Ideally, a client should not be aware that it is communicating with remote 

processes. In contrast, distribution is often less transparent to servers for reasons of 

performance and correctness. 

Access transparency is generally handled through the generation of a client stub from an 
interface definition of what the server has to offer. The stub provides the same interface as 

the one available at the server, but hides the possible differences in machine architectures, as 
well as the actual communication. The client stub transforms local calls to messages that are 

sent to the server, and vice versa transforms messages from the server to return values as one 

would expect when calling an ordinary procedure. 

There are different ways to handle location, migration, and relocation transparency. Using 

a convenient naming system is crucial. In many cases, cooperation with client-side 
software is also important. For example, when a client is already bound to a server, the 

client can be directly informed when the server changes location.  In this case, the client’s 

middleware can hide the server’s current network location from the user, and also 
transparently rebind to the server if necessary. At worst, the client’s application may notice 

a temporary loss of performance. 

In a similar way, many distributed systems implement replication transparency by means of 

client-side solutions. For example, imagine a distributed system with replicated servers, such 

replication can be achieved by forward ing a request to each replica. Client-side software can 

transparently collect all responses and pass a single response to the client application. 

Regarding failure transparency, masking communication failures with a server is typically 
done through client middleware. For example, client middleware can be configured to 

repeatedly attempt to connect to a server, or perhaps try another server after several attempts. 

There are even situations in which the client middleware returns data it had cached during 
a previous session, as is sometimes done by Web browsers that fail to connect to a server. 

Finally, concurrency transparency can be handled through special intermediate servers, notably 
transaction monitors, and requires less support from client software. 
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Servers 

Let us now take a closer look at the organization of servers. In the following pages, we 
first concentrate on a number of general design issues for servers, followed by a discussion 

on server clusters. 

General Design Issues 

A server is a process implementing a specific service on behalf of a collection of clients. In  

essence, each server is organized in the same way: it waits for an incoming request from a 

client and subsequently ensures that the request is taken care of, after which it waits for 

the next incoming request. 

Concurrent versus Iterative Servers 

There are several ways to organize servers. In the case of an iterative server, the server itself 

handles the request and, if necessary, returns a response to the requesting client. A concurrent 
server does not handle the request itself, but passes it to a separate thread or another process, 

after which it immediately waits for the next incoming request. A multithreaded server is an 

example of a concurrent server. An alternative implementation of a concurrent server is to fork 

a new process for each new incoming request. This approach is followed in many Unix 

systems. The thread or process that handles the request is responsible for returning a response 
to the requesting client. 

Contacting a server: end points 

Another issue is where clients contact a server. In all cases, clients send requests to an end 
point, also called a port, at the machine where the server is running. Each server listens to  

a specific end point. How do clients know the end point of a service? One approach is to  
globally assign end points for well-known services. For example, servers that handle 

Internet FTP requests always listen to TCP port 21. Likewise, an HTTP server for the 
World Wide Web will always listen to TCP port 80. These end points have been assigned 

by the Internet Assigned Numbers Authority (IANA), and are documented in [Reynolds 

and Postel, 1994]. With assigned end points, the client needs to find only the network 
address of the machine where the server is running. Name services can be used for that 

purpose. 

There are many services that do not require a preassigned end point. For example, a 

time-of-day server may use an end point that is dynamically assigned to it by its local 

operating system. In that case, a client will first have to look up the end point. One solution 

is to have a special daemon running on each machine that runs servers. The daemon keeps 

track of the current end point of each service implemented by a co-located server. The 
daemon itself listens to a well-known end point. A client will first contact the daemon, 

request the end point, and then contact the specific server. It is common to associate an end 

point with a specific service. However, actually implementing each service by means of 
a separate server may be a waste of resources. For example, in a typical UNIX system, 

it is common to have lots of servers running simultaneously, with most of them passively 

waiting until a client request comes in. Instead of having to keep track of so many passive 

processes, it is often more efficient to have a single super server listening to each end point 

associated with a specific service. For example, the inetd daemon in UNIX listens to a number 
of well-known ports for Internet services. When a request comes in, the daemon forks a process 

to handle it. That process will exit when finished.  
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Interrupting a Server 

Another issue that needs to be taken into account when designing a server is whether and 
how a server can be interrupted. For example, consider a user who has just decided to 

upload a huge file to an FTP server. Then, suddenly realizing that it is the wrong file, he 
wants to interrupt the server to cancel further data transmission. There are several ways to  

do this. One approach that works only too well in the current Internet and is sometimes the 

only alternative is for the user to abruptly exit the client application which will 

automatically break the connection to the server, immediately restart it, and pretend nothing 

happened. The server will eventually tear down the old connection, thinking the client has 
probably crashed. 

A much better approach for handling communication interrupts is to develop the client 

and server such that it is possible to send out-of-band data, which is data that is to be 
processed by the server before any other data from that client. One solution is to let the 

server listen to a separate control end point to which the client sends out-of-band data, 

while at the same time listening with a lower priority to the end point through which the 

normal data passes.  

Another solution is to send out-of-band data across the same connection through which 
the client is sending the original request. In TCP, for example, it is possible to transmit 

urgent data. When urgent data are received at the server, the latter is interrupted, after  
which it can inspect the data and handle them accordingly. 

Stateless Versus Stateful Servers 

A final, important design issue, is whether or not the server is stateless. A stateless server 
does not keep information on the state of its clients, and can change its own state without 

having to inform any client. A Web server, for example, is stateless. It merely responds to 
incoming HTTP requests, which can be either for uploading a file to the server or most often 

for fetching a f ile. When the request has been processed, the Web server forgets the client 

completely. Likewise, the collection of files that a Web server manages possibly in  
cooperation with a file server, can be changed without clients having to be informed. 

Note that in many stateless designs, the server actually does maintain information on its 

clients, but crucial is the fact that if this information is lost, it will not lead to a disruption 

of the service offered by the server. For example, a Web server generally logs all client 

requests. This information is useful, for example, to decide whether certain documents should 

be replicated, and where they should be replicated to. Clearly, there is no penalty other than 

perhaps in the form of suboptimal performance if the log is lost. 

A particular form of a stateless design is where the server maintains what is known as soft 

state. In this case, the server promises to maintain state on behalf of the client, but only for 

a limited time. After that time has expired, the server falls back to default behavior, thereby 
discarding any information it kept on account of the associated client. An example of this 

type of state is a server promising to keep a client informed about updates, but only for a 

limited time. After that, the client is required to  poll the server for updates. Soft-state 

approaches originate from protocol design in computer networks, but can be equally 

applied to server design. 

In contrast, a stateful server generally maintains persistent information on its clients. This 

means that the information needs to be explicitly deleted by the server. A typical example 
is a file server that allows a client to keep a local copy of a file, even for performing update 
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operations. Such a server would maintain a table containing (client, file) entr ies. Such a 

table allows the server to keep track of which client currently has the update permissions 
on which file, and thus possibly also the most recent version of that file.  

This approach can improve the performance of read and write operations as perceived by 
the client. Performance improvement over stateless servers is often an important benefit of 

stateful designs. However, the example also illustrates the major drawback of stateful 

servers. If the server crashes, it has to recover its table of (client, file) entries, or otherwise 

it cannot guarantee that it has processed the most recent updates on a file. In general, a 

stateful server needs to recover its entire state as it was just before the crash. Enabling recovery 
can introduce considerable complexity, as we discuss in. Chapter 8In a stateless design, no 

special measures need to be taken at all for a crashed server to recover. It simply starts 

running again, and waits for client requests to come in. 

The example above is typical for session state: it is associated with a series of operations by 

a single user and should be maintained for a somet ime, but not indefinitely. As it turns 

out, session state is often maintained in three-tiered client-server architectures, where the 

application server actually needs to access a database server through a series of queries before 

being able to respond to the requesting client. The issue here is that no real harm is done if 
session state is lost, provided that the client can simply re-issue the original request. This 

observation allows for simpler and less reliable storage of state. What remains for permanent 
state is typically information maintained in databases, such as customer information, keys 

associated with purchased software, etc. However, for most distributed systems, maintaining 

session state already implies a stateful design requiring special measures when failures do 
happen and making explicit assumptions about the durability of state stored at the server. 

We will return to these matters extensively when discussing fault tolerance. 

When designing a server, the choice for a stateless or stateful design should not affect the 

services provided by the server.  For example, if files have to be opened before they can 

be read from, or written to, then a stateless server should one way or the other mimic this 
behavior. A common solution is that the server responds to a read or write request by first 

opening the referred file, then does the actual read or write operation, and immediately 

closes the file again. 

In other cases, a server may want to keep a record on a client’s behavior so that it can more 

effectively respond to its requests. For example, Web servers sometimes offer the 

possibility to immediately direct a client to his favorite pages. This approach is possible 

only if the server has history information on that client. When the server cannot maintain 
state, a common solution is then to let the client send along additional information on its 

previous accesses. In the case of the Web, this information is often transparently stored by 

the client’s browser in what is called a cookie, which is a small piece of data containing 
client-specific information that is of interest to the server. Cookies are never executed by a 

browser; they are merely stored. 

The first time a client accesses a server, the latter sends a cookie along with the requested Web 

pages back to the browser, after which the browser safely tucks the cookie away. Each 

subsequent time the client accesses the server, its cookie for that server is sent along with the 
request. 

Object Servers 

Let us take a look at the general organization of object servers needed for distributed objects. 

The important difference between a general object server and other (more traditional) servers 
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is that an object server by itself does not provide a specific service. Specific services are 

implemented by the objects that reside in the server. Essentially, the server provides only 
the means to invoke local objects, based on requests from remote clients. As a consequence, 

it is relatively easy to change services by simply adding and removing objects. 

An object server thus acts as a place where objects live. An object consists of two parts: data 

representing its state and the code for executing its methods. Whether or not these parts are 

separated, or whether method implementations are shared by multiple objects, depends on the 

object server. Also, there are differences in the way an object server invokes its objects. 

For example, in a multithreaded server, each object may be assigned a separate thread, or a 
separate thread may be used for each invocation request. These and other issues are discussed 

next. 

For an object to be invoked, the object server needs to know which code to execute, on which 
data it should operate, whether it should start a separate thread to take care of the 

invocation, and so on. A simple approach is to assume that all objects look alike and that 

there is only one way to invoke an object. Unfortunately, such an approach is generally 

inflexible and often unnecessarily constrains developers of distributed objects. 

A much better approach is for a server to support different policies. Con- sider, for 
example, a transient object:  an object that exists only as long as its server exists, but 

possibly for a shorter period of time. An in-memory, read-only copy of a file could 
typically be implemented as a transient object. Likewise, a calculator could also be 

implemented as a transient object. A reasonable policy is to create a transient object at the 

first invocation request and to destroy it as soon as no clients are bound to it anymore. 

The advantage of this approach is that a transient object will need a server’s resources only as 

long as the object is really needed. The drawback is that an invocation may take some time 
to complete, because the object needs to be created first. Therefore, an alternative policy 

is sometimes to create all transient objects at the time the server is initialized, at the cost of 

consuming resources even when no client is making use of the object.  

In a similar fashion, a server could follow the policy that each of its objects is placed in a 

memory segment of its own. In other words, objects share neither code nor data. Such a policy 

may be necessary when an object implementation does not separate code and data, or when 

objects need to be separated for security reasons. In the latter case, the server will need to 

provide special measures, or require support from the underlying operating system, to ensure 

that segment boundaries are not violated. 

The alternative approach is to let objects at least share their code. For example, a database 
containing objects that belong to the same class can be efficiently implemented by loading 

the class implementation only once into the server. When a request for an object invocation 

comes in, the server need only fetch that object’s state and execute the requested method. 
Likewise, there are many different policies with respect to threading. The simplest approach 

is to implement the server with only a single thread of control. Alternatively, the server 

may have several threads, one for each of its objects. Whenever an invocation request 

comes in for an object, the server passes the request to the thread responsible for that object. 

If the thread is currently busy, the request is temporarily queued. 

The advantage of this approach is that objects are automatically protected against concurrent 

access: all invocations are serialized through the single thread associated with the object. 
Neat and simple. Of course, it is also possi ble to use a separate thread for each invocation 

request, requiring that objects should have already been protected against concurrent access. 
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Independent of using a thread per object or thread per method is the choice of whether 

threads are created on demand or the server maintains a pool of threads. Generally there is 
no single best policy.  

Decisions on how to invoke an object are commonly referred to as active tion policies, to  
emphasize that in many cases the object itself must first be brought into the server’s 

address space (i.e., activated) before it can actually be invoked. What is needed then is a 

mechanism to group objects per policy. Such a mechanism is sometimes called an object 

adapter, or alternatively an object wrapper. An object adapter can best be thought of as 

software implementing a specific activation policy. The main issue, however, is that object 
adapters come as generic components to assist developers of distributed objects, and which 

need only to be configured for a specific policy. 

An object adapter  has one or more objects under its control. Because a server should be 
capable of simultaneously supporting objects that require different activation policies, 

several object adapters may reside in the same server. When an invocation request is 

delivered to  the server, the request is first dispatched to the appropriate object adapter. An 

important observation is that object adapters are unaware of the specific interfaces of the 

objects they control. Otherwise, they could never be generic. 

The only issue that is important to an object adapter is that it can extract an object reference 

from an invocation request, and subsequently dispatch the request to the referenced object, 
but now following a specific activation policy. The stub, also called a skeleton, is normally 

generated from the interface definitions of the object, unmarshals the request and invokes the 

appropriate method. An object adapter can support different activation policies by simply 
configuring it at runtime. For example, in CORBA-compliant systems it is possible to 

specify whether an object should continue to exist after its associated adapter has stopped. 
Likewise, an adapter can be configured to generate object identifiers, or to let the 

application provide one.   As a final example, an adapter can be configured to operate in  

single-threaded or multithreaded mode as we explained above. In particular, it should be 
stressed that as part of the implementation of such an object the server may (indirectly)  

access databases or call special library routines. The implementation details are hidden for 

the object adapter who communicates only with a skeleton. As such, the actual 

implementation may have nothing to do with what we often see with language-level (i.e., 

compile-time) objects. For this reason, a different terminology is generally adopted. A 

servant is the general term for a piece of code that forms the implementation of an object. 

Apache Web server 

An interesting example of a server that balances the separation between policies and 

mechanisms is the Apache Web server. It is also an extremely popular server, estimated to be 

used to host approximately 50% of all Web sites. Apache is a complex piece of software, and 
with the numerous enhancements to the types of documents that are now offered in the Web, 

it is important that the server is highly configurable and extensible, and at the same time largely 

independent of specific platforms. 

Making the server platform independent is realized by essentially provid ing its own basic 

runtime environment, which is then subsequently implemented for different operating 
systems. This runtime environment, known as the Apache Portable Runtime (APR), is a 

library that provides a platform- independent interface for file handling, networking, locking, 
threads, and so on. When extending Apache, portability is largely guaranteed provided that 

only calls to the APR are made and that calls to platform-specific libraries are avoided. 
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From a certain perspective, Apache can be considered as a completely gen- eral server tailored 

to produce a response to an incoming request. Of course, there are all kinds of hidden 
dependencies and assumptions by which Apache turns out to be primarily suited for handling 

requests for Web documents. For example, as we mentioned, Web browsers and servers use 
HTTP as their communication protocol. HTTP is virtually always implemented on top of 

TCP, for which reason the core of Apache assumes that all incoming requests adhere to a TCP-

based connection-oriented way of communication. Requests based on UDP cannot be 

handled without modifying the Apache core. 

However, the Apache core makes few assumptions on how incoming requests should be 
handled. Fundamental to this organization is the concept of a hook, which is nothing but 

a placeholder for a specific group of functions. The Apache core assumes that requests are 

processed in a number of phases, each phase consisting of a few hooks. Each hook thus 
represents a group of similar actions that need to be executed as part of processing a 

request. 

For example, there is a hook to translate a URL to a local file name. Such a translation will 

almost certainly need to be done when processing a request. Likewise, there is a hook for 

writing information to a log, a hook for checking a client’s identification, a hook for 
checking access rights, and a hook for checking which MIME type the request is related 

to (e.g., to make sure that the request can be properly handled).   The hooks are processed 
in a predetermined order. It is here that we explicitly see that Apache enforces a specific 

flow of control concerning the processing of requests. 

The functions associated with a hook are all provided by separate modules. Although, in  
principle, a developer could change the set of hooks that will be processed by Apache, it 

is far more common to write modules containing the functions that need to be called as 
part of processing the standard hooks provided by unmodified Apache. The underlying 

principle is fairly straightforward. Every hook can contain a set of functions that each 

should match a specific function prototype. A module developer will write functions for 
specific hooks. When compiling Apache, the developer specifies which function should be 

added to which hook. The latter is shown in Figure 3.17 as the various links between functions 

and hooks because there may be tens of modules, each hook will generally contain several 

functions. Normally, modules are considered to be mutual independent, so that functions 

in the same hook will be executed in some arbitrary order. However, Apache can also 

handle module dependencies by letting a developer specify an ordering in which functions 

from different modules should be processed. By and large, the result is a Web server that 
is extremely versatile. 

Server clusters 

We briefly discussed cluster computing as one of the many appearances of distributed systems. 
We now take a closer look at the organization of server clusters, along with the salient design 

issues. We first consider common server clusters that are organized in local-area networks. A 

special group is formed by wide-area server clusters, which we subsequently discuss. 

Local Aarea Clusters 

Simply put, a server cluster is nothing else but a collection of machines connected through 
a network, where each machine runs one or more servers. The server clusters that we consider 

here, are the ones in which the machines are connected through a local-area network, often 
offering high bandwidth and low latency. 
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General Organization 

In many cases, a server cluster is logically organized into three tiers. The first tier consists of a 
(logical) switch through which client requests are routed. Such a switch can vary widely. For 

example, transport-layer switches accept incoming TCP connection requests and pass requests 
on to one of servers in the cluster. A completely different example is a Web server that 

accepts incoming HTTP requests, but that partly passes requests to application servers for 

further processing only to later collect results from those servers and return an HTTP 

response. 

As in any multitier client-server architecture, many server clusters also contain servers 
dedicated to application processing. In cluster computing, these are typically servers 

running on high-performance hardware dedicated to delivering compute power. However, 

in the case of enterprise server clusters, it may be the case that applications need only 
run on relatively low-end machines, as the required compute power is not the bottleneck, but 

access to storage. 

This brings us the third tier, which consists of data-processing servers, notably file and 

database servers. Again, depending on the usage of the server cluster, these servers may be 

running on specialized machines, configured for high-speed disk access and having large 
server-side data caches. Of course, not all server clusters will follow this strict separation. It 

is frequently the case that each machine is equipped with its own local storage, often integrating 
application and data processing in a single server leading to a two-tiered architecture. For 

example, when dealing with streaming media by means of a server cluster, it is common to 

deploy a two-tiered system architecture, where each machine acts as a dedicated media server. 

When a server cluster offers multiple services, it may happen that different machines run 

different application servers. As a consequence, the switch will have to be able to distinguish 
services or otherwise it cannot forward requests to the proper machines. As a consequence, we 

may find that certain machines are temporarily idle, while others are receiving an overload of 

requests. What would be useful is to temporarily migrate services to idle machines. A solution 
is to use virtual machines allowing a relatively easy migration of code to real machines. 

Request Dispatching 

Let us now take a closer look at the first tier, consisting of the switch, also known as the front 

end. An important design goal for server clusters is to hide the fact that there are multiple 

servers. In other words, client applications running on remote machines should have no 

need to know anything about the internal organization of the cluster. This access 

transparency is invariably offered by means of a single access point, in turn implemented 
through some kind of hardware switch such as a dedicated machine. The switch forms the 

entry point for the server cluster, offering a single network address. For scalability and 

availability, a server cluster may have multiple access points, where each access point is 
then realized by a separate dedicated machine. We consider only the case of a single access 

point. 

A standard way of accessing a server cluster is to set up a TCP connection over which 

application-level requests are then sent as part of a session as display. A session ends by 

tearing down the connection. In the case of transport-layer switches, the switch accepts 
incoming TCP connection requests, and hands off such connections to one of the servers. 

There are essentially two ways how the switch can operate. In the first case, the client sets up 
a TCP connection such that all requests and responses pass through the switch. The switch, in 

turn, will set up a TCP connection with a selected server and pass client requests to that server, 



76 Distributed System 

and also accept server responses. In effect, the switch sits in the middle of a TCP connection 

between the client and a selected server, rewriting the source and destination addresses when 
passing TCP segments. This approach is a form of network address translation (NAT). 

When the switch receives a TCP connection request, it first identifies the best server for 
handling that request, and forwards the request packet to that server. The server, in turn, 

will send an acknowledgment back to the requesting client, but inserting the switch’s IP 

address as the source field of the header of the IP packet carrying the TCP segment. Note 

that this address rewriting is necessary for the client to continue executing the TCP protocol: 

it is expecting an answer back from the switch, not from some arbitrary server it has never 
heard of before. Clearly, a TCP-handoff implementation requires operating-system level 

modifications. TCP handoff is especially effective when responses are much larger than 

requests, as in the case of Web servers. 

It can already be seen that the switch can play an important role in distributing the load 

among the various servers. By deciding where to forward a request to, the switch also decides 

which server is to handle further processing of the request. The simplest load-balancing 

policy that the switch can follow is round robin: each time it picks the next server from its 

list to forward a request to. Of course, the switch will have to keep track to which server 
it handed off a TCP connection, at least until that connection is torn down.  As it turns out, 

maintaining this state and handing off subsequent TCP segments belonging to the same 
TCP connection, may actually slow down the switch. 

More advanced server selection criter ia can be deployed as well. For example, assume 

multiple services are offered by the server cluster. If the switch can distinguish those services 
when a request comes in, it can then take informed decisions on where to forward the request 

to. This server selection can still take place at the transport level, provided services are 
distinguished by means of a port number. In the case of transport-level switches, as we have 

discussed so far, decisions on where to forward an incoming request is based on transport-

level information only. One step further is to have the switch actually inspect the payload 
of the incoming request. This content-aware request distribution can be applied only if it 

is known what that payload looks like. For example, in the case of Web servers, the switch 

can expect an HTTP request, based on which it can then decide who is to process it. 
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A characteristic feature of local-area server clusters is that they are owned by a single 

organization.    Deploying clusters across a wide-area network has traditionally been quite 

cumbersome as one had to generally deal with multiple administrative organizations such as 
ISPs (Internet Service Providers). With the advent of cloud computing, matters have changed 

and we are now witnessing an increase of wide-area distributed systems in which servers or 

server clusters are spread across the Internet. The problems related to having to deal with 
multiple organizations are effectively circumvented by making use of the facilities of a single 

cloud provider. 

Cloud providers like Amazon and Google manage several data centers placed at different 

locations worldwide. As such, they can offer an end user the ability to build a wide-area 

distributed system consisting of a potentially large collection of networked virtual 
machines, scattered across the Internet. An important reason for wanting such distr ibuted 

systems is to provide locality: offering data and services that are close to clients. An example 
where such locality is important is streaming media: the closer a video server is located to  

a client, the easier it becomes to provide high-quality streams. Note that if wide-area 

locality is not critical, it may suffice, or even be better, to place virtual machines in a single 

data center, so that intercrosses communication can benefit from low-latency local networks. 

The price to pay may be higher latencies between clients and the service running in a remote 
data center. 

Request dispatching: If wide-area locality is an issue, then request dispatching becomes 

important: if a client accesses a service, its request should be forwarded to a nearby server, that 
is, a server that will allow communication with that client to be fast. Deciding which server 

should handle the client’s request is an issue of redirection policy: If we assume that a client 

will initially contact a request dispatcher analogous to the switch in our discussion of local-

area clusters, then that dispatcher will have to estimate the latency between the client and 

several servers. How such an estimation can be made is discussed in Section 6.5. 

Once a server has been selected, the dispatcher will have to inform the client. Several 

redirection mechanisms are possible. A popular one is when the dispatcher is actually a 
DNS name server. Internet or Web-based services are often looked up in the Domain Name  
System (DNS). A client provides a domain name such as service.organization.org to a local 

DNS server, which eventually returns an IP address of the associated service, possibly after  
having contacted other DNS servers. When sending its request to look up a name, a client 

also sends its own IP address (DNS requests are sent as UDP packets). In other words, the 
DNS server will also know the client’s IP address which it can then subsequently use to select 

the best server for that client, and returning a close-by IP address. 

Unfortunately, this scheme is not perfect for two reasons. First, rather than sending the client’s 

IP address, what happens is that the local DNS server that is contacted by the client acts as 

a proxy for that client. In other words, not the client’s IP address, but that of the local DNS 
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server is used to identify the location of the cliente and have shown that there may be a 

huge additional communication cost, as the local DNS server is often not that local. 
Secondly, depending on the scheme that is used for resolving a domain name, it may even 

be the case that the address of the local DNS server is not even being used.  

Instead, it may happen that the DNS server that is deciding on which IP address to return, 

may be fooled by the fact that the requester is yet another DNS server acting as an 

intermediate between the original client and the deciding DNS server. In those case, 

locality awareness has been completely lost. Despite that DNS-based redirection may not 

always be very accurate, it is widely deployed if only for the fact that it is relatively easy 
to implement and also transparent to the client. In addition, there is no need to rely on 

location-aware client-side software. 

Code Migration 

So far, we have been mainly concerned with distributed systems in which communication 

is limited to passing data. However, there are situations in which passing programs, 

sometimes even while they are being executed, simplifies the design of a distributed system. 

In this section, we take a detailed look at what code migration actually is. We start by 

considering different approaches to code migration, followed by a discussion on how to 
deal with the local resources that a migrating program uses. A particularly hard problem is 

migrating code in heterogeneous systems, which is also discussed. 

Reasons for migrating code 

Traditionally, code migration in distributed systems took place in the form of process 

migration in which an entire process was moved from one node to another. Moving a 
running process to a different machine is a costly and intricate task, and there had better  

be a good reason for doing so. That reason has always been performance. The basic idea is 
that overall system performance can be improved if processes are moved from heavily loaded 

to lightly loaded machines. Load is often expressed in terms of the CPU queue length or 

CPU utilization, but other performance indicators are used as well. When completing their  
survey, had already come to the conclusion that process migration was no longer a viable 

option for improving distributed systems. 

However, instead of offloading machines, we can now witness that code is moved to make 

sure that a machine is sufficiently loaded. In particular, migrating complete virtual machines 

with their suite of applications to lightly loaded machines in order to minimize the total 

number of nodes being used is common practice in optimizing energy usage in data  

centers. In general, load-distr ibution algorithms by which decisions are made concerning 
the allocation and redistribution of tasks with respect to a set of machines, play an 

important role in compute-intensive systems. However, in many modern distributed 

systems, optimizing computing capacity is less an issue than, for example, trying to  
minimize communication. Moreover, due to the heterogeneity of the underlying platforms 

and computer networks, performance improvement through code migration is often based 

on qualitative reasoning instead of mathematical models. 

Consider, as an example, a client-server system in which the server man- ages a huge database. 

If a client application needs to perform many database operations involving large quantities of 
data, it may be better to ship part of the client application to the server and send only the 

results across the network. Otherwise, the network may be swamped with the transfer of data 
from the server to the client. In this case, code migration is based on the assumption that it 

generally makes sense to process data close to where those data reside. 
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This same reason can be used for migrating parts of the server to the client. For example, in  

many interactive database applications, clients need to fill in forms that are subsequently 
translated into a series of database operations. Processing the form at the client side, and 

sending only the completed form to the server, can sometimes avoid that a relatively large 
number of small messages need to cross the network. The result is that the client perceives 

better performance, while at the same time the server spends less time on form processing 

and communication. In the case of smartphones, moving code to be executed at the 

handheld instead of the server may be the only viable solution to obtain acceptable 

performance, both for the client and the server. 

Support for code migration can also help improve performance by exploiting parallelism, 

but without the usual intricacies related to parallel programming. A typical example is 

searching for information in the Web. It is relatively simple to implement a search query 
in the form of a small mobile program, called a mobile agent that moves from site to site. 

By making several copies of such a program, and sending each off to different sites, we 

may be able to achieve a linear speed-up compared to using just a single program instance. 

However, conclude that mobile agents have never become successful because they did not 

really offer an obvious advantage over other technologies. Moreover, and crucial, it turned 
out to be vir tually impossible to let this type of mobile code operate in a secure way. 

Besides improving performance, there are other reasons for supporting code migration as 
well. The most important one is that of flexibility. The traditional approach to building 

distributed applications is to partition the application into different parts, and decide in 

advance where each part should be executed.  

However, if code can move between different machines, it becomes possible to dynamically 

configure distributed systems. For example, suppose a server implements a standardized 
interface to a file system. To allow remote clients to access the file system, the server makes 

use of a proprietary protocol. Normally, the client-side implementation of the file system 

interface, which is based on that protocol, would need to be linked with the client 
application. This approach requires that the software be readily available to the client at the 

time the client application is being developed. 

An alternative is to let the server provide the client’s implementation no sooner than is 

strictly necessary, that is, when the client binds to the server. At that point, the client 

dynamically downloads the implementation, goes through the necessary initialization steps, 

and subsequently invokes the server. This model of dynamically moving code from a remote 

site does require that the protocol for downloading and initializing code is standardized. 
Also, it is necessary that the downloaded code can be executed on the client’s machine. 

Typically, scripts that run in a virtual machine embedded in, for example, a Web browser, 

will do the trick. Arguably, this form of code migration has been key to the success of the 
dynamic Web. These and other solutions are discussed below and in later chapters. 

The important advantage of this model of dynamically downloading client- side software is 

that clients need not have all the software preinstalled to talk to servers. Instead, the 

software can be moved in as necessary, and likewise, discarded when no longer needed. 

Another advantage is that as long as interfaces are standardized, we can change the client-
server protocol and its implementation as often as we like. Changes will not affect existing 

client applications that rely on the server. There are, of course, also disadvantages. 
Blindly trusting that the downloaded code implements only the advertised interface while 

accessing your unprotected hard disk and does not send the juiciest parts to heaven- knows-
who may not always be such a good idea. Fortunately, it is well understood how to protect 

the client against malicious, downloaded code. 
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So far, we have tacitly assumed that the migrated code can be easily executed at the target 

machine. This assumption is in order when dealing with homogeneous systems. In general, 

however, distributed systems are constructed on a heterogeneous collection of platforms, 
each having their own operating system and machine architecture. 

The problems coming from heterogeneity are in many respects the same as those of 

portability. Not surprisingly, solutions are also very similar. For example, at the end of the 
1970s, a simple solution to alleviate many of the problems of porting Pascal to different 

machines was to generate machine- independent intermediate code for an abstract virtual 

machine. That machine, of course, would need to be implemented on many platforms, but 

it would then allow Pascal programs to be run anywhere. Although this simple idea was 

widely used for some years, it never really caught on as the general solution to portability 
problems for other languages, notably C. 

About 25 years later, code migration in heterogeneous systems is being tackled by 
scripting languages and highly portable languages such as Java. In essence, these 

solutions adopt the same approach as was done for porting Pascal. All such solutions have 

in common that they rely on a (process) virtual machine that either directly interprets source 

code (as in the case of scripting languages), or otherwise interprets intermediate code generated 

by a compiler (as in Java). Being in the right place at the r ight time is also important for 
language developers. 

Further developments have weakened the dependency on programming languages. In 

particular, solutions have been proposed to migrate not only processes, but to migrate 
entire computing environments. The basic idea is to compartmentalize the overall 

environment and to provide processes in the same part their own view on their computing 

environment. That compartmentalization takes place in the form of virtual machine 

monitors running an operating system and a suite of applications. 

With virtual machine migration, it becomes possible to decouple a computing environment 

from the underlying system and actually migrate it to another machine. A major advantage 

of this approach is that processes can remain ignorant of the migration itself: they need not 
be interrupted in their execution, nor should they experience any problems with used 

resources. The latter are either migrating along with a process, or the way that a process 

accesses a resource is left unaffected at least, for that process. 

As an example, concentrated on real-time migration of a virtualized operating system, typically 

something that would be convenient in a cluster of servers where a tight coupling is achieved 
through a single, shared local-area network. Under these circumstances, migration involves 

two major problems: migrating the entire memory image and migrating bindings to local 
resources. 
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As to the first problem, there are, in principle, three ways to handle migration which can be 

combined: 

i. Pushing memory pages to the new machine and resending the ones that are later 

modified during the migration process. 

ii. Stopping the current virtual machine; migrate memory, and start the new virtual 

machine. 

iii. Letting the new virtual machine pull in new pages as needed, that is, let 

processes start on the new virtual machine immediately and copy memory pages 

on demand. 

The second option may lead to unacceptable downtime if the migrating virtual machine is 

running a live service, that is, one that offers continuous service. On the other hand, a pure 

on-demand approach as represented by the third option may extensively prolong the 
migration period, but may also lead to poor performance because it takes a long time before 

the working set of the migrated processes has been moved to the new machine. 

As an alternative, propose to use a pre-copy approach which combines the f irst option, 

along with a brief stop-and-copy phase as represented by the second option. As it turns 

out, this combination can lead to very low service downtimes. Concerning local resources, 
matters are simplified when dealing only with a cluster server. First, because there is a single 

network, the only thing that needs to be done is to announce the new network-to-MAC address 
binding, so that clients can contact the migrated processes at the correct network interface. 

In many cases, virtual machines are migrated to optimize the usage of actual machines. 

However, it may also be desirable to clone a vir tual machine, for example, because the 
workload for the current machine is becoming too high. Such cloning is very similar to  

using multiple processes in concurrent servers by which a dispatcher process creates worker 
processes to handle incoming requests. This scheme was explained in Figure 3.4 when 

discussing multithreaded servers. When cloning for this type of performance, it often 

makes more sense not to first copy memory pages, but, in fact, start with as few pages as 
possible as the service running on the cloned machine will essentially start anew. Note that 

this behavior is very similar to the usual parent-child behavior we see when forking Unix 

process. Namely, the child will start with loading its own executable, thereby effectively 

cleaning the memory it inherited from its parent. This analogy inspired to develop an 

analogous mechanism for forking a virtual machine. However, unlike the mechanism used 

traditionally for migrating virtual machines, their VM fork copies pages primarily on 

demand. The result is an extremely efficient cloning mechanism. 

It is thus seen that there is no single best way to place copies of a virtual machine on 

different physical machines: it very much depends on how and why a virtual machine is 

being deployed special attention needs to be paid when organizing servers into a cluster.  
A common objective is to hide the internals of a cluster from the outside world. This means 

that the organization of the cluster should be shielded from applications.  To this end, most 

clusters use a single entry point that can hand off messages to servers in the cluster. A 

challenging problem is to transparently replace this single entry point by a fully distr ibuted 

solution. 

Advanced object servers have been developed for hosting remote objects. An object server 

provides many services to basic objects, including facilities for storing objects, or to ensure 
serialization of incoming requests. Another important role is providing the illusion to the 
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outside world that a collection of data and procedures operating on that data correspond to 

the concept of an object. This role is implemented by means of object adapters. Object-based 
systems have come to a point where we can build entire frameworks that can be extended 

for supporting specific applications. Java has proven to provide a powerful means for 
setting up more generic services, exemplified by the highly popular Enterprise Java Beans 

concept and its implementation. 

An exemplary server for Web-based systems is the one from Apache. Again, the Apache 

server can be seen as a general solution for handling a myriad of HTTP-based queries. By 

offering the right hooks, we essentially obtain a flexibly configurable Web server. Apache has 
served as an example not only for traditional Web sites, but also for setting up clusters of 

collaborative Web servers, even across wide-area networks. 

An important topic for distributed systems is the migration of code be- tween different 
machines. Two important reasons to support code migration are increasing performance and 

flexibility. When communication is expensive, we can sometimes reduce communication by 

shipping computations from the server to the client, and let the client do as much local 

processing as possible. Flexibility is increased if a client can dynamically download software 

needed to communicate with a specific server. The downloaded software can be specifically 
targeted to that server, without forcing the client to have it preinstalled. 

Code migration brings along problems related to usage of local resources for which it is 
required that either resources are migrated as well, new bindings to local resources at the 

target machine are established, or for which system wide network references are used. 

Another problem is that code migration requires that we take heterogeneity into account. 
Current practice indicates that the best solution to handle heterogeneity is to use virtual 

ma- chines. These can take either the form of process virtual machines as in the case of, 
for example, Java, or through using vir tual machine monitors that effectively allow the 

migration of a collection of processes along with their underlying operating system.
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Interposes communication is at the heart of all distributed systems. It makes no sense to study 

distributed systems without carefully examining the ways that processes on different 

machines can exchange information. Communication in distributed systems has 

traditionally always been based on low-level message passing as offered by the underlying 

network. Expressing communication through message passing is harder than using 
primitives based on shared memory, as available for no distributed platforms. Modern 

distributed systems often consist of thousands or even millions of processes scattered 

across a network with unreliable communication such as the Internet. Unless the primitive 
communication facilities of computer networks are replaced by something else, 

development of large-scale distributed applications is extremely difficult. 

In this chapter, we start by discussing the rules that communicating processes must adhere 

to, known as protocols, and concentrate on structuring those protocols in the form of layers. 
We then look at two widely-used models for communication: Remote Procedure Call (RPC), 

and Message-Oriented Middleware (MOM). We also discuss the general problem of 

sending data to multiple receivers, called multicasting. 

Our first model for communication in distr ibuted systems is the remote procedure call 

(RPC). An RPC aims at hiding most of the intricacies of message passing, and is ideal for 
client-server applications. However, realizing RPCs in a transparent manner is easier said 

than done. We look at a number of important details that cannot be ignored, while diving 

into actually code to illustrate to what extent distribution transparency can be realized such 
that performance is still acceptable. 

In many distributed applications, communication does not follow the rather strict pattern 

of client-server interaction. In those cases, it turns out that thinking in terms of messages 

is more appropriate. The low-level communication facilities of computer networks are in 

many ways not suitable, again due to their  lack of distribution transparency. An alternative 

is to use a high-level message-queuing model, in which communication proceeds much the 

same as in e-mail systems. Message-oriented communication is a subject important enough 
to warrant a section of its own. We look at numerous aspects, including application-level 

routing. 

Finally, since our understanding of setting up multicast facilities has im- proved, novel and 
elegant solutions for data dissemination have emerged. We pay separate attention to this 

subject in the last section of this chapter, discussing traditional deterministic means of 

multicasting, as well as proba- bilistic approaches as used in f looding and gossiping. The 

latter have been receiving increased attention over the past years due to their elegance and 

simplicity. 
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Layered Protocols 

Due to the absence of shared memory, all communication in distributed systems is based 
on sending and receiving low level messages. When process P wants to  communicate with 

process Q, it first builds a message in its own address space. Then it executes a system call 
that causes the operating system to send the message over the network to Q. Although this 

basic idea sounds simple enough, in order to prevent chaos, P and Q have to agree on the 

meaning of the bits being sent[21]. 

The OSI reference model 

To make it easier to deal with the numerous levels and issues involved in communication, 
the International Standards Organization (ISO) developed a reference model that clearly 

identifies the various levels involved, gives them standard names, and points out which 

level should do which job. This model is called the Open Systems Interconnection 
Reference Model usually abbreviated as ISO OSI or sometimes just the OSI model. I t should 

be emphasized that the protocols that were developed as part of the OSI model were never 

widely used and are essentially dead. However, the underlying model itself has proved to 

be quite useful for understanding computer networks. Although we do not intend to give 

a full description of this model and all of its implications here, a short introduction will be 
helpful. 

The OSI model is designed to allow open systems to communicate. An open system is one 
that is prepared to communicate with any other open system by using standard rules that 

govern the format, contents, and meaning of the messages sent and received. These rules 

are formalized in what are called communication protocols. To allow a group of computers 
to communicate over a network, they must all agree on the protocols to be used. A protocol 

is said to provide a communication service. There are two types of such services. In the 
case of a connection-oriented service, before exchanging data the sender and receiver first 

explicitly establish a connection, and possibly negotiate specific parameters of the protocol 

they will use. When they are done, they release (terminate) the connection. The 
telephone is a typical connection-oriented communication service. With connectionless 

services, no setup in advance is needed. The sender just transmits the first message when 

it is ready. Dropping a letter in a mailbox is an example of making use of connectionless 

communication service. With computers, both connection-oriented and connectionless 

communication are common. 

In the OSI model, communication is divided into seven levels or layers. Each layer offers 

one or more specific communication services to the layer above it. In this way, the problem 
of getting a message from A to B can be divided into manageable pieces, each of which 

can be solved independently of the others. Each layer provides an interface to the one 

above it. The interface consists of a set of operations that together define the service the 
layer is prepared to offer. The seven OSI layers are: 

• Physical layer Deals with standardizing how two computers are connected and how
0s and 1s are represented.

• Data link layer provides the means to detect and possibly correct transmis sion
errors, as well as protocols to keep a sender and receiver in the same pace.

• Network layer Contains the protocols for routing a message through a computer
network, as well as protocols for handling congestion.
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• Transport layer mainly contains protocols for directly supporting applications, 
such as those that establish reliable communication, or support real-time streaming 

of data. 

• Session layer Provides support for sessions between applications. 

• Presentation layer prescribes how data is represented in a way that is inde- pendent 
of the hosts on which communicating applications are running. 

• Application layer essentially, everything else: e-mail protocols, Web access 
protocols, file-transfer protocols, and so on. 

When process P wants to communicate with some remote process Q, it builds a message 
and passes that message to the application layer as offered to it by means of an interface. 

This interface will typically appear in the form of a library procedure. The application layer 
software then adds a header to the front of the message and passes the resulting message across 

the layer 6/7 interface to the presentation layer. The presentation layer, in turn, adds its own 

header and passes the result down to the session layer, and so on. Some layers add not only 
a header to the front, but also a trailer to the end. When it hits the bottom, the physical 

layer actually transmits the message by putting it onto the physical transmission medium. 

When the message arrives at the remote machine hosting Q, it is passed upward, with each 

layer stripping off and examining its own header. Finally, the message arrives at the 

receiver, process Q, which may reply to it using the reverse path. The information in the 

layer-n header is used for the layer-n protocol. 

In the OSI model, there are not two layers, but seven, as we saw in Figure 41. The 
collection of protocols used in a particular system is called a protocol suite or protocol 

stack. It is important to distinguish a reference model from its actual protocols. As said, 

the OSI protocols were never popular, in contrast to protocols developed for the Internet, 
such as TCP and IP. 

Middleware Protocols 

Middleware is an application that logically lives (mostly) in the OSI application layer, but 

which contains many general-purpose protocols that warrant their own layers, independent 

of other, more specific applications. Let us briefly look at some examples. 

The Domain Name System (DNS) [Liu and Albitz, 2006] is a distributed service that is used 

to look up a network address associated with a name, such as the address of a so-called domain 
name like www.distributed-systems.net. In terms of the OSI reference model, DNS is an 

application and therefore is logically placed in the application layer. However, it should 

be quite obvious that DNS is offering a general-purpose, application-independent service. 

Arguably, it forms part of the middleware. 

As another example, there are various ways to establish authentication, that is, provide 
proof of a claimed identity.   Authentication protocols are not closely tied to any specific 

application, but instead, can be integrated into a middleware system as a general service. 

Likewise, authorization protocols by which authenticated users and processes are granted 
access only to those resources for which they have authorization, tend to have a general, 

application-independent nature. Being labeled as applications in the OSI reference model, 

these are clear examples that belong in the middleware. 

Distributed commit protocols establish that in a group of processes, possibly spread out 

across a number of machines, either all processes carry out a particular operation, or that 
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the operation is not carried out at all. This phenomenon is also referred to as atomicity and 

is widely applied in transactions. As it turns out, commit protocols can present an interface 
independently of specif ic applications, thus providing a general-purpose transaction 

service.  

In such a form, they typically belong to the middleware and not to the OSI application 

layer. As a last example, consider a distributed locking protocol by which a resource can 

be protected against simultaneous access by a collection of processes that are distr ibuted 

across multiple machines. It is not hard to imagine that such protocols can be designed in 

an application-independent fashion, and accessible through a relatively simple, again 
application-independent interface. As such, they generally belong in the middleware. 

These protocol examples are not directly tied to communication, yet there are also many 

middleware communication protocols.  For example, with a so-called remote procedure 
call, a process is offered a facility to locally call a procedure that is effectively 

implemented on a remote machine. This communication service belongs to one of the 

oldest types of middleware services and is used for realizing access transparency. In a 

similar vein, there are high-level communication services for setting and synchronizing 

streams for transferring real-time data, such as needed for multimedia applications. As a 
last example, some middleware systems offer reliable multicast services that scale to  

thousands of receivers spread across a wide-area network. 

Taking this approach to layering leads to the adapted and simplif ied reference model for 

communication. Compared to the OSI model, the session and presentation layer have 

been replaced by a single middleware layer that contains application-independent 
protocols. These protocols do not belong in the lower layers we just discussed. Network 

and transport services have been grouped into communication services as normally offered 
by an operating system, which, in turn, manages the specific lowest-level hardware used to 

establish communication.  

Types of Communication 

In the remainder of this chapter, we concentrate on high-level middleware communication 

services.  Before doing so, there are other general criteria for distinguishing (middleware) 

communication. To understand the various alternatives in communication that middleware 

can offer to applications, we view the middleware as an additional service in client-server 

computing, as shown in Figure 3. Consider, for example an electronic mail system. In 

principle, the core of the mail delivery system can be seen as a middleware communication 

service. Each host runs a user agent allowing users to com- pose, send, and receive e-mail. 
A sending user agent passes such mail to the mail delivery system, expecting it, in turn, to  

eventually deliver the mail to the intended recipient. Likewise, the user agent at the receiver’s 

side connects to the mail delivery system to see whether any mail has come in. If so, the 
messages are transferred to the user agent so that they can be displayed and read by the 

user [22]. 

An electronic mail system is a typical example in which communication is persistent. With 

persistent communication, a message that has been sub- mitted for transmission is stored by 

the communication middleware as long as it takes to deliver it to the receiver. In this case, 
the middleware will store the message at one or several of the storage facilities.  As a 

consequence, it is not necessary for the sending application to continue execution after 
submitting the message. Likewise, the receiving application need not be executing when the 

message is submitted. 
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In contrast, with transient communication, a message is stored by the communication system 

only as long as the sending and receiving application are executing. More precisely, in terms 
of if the middleware cannot deliver a message due to a transmission interrupt, or because the 

recipient is currently not active, it will simply be discarded. Typically, all transport-level 
communication services offer only transient communication. In this case, the communication 

system consists of traditional store-and-forward routers. If a router cannot deliver a message to 

the next one or the destination host, it will simply drop the message. 

Besides being persistent or transient, communication can also be asynchronous or synchronous. 

The characteristic feature of asynchronous communication is that a sender continues 
immediately after it has submitted its message for transmission. This means that the message 

is (temporarily) stored immediately by the middleware upon submission. With synchronous 

communication, the sender is blocked until its request is known to be accepted. There are 
essentially three points where synchronization can take place. First, the sender may be blocked 

until the middleware notifies that it will take over transmission of the request. Second, the 

sender may synchronize until its request has been delivered to the intended recipient. Third, 

synchronization may take place by letting the sender wait until its request has been fully 

processed, that is, up to the time that the recipient returns a response. 

Various combinations of persistence and synchronization occur in practice. Popular ones are 

persistence in combination with synchronization at request submission, which is a common 
scheme for many message-queuing systems, which we discuss later in this chapter. Likewise, 

transient communication with synchronization after the request has been fully processed is 

also widely used. This scheme corresponds with remote procedure calls, which we discuss next. 

Remote Procedure Call 

Many distr ibuted systems have been based on explicit message exchange between 
processes. However, the operations send and receive do not conceal communication at all, 

which is important to achieve access transparency in distributed systems. This problem 

has long been known, but little was done about it until researchers in the 1980s introduced 
a completely different way of handling communication.  Although the idea is refreshingly 

simple (once someone has thought of it), the implications are often subtle. In this section 

we will examine the concept, its implementation, its strengths, and its weaknesses. 

In a nutshell, the proposal was to allow programs to call procedures located on other 

machines. When a process on machine A calls a procedure on machine B, the calling process 

on A is suspended, and execution of the called procedure takes place on B. Information can 

be transported from the caller to the callee in the parameters and can come back in the 
procedure result. No message passing at all is visible to the programmer. 

While the basic idea sounds simple and elegant, subtle problems exist. To start with, 

because the calling and called procedures run on different ma- chines, they execute in  
different address spaces, which causes complications. Parameters and results also have to  

be passed, which can be complicated, especially if the machines are not identical. Finally, 

either or both machines can crash and each of the possible failures causes different 

problems. Still, most of these can be dealt with, and RPC is a widely-used technique that 

underlies many distributed systems. 

Basic RPC operation 

The idea behind RPC is to make a remote procedure call look as much as possible like a local 
one. In other words, we want RPC to be transparent—the calling procedure should not be 
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aware that the called procedure is executing on a different machine or vice versa. Suppose 

that a program has access to a database that allows it to append data to a stored list, after which 
it returns a reference to the modified list. The operation is made available to a program by 

means of a routine append: 

newlist = append(data, dbList) 

In a traditional (single-processor) system, append is extracted from a library by the linker 

and inserted into the object program. In principle, it can be a short procedure, which could 

be implemented by a few file operations for accessing the database. 

Even though append eventually does only a few basic file operations, it is called in the 
usual way, by pushing its parameters onto the stack. The programmer does not know the 

implementation details of append, and this is, of course, how it is supposed to be. 

Language-based Support 

The approach described up until now is largely independent of a specif ic programming 

language. As an alternative, we can also embed remote procedure calling into a language 

itself. The main benefit is that application development often becomes much simpler. 

Also, reaching a high degree of access transparency is often simpler as many issues 

related to parameter passing can be circumvented altogether. 

A well-known example in which remote procedure calling is fully embedded is Java, 

where an RPC is referred to as a remote method invocation (RMI). In essence, a client 
being executed by its own (Java) virtual machine can invoke a method of an object 

managed by another virtual machine. By simply reading an application’s source code, it may 

be hard or even impossible to see whether a method invocation is to a local or to a remote 
object. 

Multicast RPC 

Asynchronous and deferred synchronous RPCs facilitate another alternative to remote 

procedure calls, namely executing multiple RPCs at the same time. Adopting the one-way 

RPCs (i.e., when a server does not tell the client it has accepted its call request but immediately 
starts processing it), a multicast RPC boils down to sending an RPC request to a group of 

servers. In this example, the client sends a request to two servers, who subsequently process 

that request independently and in parallel. When done, the result is returned to the client 

where a callback takes place. 

There are several issues that we need to consider. First, as before, the client application 

may be unaware of the fact that an RPC is actually being forwarded to more than one 

server. For example, to increase fault tolerance, we may decide to have all operations 
executed by a backup server who can take over when the main server fails. That a server 

has been replicated can be completely hidden from a client application by an appropriate stub. 

Yet even the stub need not be aware that the server is replicated, for example, because we are 
using a transport-level multicast address[23]. 

Second, we need to consider what to do with the responses. In particular, will the client 

proceed after all responses have been received, or wait just for one? It all depends. When 

the server has been replicated for fault tolerance, we may decide to wait for just the first 

response, or perhaps until a majority of the servers returns the same result. On the other 
hand, if the servers have been replicated to do the same work but on different parts of the 

input, their results may need to be merged before the client can continue. Again, such 
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matters can be hidden in the client-side stub, yet the application developer will, at the very 

least, have to specify the purpose of the multicast RPC. 

Example: DCE RPC 

Remote procedure calls have been widely adopted as the basis of middleware and distributed 
systems in general. In this section, we take a closer look at the Distributed Computing 

Environment (DCE) which was developed by the Open Software Foundation (OSF), now 

called The Open Group. It forms the basis for Microsoft’s distributed computing 

environment DCOM and used in Samba, a file server and accompanying protocol suite 

allowing the Windows file system to be accessed through remote procedure calls from non-
Windows systems. 

Although DCE RPC is arguably not the most modern way of managing RPCs, it is 

worthwhile discussing some of its details, notably because it is representative for most 
traditional RPC systems that use a combination of interface specifications and explicit 

bindings to various programming languages. We start with a brief introduction to DCE, after 

which we consider its principal workings. Details on how to develop RPC-based 

applications can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 Distributed System 

CHAPTER 18 

INTRODUCTION TO DCE 

Rajendra P. Pandey, Assistant Professor 
College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, Uttar 

Pradesh, India 
Email Id- panday_004@yahoo.co.uk 

DCE is a true middleware system in that it is designed to execute as a layer of abstraction 

between existing (network) operating systems and distributed applications. Initially 

designed for Unix, it has now been ported to all major operating systems. The idea is that 
the customer can take a collection of existing machines, add the DCE software, and then 

be able to run distributed applications, all without disturbing existing applications.  

Although most of the DCE package runs in user space, in some configurations a piece must 
be added to the kernel of the underlying operating system. The programming model 

underlying DCE is the client-server model. User processes act as clients to access remote 

services provided by server processes.  Some of these services are part of DCE itself, but 

others belong to the applica tions and are written by the application programmers. All 

communication between clients and servers takes place by means of RPCs. 

Goals of DCE RPC 

The goals of the DCE RPC system are relatively traditional. First and foremost, the RPC 
system makes it possible for a client to access a remote service by simply calling a local 

procedure. This interface makes it possible for client that is application programs to be 

written in a simple way, familiar to most programmers. It also makes it easy to have large 

volumes of existing code run in a distributed environment with few, if any, changes. It is  

up to the RPC system to hide all the details from the clients, and, to some extent, from 
the servers as well. To start with, the RPC system can automatically locate the correct 

server, and subsequently set up the communication between client and server software. It can 

also handle the message transport in both directions, fragmenting and reassembling them as 
needed. Finally, the RPC system can automatically handle data type conversions between the 

client and the server, even if they run on different architectures and have a different byte 

ordering[24]. 

As a consequence of the RPC system’s ability to hide the details, clients and servers are 

highly independent of one another. A client can be written in Java and a server in C, or 

vice versa. A client and server can run on different hardware platforms and use different 

operating systems. A variety of network protocols and data representations are also supported, 
all without any intervention from the client or server. 

Writing a Client and a Server 

The DCE RPC system consists of a number of components, including languages, libraries,  
daemons, and utility programs, among others. Together these make it possible to write 

clients and servers. In this section we will describe the pieces and how they f it together. 

In a client-server system, the glue that holds everything together is the interface definition, 

as specified in the Interface Defin it ion Language, or IDL. It permits procedure 
declarations in a form closely resembling function prototypes in ANSI C. IDL files can also 
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contain type definitions, constant declarations, and other information needed to correctly 

marshal parameters and unmarshal results. Ideally, the interface definition should also 
contain a formal definition of what the procedures do, but such a definition is beyond the 

current state of the art, so the interface definition just defines the syntax of the calls, not 
their semantics. At best the writer can add a few comments describing what the procedures 

do. 

A crucial element in every IDL file is a globally unique identifier for the specif ied 

interface. The client sends this identifier in the first RPC message and the server verifies 

that it is correct. In this way, if a client inadvertently tries to bind to the wrong server, or 
even to an older version of the right server, the server will detect the error and the binding 

will not take place. Interface definitions and unique identifiers are closely related in DCE. 

The first step in writing a client/server application is usually calling the uuidgen program, 
asking it to generate a prototype IDL file containing an interface identifier guaranteed never 

to be used again in any interface generated anywhere by uuidgen. Uniqueness is ensured by 

encoding in it the location and time of creation. It consists of a 128-bit binary number 

represented in the IDL file as an ASCII string in hexadecimal. 

The next step is editing the IDL file, filling in the names of the remote procedures and 
their parameters. It is worth noting that RPC is not totally transparent. For example, the 

client and server cannot share global variables. The IDL rules make it impossible to express 
constructs that are not supported. When the IDL file is complete, the IDL compiler is called to 

process it. The output of the IDL compiler consists of three files: 

a. A header file (e.g., interface.h, in C terms). 

b. The client stub. 

c. The server stub. 

The header file contains the unique identifier, type definitions, constant definitions, and 

function prototypes. It should be included (using #include) in both the client and server code. 

The client stub contains the actual procedures that the client program will call. These 
procedures are the ones responsible for collecting and packing the parameters into the 

outgoing message and then calling the runtime system to send it. The client stub also handles 

unpacking the reply and returning values to the client. The server stub contains the 

procedures called by the runtime system on the server machine when an incoming message 

arrives. These, in turn, call the actual server procedures that do the work. 

The next step is for the application writer to write the client and server code. Both of these 

are then compiled, as are the two stub procedures. The resulting client code and client stub 
object files are then linked with the runtime library to produce the executable binary for 

the client. Similarly, the server code and server stub are compiled and linked to produce 

the server’s binary. At runtime, the client and server are started so that the application is 
actually executed as well. 

Binding a client to a server 

To allow a client to call a server, it is necessary that the server has been registered and is 

prepared to accept incoming calls. Registration of a server makes it possible for a client to  

locate the server and bind to it. Finding the location of the server is done in two steps: 

a. Locate the server’s machine. 

b. Locate the server (i.e., the correct process) on that machine. 
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The second step is somewhat subtle. Basically, what it comes down to is that to  

communicate with a server, the client needs to know a port on the server’s machine to which 
it can send messages. A port is used by the server’s operating system to distinguish incoming 

messages for different processes. In DCE, a table of (server, port) pairs is maintained on 
each server machine by a process called the DCE daemon. Before it becomes available for 

incoming requests, the server must ask the operating system for a port. It then registers this 

port with the DCE daemon. The DCE daemon records this information including which 

protocols the server speaks in the port table for future use. The server also registers with the 

directory service by providing it the network address of the server’s machine and a name 
under which the server can be looked up. Binding a client to a server proceeds. 

Let us assume that the client wants to bind to a video server that is locally known under the 

name /local/multimedia/video/movies. It passes this name to the directory server, which 
returns the network address of the machine running the video server. The client then goes to 

the DCE daemon on that machine which has a well-known port, and asks it to look up the port 

of the video server in its port table. Armed with this information, the RPC can now take place. 

On subsequent RPCs this lookup is not needed. DCE also gives clients the ability to do more 

sophisticated searches for a suitable server when that is needed. Secure RPC is also an option 
where confidentiality or data integrity is crucial. 

Performing an RPC 

The actual RPC is carried out transparently and in the usual way. The client stub marshals 

the parameters to the runtime library for transmission using the protocol chosen at binding 

time. When a message arrives at the server side, it is routed to the correct server based on 
the port contained in the incoming message. The runtime library passes the message to the 

server stub, which marshals the parameters and calls the server. The reply goes back by 
the reverse route. 

DCE provides several semantic options. The default is at-most-once operation, in which case 

no call is ever carried out more than once, even in the presence of system crashes. In practice, 
what this means is that if a server crashes during an RPC and then recovers quickly, the 

client does not repeat the operation, for fear that it might already have been carried out once. 

Alternatively, it is possible to mark a remote procedure as idempotent in the IDL file, in which 

case it can be repeated multiple times without harm. For example, reading a specified block 

from a file can be tried over and over until it succeeds. When an idempotent RPC fails due 

to a server crash, the client can wait until the server reboots and then try again. Other 

semantics are also available but rarely used, including broadcasting the RPC to all the 
machines on the local network. 

Message Oriented Communication 

Remote procedure calls and remote object invocations contribute to hiding communication 
in distributed systems, that is, they enhance access transparency. Unfortunately, neither  

mechanism is always appropriate. In particular, when it cannot be assumed that the 

receiving side is executing at the time a request is issued, alternative communication 

services are needed. Likewise, the inherent synchronous nature of RPCs, by which a client 

is blocked until its request has been processed, may need to be replaced by something else. 

That something else is messaging. In this section we concentrate on message-oriented 

communication in distributed systems by first taking a closer look at what exactly 
synchronous behavior is and what its implications are. Then, we discuss messaging 
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systems that assume that parties are executing at the time of communication. Finally, we 

will examine message-queuing systems that allow processes to exchange information, even 
if the other party is not executing at the time communication is initiated. 

Simple Transient Messaging with Sockets 

Many distributed systems and applications are built directly on top of the simple message-

oriented model offered by the transport layer. To better understand and appreciate the 

message-oriented systems as part of middleware solutions, we first discuss messaging 

through transport-level sockets. Special attention has been paid to standardizing the 

interface of the trans- port layer to allow programmers to make use of its entire suite of 
protocols through a simple set of operations. Also, standard interfaces make it easier to  

port an application to a different machine. As an example, we briefly discuss the socket 

interface as introduced in the 1970s in Berkeley Unix, and which has been adopted as a 
POSIX standard. Conceptually, a socket is a communication end point to which an application 

can write data that are to be sent out over the underlying network, and from which incoming 

data can be read. A socket forms an abstraction over the actual port that is used by the local 

operating system for a specific transport protocol. 

Servers generally execute the first four operations, normally in the order given. When 
calling the socket operation, the caller creates a new communication end point for a specific 

transport protocol. Internally, creating a communication end point means that the local 
operating system reserves resources for sending and receiving messages for the specif ied 

protocol. The bind operation associates a local address with the newly created socket. For 

example, a server should bind the IP address of its machine together with a port number to a 
socket. Binding tells the operating system that the server wants to receive messages only on 

the specified address and port. In the case of connection-oriented communication, the address 
is used to receive incoming connection requests [25]. 

The listen operation is called only in the case of connection-oriented communication. It is a 

non-blocking call that allows the local operating sys- tem to reserve enough buffers for a 
specified maximum number of pending connection requests that the caller is willing to  

accept. A call to accept blocks the caller until a connection request arrives. When a request 

arrives, the local operating system creates a new socket with the same properties as the original 

one, and returns it to the caller. This approach will allow the server to, for example, fork off a 

process that will subsequently handle the actual communication through the new connection. 

The server can go back and wait for another connection request on the original socket. 

Let us now take a look at the client side. Here, too, a socket must first be created using the 
socket operation, but explicitly binding the socket to a local address is not necessary, since 

the operating system can dynamically allocate a port when the connection is set up. The 

connect operation requires that the caller specifies the transport-level address to which a 
connection request is to be sent. The client is blocked until a connection has been set up 

successfully, after which both sides can start exchanging information through the send and 

receive operations. Finally, closing a connection is symmetric when using sockets, and is 

established by having both the client and server call the close operation. Although there are 

many exceptions to the rule, the general pattern followed by a client and server for connection-
oriented communication using sockets. Details on network programming using sockets and 

other interfaces in UNIX can be found.  
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The Message-Passing Interface (MPI) 

With the advent of high-performance multicomputer, developers have been looking for 
message-oriented operations that would allow them to easily write highly efficient 

applications. This means that the operations should be at a convenient level of abstraction 
(to ease application development), and that their implementation incurs only minimal 

overhead. Sockets were deemed insufficient for two reasons. First, they were at the wrong 

level of abstraction by supporting only simple send and receive operations.   Second, 

sockets had been designed to communicate across networks using general-purpose 

protocol stacks such as TCP/IP. They were not considered suitable for the proprietary 
protocols developed for high-speed interconnection networks, such as those used in high-

performance server clusters. Those protocols required an interface that could handle more 

advanced features, such as different forms of buffering and synchronization. 

The result was that most interconnection networks and high-performance multicomputer were 

shipped with proprietary communication libraries. These libraries offered a wealth of high-

level and generally efficient communication operations. Of course, all libraries were mutually 

incompatible, so that application developers now had a portability problem. The need to be 

hardware and platform independent eventually lead to the definition of a standard for 
message passing, simply called the Message- Passing Interface or MPI. MPI is designed 

for parallel applications and as such is tailored to transient communication. It makes 
direct use of the underlying network. Also, it assumes that serious failures such as process 

crashes or network partitions are fatal and do not require automatic recovery. 

MPI assumes communication takes place within a known group of processes. Each group 
is assigned an identifier. Each process within a group is also assigned a (local) identifier. A 

(groupID, processID) pair therefore uniquely identifies the source or destination of a 
message, and is used instead of a transport-level address. There may be several, possibly 

overlapping groups of processes involved in a computation and that are all executing at the 

same time. Transient asynchronous communication is supported by means of the MPI_bsend 
operation. The sender submits a message for transmission, which is generally first copied to 

a local buffer in the MPI runtime system. When the message has been copied, the sender 

continues. The local MPI runtime system will remove the message from its local buffer and 

take care of transmission as soon as a receiver has called a receive operation. 

There is also a blocking send operation, called MPI_send, of which the semantics are 

implementation dependent. The operation MPI_send may either block the caller until the 

specified message has been copied to the MPI runtime system at the sender’s side, or until 
the receiver has initiated a receive operation.  

Synchronous communication by which the sender blocks until its request is accepted for further 

processing is available through the MPI_ssend operation. Finally, the strongest form of 
synchronous communication is also supported: when a sender calls MPI_sendrecv, it sends a 

request to the receiver and blocks until the latter returns a reply. Basically, this operation 

corresponds to a normal RPC. 

Both MPI_send and MPI_ssend have variants that avoid copying messages from user buffers 

to buffers internal to the local MPI runtime system. These variants essentially correspond 
to a form of asynchronous communication. With MPI_isend, a sender passes a pointer to the 

message after which the MPI runtime system takes care of communication. The sender 
immediately continues. To prevent overwriting the message before communication 

completes, MPI offers operations to check for completion, or even to block if  required. As 
with MPI_send, whether the message has actually been transferred to the receiver or that 
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it has merely been copied by the local MPI runtime system to an internal buffer is left 

unspecified. 

Likewise, with MPI_issend, a sender also passes only a pointer to the MPI runtime system. 

When the runtime system indicates it has processed the message, the sender is then guaranteed 
that the receiver has accepted the message and is now working on it. The operation MPI_recv 

is called to receive a message; it blocks the caller until a message arrives. There is also an 

asynchronous variant, called MPI_irecv, by which a receiver indicates that it is prepared 

to accept a message. The receiver can check whether or not a message has indeed arrived, 

or block until one does. 

The semantics of MPI communication operations are not always straight- forward, and 

different operations can sometimes be interchanged without affecting the correctness of a 

program. The official reason why so many differ- ent forms of communication are supported 
is that it gives implementers of MPI systems enough possibilities for optimizing performance. 

Cynics might say the committee could not make up its collective mind, so it threw in every- 

thing. By now, MPI is in its third version with over 440 operations available. Being designed 

for high-performance parallel applications, it is perhaps easier to understand its diversity. 

Message Oriented Persistent Communication 

We now come to an important class of message-oriented middleware services, generally known 

as message-queuing systems, or just Message-Oriented Middleware (MOM). Message-
queuing systems provide extensive support for persistent asynchronous communication. The 

essence of these systems is that they offer intermediate-term storage capacity for messages, 

without requiring either the sender or receiver to be active during message transmission. An 
important difference with sockets and MPI is that message-queuing systems are typically 

targeted to support message transfers that are allowed to take minutes instead of seconds or 
milliseconds. 

Message Queuing Model 

The basic idea behind a message-queuing system is that applications communicate by inserting 
messages in specific queues. These messages are forwarded over a series of communication 

servers and are eventually delivered to the destination, even if it was down when the message 

was sent. In practice, most communication servers are directly connected to each other. In other 

words, a message is generally transferred directly to a destination server. In principle, each 

application has its own private queue to which other applications can send messages. A 

queue can be read only by its associated application, but it is also possible for multiple 

applications to share a single queue. 

An important aspect of message-queuing systems is that a sender is generally given only 

the guarantees that its message will eventually be inserted in the recipient’s queue. No 

guarantees are given about when, or even if the message will actually be read, which is 
completely determined by the behavior of the recipient. These semantics permit 

communication to be loosely coupled in time. There is thus no need for the receiver to be 

executing when a message is being sent to  its queue. Likewise, there is no need for the 

sender to be executing at the moment its message is picked up by the receiver. The sender 

and receiver can execute completely independently of each other. In fact, once a message 
has been deposited in a queue, it will remain there until it is removed, irrespective of whether 

its sender or receiver is executing. This gives us four combinations with respect to the 
execution mode of the sender and receiver. 
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Both the sender and receiver execute during the entire transmission of a message. Only the 

sender is executing, while the receiver is passive, that is, in a state in which message delivery 
is not possible. Nevertheless, the sender can still send messages. The combination of a passive 

sender and an executing receiver. In this case, the receiver can read messages that were sent to 
it, but it is not necessary that their respective senders are executing as well. Finally, we see 

the situation that the system is storing and possibly transmitting messages even while sender 

and receiver are passive. One may argue that only if this last configuration is supported, the 

message-queuing system truly provides persistent messaging. 

Messages can, in principle, contain any data. The only important aspect from the 
perspective of middleware is that messages are properly addressed. In practice, addressing 

is done by providing a system wide unique name of the destination queue. In some cases, 

message size may be limited, although it is also possible that the underlying system takes 
care of fragmenting and assembling large messages in a way that is completely transparent 

to applications.  

The put operation is called by a sender to pass a message to the underlying system that is to be 

appended to the specified queue. As we explained, this is a non-blocking call. The get operation 

is a blocking call by which an authorized process can remove the longest pending message in 
the specified queue. The process is blocked only if the queue is empty. Variations on this call 

allow searching for a specific message in the queue, for example, using a priority, or a 
matching pattern. The non-blocking variant is given by the poll operation. If the queue is 

empty, or if a specific message could not be found, the calling process simply continues. 

Finally, most queuing systems also allow a process to install a handler as a callback function, 
which is automatically invoked whenever a message is put into the queue. Callbacks can 

also be used to automatically start a process that will fetch messages from the queue if no 
process is currently executing. This approach is often implemented by means of a daemon 

on the receiver’s side that continuously monitors the queue for incoming messages and handles 

accordingly. 

General Architecture of a Message Queuing System 

Let us now take a closer look at what a general message-queuing system looks like. First of 

all, queues are managed by queue managers. A queue manager is either a separate process, 

or is implemented by means of a library that is linked with an application. Secondly, as a rule 

of thumb, an application can put messages only into a local queue. Likewise, getting a 

message is possible by extracting it from a local queue only. As a consequence, if a queue 

manager QMA handling the queues for an application a runs as a separate process, both 

processes QMA and A will generally be placed on the same machine, or at worst on the 

same LAN. Also note that if all queue managers are linked into their respective applications, 

we can no longer speak of a persistent asynchronous messaging system. 

If applications can put messages only into local queues, then clearly each message will 

have to carry information concerning its destination. It is the queue manager’s task to make 
sure that a message reaches its destination. This brings us to a number of issues. In the 

first place, we need to consider how the destination queue is ad- dressed. Obviously, to enhance 

location transparency, it is preferable that queues have logical, location-independent names. 
Assuming that a queue man- ager is implemented as a separate process, using logical names 

implies that each name should be associated with a contact address, such as a pair, and that 

the name-to-address mapping is readily available to a queue manager. In practice, a contact 

address carries more information, notably the protocol to be used, such as TCP or UDP.  
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Multicast Communication 

An important topic in communication in distributed systems is the support for sending data to  
multiple receivers, also known as multicast communication. For many years, this topic has 

belonged to the domain of network protocols, where numerous proposals for network-level 
and transport-level solutions have been implemented and evaluated.  A major issue in all 

solutions was setting up the communication paths for information dissemination. In 

practice, this involved a huge management effort, in many cases requiring human 

intervention. In addition, as long as there is no convergence of proposals, ISPs have 

shown to be reluctant to support multicasting. With the advent of peer-to-peer technology, 
and notably structured overlay management, it became easier to set up communication paths. 

As peer-to-peer solutions are typically deployed at the application layer, various application- 

level multicasting techniques have been introduced. In this section, we will take a brief look 
at these techniques. Multicast communication can also be accomplished in other ways than 

setting up explicit communication paths. 

Application Level Tree based Multicasting 

The basic idea in application-level multicasting is that nodes organize into an overlay 

network, which is then used to disseminate information to its members. An important 
observation is that network routers are not involved in group membership. As a 

consequence, the connections between nodes in the overlay network may cross several 
physical links, and as such, routing messages within the overlay may not be optimal in 

comparison to what could have been achieved by network-level routing. 

Information Dissemination Models 

As the name suggests, epidemic algorithms are based on the theory of epidemics, which 

studies the spreading of infectious diseases. In the case of large-scale distributed systems, 
instead of spreading diseases, they spread information. Research on epidemics for 

distributed systems also aims at a completely different goal: whereas health organizations 

will do their utmost best to prevent infectious diseases from spreading across large groups 
of people, designers of epidemic algorithms for distributed systems will try to “infect” all 

nodes with new information as fast as possible. 

Using the terminology from epidemics, a node that is part of a distributed system is called 

infected if it holds data that it is willing to spread to other nodes. A node that has not yet seen 

this data is called susceptible. Finally, an updated node that is not willing or able to spread 

its data is said to have been removed. Note that we assume we can distinguish old from 

new data, for example, because it has been timestamped or versioned. In this light, nodes 
are also said to spread updates. A popular propagation model is that of anti-entropy. In this 

model, a node P picks another node Q at random, and subsequently exchanges updates with 

Q. There are three approaches to exchanging updates: 

P only pulls in new updates from Q 

P only pushes its own updates to Q 

P and Q send updates to each other (i.e., a push-pull approach) 

When it comes to rapidly spreading updates, only pushing updates turns out to be a bad 

choice. Intuitively, this can be understood as follows. First, note that in a pure push-based 
approach, updates can be propagated only by infected nodes. However, if many nodes are 

infected, the probability of each one selecting a susceptible node is relatively small. 
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Consequently, chances are that a particular node remains susceptible for a long period simply 

because it is not selected by an infected node. 

In contrast, the pull-based approach works much better when many nodes are infected. In that 

case, spreading updates is essentially triggered by susceptible nodes. Chances are big that such 
a node will contact an infected one to subsequently pull in the updates and become infected 

as well. If only a single node is infected, updates will rapidly spread across all nodes using 

either form of anti-entropy, although push-pull remains the best strategy. Define a round 
as spanning a period in which every node will have taken the initiative once to exchange 

updates with a randomly chosen other node. It can then be shown that the number of rounds 
to propagate a single update to all nodes takes     (log(N)), where N is the number of nodes 

in the system. This indicates indeed that propagating updates is fast, but above all scalable. 

Specific variant of epidemic protocols is called rumor spreading . It works as follows. If node 
P has just been updated for data item x, it contacts an arbitrary other node Q and tries to push 

the update to Q. However, it is possible that Q was already updated by another node. In that 

case, P may lose interest in spreading the update any further, say with probability pstop. In other 

words, it then becomes removed. 

Rumor spreading is gossiping analogous to real life. When Bob has some hot news to 
spread around, he may phone his friend Alice telling her all about it.  Alice, like Bob, will 

be really excited to spread the rumor to her friends as well. However, she will become 
disappointed when phoning a friend, say Chuck, only to hear that the news has already 

reached him. Chances are that she will stop phoning other friends, for what well is it if they 

already know? 

Rumor spreading turns out to be an excellent way of rapidly spread- ing news. However, 

it cannot guarantee that all nodes will actually be up- dated [Demers et al., 1987]. In fact, 
when there is a large number of nodes that participate in the epidemics, the fraction s of nodes 

that will remain ignorant of an update, that is, remain susceptible, satisfies the equation: 

s = e−(1/pstop+1)(1−s)

To get an idea of what this means, take a look at Figure 4.40, which shows s as a 

function of psto p. Even for high values of pstop  we see that the fraction of nodes that 
remains ignorant is relatively low, and always less that approximately 0.2. For pstop = 0.20 

it can be shown that s = 0.0025. However, in those cases when ps top  is relatively high, 

additional measures will need to be taken to ensure that all nodes are updated. 

One of the main advantages of epidemic algorithms is their scalability, due to the fact that the 

number of synchronizations between processes is relatively small compared to other 

propagation methods. For wide-area systems, Lin and Marzullo [1999] have shown that it 

makes sense to take the actual network topology into account to achieve better results. In that 

case, nodes that are connected to only a few other nodes are contacted with a relatively high 
probability. The underlying assumption is that such nodes form a bridge to other remote parts 

of the network; therefore, they should be contacted as soon as possible. This approach is 
referred to as directional gossiping and comes in different variants. 

This problem touches upon an important assumption that most epidemic solutions make, 

namely that a node can randomly select any other node to gossip with. This implies that, 

in principle, the complete set of nodes should 

Removing Data 

Epidemic algorithms are extremely good for spreading updates. However, they have a 
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rather strange side-effect:  spreading the deletion of a data item is hard. The essence of the 

problem lies in the fact that deletion of a data item destroys all information on that item. 
Consequently, when a data item is simply removed from a node, that node will eventually 

receive old copies of the data item and interpret those as updates on something it did not 
have before. 

The trick is to record the deletion of a data item as just another update, and keep a record of 

that deletion. In this way, old copies will not be interpreted as something new, but merely 

treated as versions that have been updated by a delete operation. The recording of a deletion 

is done by spreading death certificates of course, the problem with death certificates is that 
they should eventually be cleaned up, or otherwise each node will gradually build a huge 

local database of historical information on deleted data items that is otherwise not used. 

Demers et al. [1987] propose to use what are called dormant death certificates. Each death 
certificate is timestamped when it is created. If it can be assumed that updates propagate to  

all nodes within a known finite time, then death certificates can be removed after this 

maximum propagation time has elapsed. 

However, to provide hard guarantees that deletions are indeed spread to all nodes, only a 

very few nodes maintain dormant death certificates that are never thrown away. Assume 
node P has such a certificate for data item x. If by any chance an obsolete update for x 

reaches P, P will react by simply spreading the death certificate for x again. 
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Names play an important role in all computer systems. They are used to share resources, to 

uniquely identify entities, to refer to locations, and more. An important issue with naming is 

that a name can be resolved to the entity it refers to. Name resolution thus allows a process to 
access the named entity. To resolve names, it is necessary to implement a naming system. The 

difference between naming in distributed systems and no distributed systems lies in the way 

naming systems are implemented. 

In a distributed system, the implementation of a naming system is itself often distr ibuted 

across multiple machines. How this distribution is done plays a key role in the efficiency 

and scalability of the naming system. In this chapter, we concentrate on three different, 

important ways that names are used in distributed systems. 

First, we consider so-called flat-naming systems. In such systems, entities are referred to by 
an identifier that, in principle, has no meaning at all. In addi- tion, flat names bare no structure, 

implying that we need special mechanisms to trace the location of such entities. We discuss 
various approaches, ranging from chains of forwarding links, to distributed hash tables, to 

hierarchical location services. 

In practice, humans prefer to use readable names.  Such names are of- ten structured, as is 

well known from the way Web pages are referred to. Structured names allow for a highly 

systematic way of finding the server responsible for the named entity, as exemplified by the 
Domain Name System. We discuss the general principles, as well as scalability issues. 

Finally, humans often prefer to describe entities by means of various characteristics, leading to 

a situation in which we need to resolve a description by means of the attributes assigned to 
an entity. As we shall see, this type of name resolution is notoriously difficult, especially in 

combination with searching. Names, identifiers, and addresses 

Let us start by taking a closer look at what a name actually is. A name in a distr ibuted 

system is a string of bits or characters that is used to refer to an entity. An entity in a 

distributed system can be practically anything. Typical examples include resources such 

as hosts, printers, disks, and files. Other well-known examples of entities that are often 

explicitly named are processes, users, mailboxes, newsgroups, Web pages, graphical 
windows, messages, network connections, and so on. 

Entities can be operated on. For example, a resource such as a printer offers an interface 

containing operations for printing a document, requesting the status of a print job, and the 
like. Furthermore, an entity such as a network connection may provide operations for sending 

and receiving data, setting quality-of-service parameters, requesting the status, and so 
forth. To operate on an entity, it is necessary to access it, for which we need an access 

point. An access point is yet another, but special, kind of entity in a distributed system. 
The name of an access point is called an address. The address of an access point of an 

entity is also simply called an address of that entity. 
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An entity can offer more than one access point. As a comparison, a telephone can be viewed 

as an access point of a person, whereas the telephone number corresponds to an address. 
Indeed, many people nowadays have several telephone numbers, each number corresponding 

to a point where they can be reached. In a distributed system, a typical example of an access 
point is a host running a specific server, with its address formed by the combination of, for 

example, an IP address and port number (i.e., the server’s transport-level address). 

An entity may change its access points in the course of time. For example, when a mobile 

computer moves to another location, it is often assigned a different IP address than the one 

it had before. Likewise, when a person moves to another city or country, it is often 
necessary to change telephone numbers as well. In a similar fashion, changing jobs or 

Internet Service Providers, means changing your e-mail address. 

An address is thus just a special kind of name: it refers to an access point of an entity. 
Because an access point is tightly associated with an entity, it would seem convenient to  

use the address of an access point as a regular name for the associated entity. Nevertheless, 

this is hardly ever done as such naming is generally very inflexible and often human 

unfriendly. 

For example, it is not uncommon to regularly reorganize a distributed system so that a 
specific server is now running on a different host than previously. The old machine on 

which the server used to be running may be reassigned to a completely different server.  
In other words, an entity may easily change an access point, or an access point may be 

reassigned to a different entity. If an address is used to refer to an entity, we will have 

an invalid reference the instant the access point changes or is reassigned to another entity. 
Therefore, it is much better to let a service be known by a separate name independent of 

the address of the associated server. 

Likewise, if an entity offers more than one access point, it is not clear which address to use as 

a reference. For instance, many organizations distribute their Web service across several 

servers. If we would use the addresses of those servers as a reference for the Web service, it is  
not obvious which address should be chosen as the best one. Again, a much better solution 

is to have a single name for the Web service independent from the addresses of the different 

Web servers. 

These examples illustrate that a name for an entity that is independent from its addresses 

is often much easier and more flexible to use. Such a name is called location independent. In 

addition to addresses, there are other types of names that deserve special treatment, such 

as names that are used to uniquely identify an entity.   A true identifier is a name that has 
the following properties[26]. 

1. An identifier refers to at most one entity. 

2. Each entity is referred to by at most one identifier. 

3. An identifier always refers to the same entity (i.e., it is never reused). 

By using identifiers, it becomes much easier to unambiguously refer to an entity. For 

example, assume two processes each refer to an entity by means of an identifier. To check 

if the processes are referring to the same entity, it is sufficient to test if the two identifiers 

are equal. Such a test would not be sufficient if the two processes were using regular, no 
unique, no identifying names. For example, the name “John Smith” cannot be taken as a 

unique reference to just a single person. 
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Likewise, if an address can be reassigned to a different entity, we cannot use an address as 

an identifier. Consider the use of telephone numbers, which are reasonably stable in the sense 
that a telephone number will often for some time refer to the same person or organization. 

However, using a telephone number as an identifier will not work, as it can be reassigned 
in the course of time. Consequently, Bob’s new bakery may be receiving phone calls for 

Alice’s old antique store for a long time. In this case, it would have been better to use a true 

identifier for Alice instead of her phone number. 

Addresses and identifiers are two important types of names that are each used for very different 

purposes. In many computer systems, addresses and identifiers are represented in machine-
readable form only, that is, in the form of bit strings. For example, an Ethernet address is 

essentially a random string of 48 bits. Likewise, memory addresses are typically represented 

as 32-bit or 64-bit strings. 

Another important type of name is that which is tailored to be used by humans, also referred to 

as human-friendly names. In contrast to addresses and identifiers, a human-friendly name is 

generally represented as a character string. These names appear in many different forms. For 

example, files in UNIX systems have character-string names that can generally be as long as 

255 characters, and which are defined entirely by the user. Similarly, DNS names are 
represented as relatively simple case-insensitive character strings. Having names, identifiers, 

and addresses brings us to the central theme of this chapter: how do we resolve names and 
identifiers to addresses? Before we go into various solutions, it is important to realize that 

there is often a close relationship between name resolution in distributed systems and message 

routing. In principle, a naming system maintains a name-to- address binding which in its 
simplest form is just a table of (name, address) pairs. However, in distributed systems that span 

large networks and for which many resources need to be named, a centralized table is not 
going to work. 

Instead, what often happens is that a name is decomposed into several parts such as 

ftp.cs.vu.nl. and that name resolution takes place through a recursive lookup of those parts. 
For example, a client needing to know the address of the FTP server named by ftp.cs.vu.nl. 

would first resolve nl to find the server NS(nl) responsible for names that end with nl, after 

which the rest of the name is passed to server NS(nl). This server may then resolve the name 

vu to the server NS(vu.nl) responsible for names that end with vu.nl. who can further handle 

the remaining name ftp.cs. Eventually, this leads to routing the name resolution request as: 

NS(.) → NS(nl) →  NS(vu.nl) → address of ftp.cs.vu.nl 

where NS(.) denotes the server that can return the address of NS(nl), also known as the root 
server. NS(vu.nl) will return the actual address of the FTP server. It is interesting to note that 

the boundaries between name resolution and message routing are starting to blur. 

Flat naming 

Above, we explained that identifiers are convenient to uniquely represent entities. In many 

cases, identifiers are simply random bit strings, which we conveniently refer to as 

unstructured, or flat names. An important property of such a name is that it does not contain 

any information whatsoever on how to locate the access point of its associated entity. In the 

following, we will take a look at how flat names can be resolved, or, equivalently, how we 
can locate an entity when given only its identifier. 
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Broadcasting 

Consider a distributed system built on a computer network that offers efficient broadcasting 
facilities. Typically, such facilities are offered by local-area networks in which all 

machines are connected to a single cable or the logical equivalent thereof. Also, local-area 
wireless networks fall into this category. 

Locating an entity in such an environment is simple: a message containing the identifier of the 

entity is broadcast to each machine and each machine is requested to check whether it has that 

entity. Only the machines that can offer an access point for the entity send a reply message 

containing the address of that access point. 

This principle is used in the Internet Address Resolution Protocol (ARP) to find the data-

link address of a machine when given only an IP address. In essence, a machine broadcasts 

a packet on the local network asking who the owner of a given IP address is. When the 
message arrives at a machine, the receiver checks whether it should listen to the requested 

IP address. If so, it sends a reply packet containing, for example, its Ethernet address. 

Broadcasting becomes inefficient when the network grows. Not only is network bandwidth 

wasted by request messages, but, more seriously, too many hosts may be interrupted by 

requests they cannot answer. One possible solution is to switch to multicasting, by which only 
a restricted group of hosts receives the request. For example, Ethernet networks support data-

link level multicasting directly in hardware. 

Multicasting can also be used to locate entities in point-to-point networks. For example, the 

Internet supports network-level multicasting by allowing hosts to join a specific multicast 

group. Such groups are identified by a multicast address. When a host sends a message to a 
multicast address, the network layer provides a best-effort service to deliver that message to 

all group members.  

A multicast address can be used as a general location service for multiple entities. For 

example, consider an organization where each employee has his or her own mobile 

computer. When such a computer connects to the locally available network, it is 
dynamically assigned an IP address. In addition, it joins a specif ic multicast group. When 

a process wants to locate computer A, it sends a “where is A?” request to the multicast 

group. If A is connected, it responds with its current IP address. 

 Another way to use a multicast address is to associate it with a replicated entity, and to use 

multicasting to locate the nearest replica. When sending a request to the multicast address, 

each replica responds with its current (normal) IP address. A crude way to select the nearest 

replica is to choose the one whose reply comes in first, but as it turns out, selecting a nearest 
replica is generally not that easy. 

Forwarding pointers 

Another popular approach to locating mobile entities is to make use of for- warding 
pointers the principle is simple: when an entity moves from A to B, it leaves behind in A 

a reference to its new location at B. The main advantage of this approach is its simplicity: 

as soon as an entity has been located, for example by using a traditional naming service, a 

client can look up the current address by following the chain of forwarding pointers. 

There are also drawbacks. First, if no special measures are taken, a chain for a highly 
mobile entity can become so long that locating that entity is prohibitively expensive. 

Second, all intermediate locations in a chain will have to maintain their part of the chain of 
forwarding pointers as long as needed. A third drawback is the vulnerability to broken 
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links. As soon as any forwarding pointer is lost, the entity can no longer be reached. An 

important issue is, therefore, to keep chains relatively short, and to ensure that forwarding 
pointers are robust [27]. 

Distributed Hash Tables 

Let us now take a closer look at how to resolve an identifier to the address of the associated 

entity. We have already mentioned distributed hash tables a number of times, but have deferred 

discussion on how they actually work. In this section we correct this situation by first 

considering the Chord system as an easy-to-explain DHT-based system as display. 

In large distributed systems the collection of participating nodes can be expected to change all 

the time. Not only will nodes join and leave voluntarily, we also need to consider the case of 

nodes failing and thus effectively leaving the system, to later recover again at which point 
they rejoin. Joining a DHT-based system such as Chord is relatively simple. Suppose node 

p wants to join. It simply contacts an arbitrary node in the existing system and requests a 

lookup for succ (p + 1). Once this node has been identified, p can insert itself into the ring. 

Likewise, leaving can be just as simple. Note that nodes also keep track of their  

predecessor. 

Obviously, the complexity comes from keeping the finger tables up-to- date. Most 

important is that for every node q, FTq[1] is correct as this entry refers to the next node in 

the ring, that is, the successor of q + 1. In order to achieve this goal, each node q regularly runs 

a simple procedure that contacts succ(q + 1) and requests to return pred(succ(q + 1)). If q = 

pred(succ(q + 1)) then q knows its information is consistent with that of its successor. 

Otherwise, if q’s successor has updated its predecessor, then apparently a new node p had 

entered the system, with q < p      succ(q + 1), so that q will adjust FTq[1] to p. At that point, 

it will also check whether p has recorded q as its predecessor. If not, another adjustment of 

FTq[1] is needed. In a similar way, to update a f inger table, node q simply needs to find the 

successor for k = q + 2i−1 for each entry i. Again, this can be done by issuing a request to
resolve succ(k). In Chord, such requests are issued regularly by means of a background 

process. 

Likewise, each node q will regularly check whether its predecessor is alive. If the predecessor 

has failed, the only thing that q can do is record the fact by setting pred(q) to “unknown.” On 

the other hand, when node q is updating its link to the next known node in the ring, and finds 

that the predecessor of succ(q + 1) has been set to “unknown,” it will simply notify succ(q + 

1) that it suspects it to be the predecessor. By and large, these simple procedures ensure that a
Chord system is generally consistent, only perhaps with exception of a few nodes. 

Structured Naming 

Flat names are good for machines, but are generally not very convenient for humans to 
use. As an alternative, naming systems generally support structured names that are 

composed from simple, human-readable names. Not only file naming, but also host 

naming on the Internet follows this approach. In this section, we concentrate on structured 

names and the way that these names are resolved to addresses. 

Name Spaces 

Names are commonly organized into what is called a name space. Name spaces for structured 

names can be represented as a labeled, directed graph with two types of nodes. A leaf node 
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represents a named entity and has the property that it has no outgoing edges. A leaf node 

generally stores information on the entity it is representing for example, its address so that a 
client can access it. Alternatively, it can store the state of that entity, such as in the case of 

file systems in which a leaf node actually contains the complete file it is representing. We 
return to the contents of nodes below. 

In contrast to a leaf node, a directory node has a number of outgoing edges, each labeled 

with a name. Each node in a naming graph is considered as yet another entity in a 

distributed system, and, in particular, has an associated identifier. A directory node stores 

a table in which an outgoing edge is represented as a pair (node identifier, edge label). Such 
a table is called a directory table. 

The naming graph has one node, namely n0, which has only outgoing and no incoming 

edges. Such a node is called the root (node) of the naming graph. Although it is possible 
for a naming graph to have several root nodes, for simplicity, many naming systems have 

only one. Each path in a naming graph can be referred to by the sequence of labels 

corresponding to the edges in that path, such as N:[label1, label2, ..., labeln], where N refers to  

the first node in the path. Such a sequence is called a path name. If the first node in a path 

name is the root of the naming graph, it is called an absolute path name. Otherwise, it is 
called a relative path name. 

It is important to realize that names are always organized in a name space. As a consequence, 
a name is always defined relative only to a directory node. In this sense, the term “absolute 

name” is somewhat misleading. Likewise, the difference between global and local names can 

often be confusing. A global name is a name that denotes the same entity, no matter where 

that name is used in a system. In other words, a global name is always interpreted with respect 

to the same directory node. In contrast, a local name is a name whose interpretation depends 
on where that name is being used.    Put differently, a local name is essentially a relative 

name whose directory in which it is contained is (implicitly) known. 

This description of a naming graph comes close to what is implemented in many file 
systems. However, instead of writing the sequence of edge labels to represent a path 

name, path names in file systems are generally represented as a single string in which the 

labels are separated by a special separator character, such as a slash (“/”). This character is also 

used to indicate whether a path name is absolute. Instead of using n0: [home, steen, mbox], 

that is, the actual path name, it is common practice to use its string representation 
/home/steen/mbox. Note also that when there are several paths that lead to the same node, that 

node can be represented by different path names. For example, node n5 in Figure 5.11 can be 
referred to by /home/steen/keys as well as /keys. The string representation of path names can be 

equally well applied to naming graphs other than those used for only file systems. In Plan 9 all 

resources, such as processes, hosts, I/O devices, and network interfaces, are named in the same 
fashion as traditional files. This approach is analogous to implementing a single naming graph 

for all resources in a distributed system. 

There are many different ways to organize a name space. As we mentioned, most name spaces 

have only a single root node. In many cases, a name space is also strictly hierarchical in the 

sense that the naming graph is organized as a tree. This means that each node except the root 
has exactly one incoming edge; the root has no incoming edges. As a consequence, each node 

also has exactly one associated (absolute) path name. The naming graph is an example of 

directed acyclic graph. In such an organization, a node can have more than one incoming 

edge, but the graph is not permitted to have a cycle. There are also name spaces that do 
not have this restr iction. 
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Name Resolution 

Name spaces offer a convenient mechanism for storing and retrieving information about 
entities by means of names. More generally, given a path name, it should be possible to  

look up any information stored in the node referred to by that name. The process of looking 
up a name is called name resolution. 

To explain how name resolution works, let us consider a path name such as N:[label1, label2, 

..., labeln]. Resolution of this name starts at node N of the naming graph, where the name label1 

is looked up in the directory table, and which returns the identifier of the node to which label1 

refers. Resolution then continues at the identified node by looking up the name label2 in its  
directory table, and so on. Assuming that the named path actually exists, resolution stops at 

the last node referred to by labeln, by returning that node’s content. 

Closure Mechanism 

Name resolution can take place only if we know how and where to start. In our example, 

the starting node was given, and we assumed we had access to its directory table. Knowing 
how and where to start name resolution is generally referred to as a closure mechanism. 

Essentially, a closure mechanism deals with selecting the initial node in a name space from 

which name resolution is to start. What makes closure mechanisms sometimes hard to  
understand is that they are necessarily partly implicit and may be very different when 

comparing them to each other. 

As another example, consider the use of global and local names in distributed systems. A 

typical example of a local name is an environment variable. For example, in UNIX systems, 

the variable named HOME is used to refer to the home directory of a user. Each user has 

its own copy of this variable, which is initialized to the global, system wide name 

corresponding to the user’s home directory. The closure mechanism associated with 
environment variables ensures that the name of the variable is properly resolved by looking 

it up in a user-specific table[28]. 

Linking and mounting 

Strongly related to name resolution is the use of aliases. An alias is another name for the 

same entity. An environment variable is an example of an alias. In terms of naming graphs, 

there are basically two different ways to implement an alias. The first approach is to simply 

allow multiple absolute paths names to refer to the same node in a naming graph. This 

approach is illustrated in Figure 52, in which node n5 can be referred to by two different path 
names. In UNIX terminology, both path names /keys and /home/steen/keys in Figure 52 are 

called hard links to node n5. The second approach is to represent an entity by a leaf node, 
say N, but instead of storing the address or state of that entity, the node stores an absolute path 

name. When first resolving an absolute path name that leads to N, name resolution will return 

the path name stored in N, at which point it can continue with resolving that new path name. 

This principle corresponds to the use of symbolic links in Unix file systems. In this example, 

the path name /home/steen/keys, which refers to a node containing the absolute path name 
/keys, is a symbolic link to node n5. 

Name resolution as described so far takes place completely within a single name space. 

However, name resolution can also be used to merge different name spaces in a transparent 
way. Let us first consider a mounted file system. In terms of our naming model, a mounted file 

system corresponds to letting a directory node store the identifier of a directory node from a 

different name space, which we refer to as a foreign name space. The directory node storing 
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the node identifier is called a mount point. Accordingly, the directory node in the foreign name 

space is called a mounting point. Normally, the mounting point is the root of a name space. 
During name resolution, the mounting point is looked up and resolution proceeds by 

accessing its directory table.  

The principle of mounting can be generalized to other name spaces as well. In particular, 

what is needed is a directory node that acts as a mount point and stores all the necessary 

information for identifying and accessing the mounting point in the foreign name space. 

This approach is followed in many distr ibuted file systems. Consider a collection of name 

spaces that is distributed across different machines. In particular, each name space is 
implemented by a different server, each possibly running on a separate machine. Consequently, 

if we want to mount a foreign name space NS2 into a name space NS1, it may be necessary 

to communicate over a network with the server of NS2, as that server may be running on a 
different machine than the server for NS1. To mount a foreign name space in a distributed 

system requires at least the following information: 

1. The name of an access protocol. 

2. The name of the server. 

3. The name of the mounting point in the foreign name space. 

Note that each of these names needs to be resolved. The name of an access protocol needs to 

be resolved to the implementation of a protocol by which communication with the server of 
the foreign name space can take place. The name of the server needs to be resolved to an 

address where that server can be reached. As the last part in name resolution, the name of 

the mounting point needs to be resolved to a node identifier in the foreign name space. 

In no distributed systems, none of the three points may actually be needed. For example, in 

UNIX there is no access protocol and no server. Also, the name of the mounting point is not 
necessary, as it is simply the root directory of the foreign name space. 

The name of the mounting point is to be resolved by the server of the foreign name space. 

However, we also need name spaces and implementations for the access protocol and the 
server name. One possibility is to represent the three names listed above as a URL. To make 

matters concrete, consider a situation in which a user with a laptop computer wants to access 

files that are stored on a remote file server. The client machine and the file server are both 

configured with the Network File System (NFS).  

The name NFS is a well-known name in the sense that worldwide agreement exists on how to 

interpret that name. Given that we are dealing with a URL, the name nfs will be resolved 

to an implementation of the NFS protocol. The server name is resolved to its address using 
DNS, which is discussed in a later section. As we said, /home/steen is resolved by the server 

of the foreign name space. 
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A name space forms the heart of a naming service, that is, a service that allows users and 

processes to add, remove, and look up names. A naming service is implemented by name 

servers. If a distributed system is restricted to a local-area network, it is often feasible to 
implement a naming service by means of only a single name server. However, in large-scale 

distributed systems with many entities, possibly spread across a large geographical area, it is 

necessary to distribute the implementation of a name space over multiple name servers. 

Name Space Distribution 

Name spaces for a large-scale, possibly worldwide distributed system, are usually 

organized hierarchically. As before, assume such a name space has only a single root 

node. To effectively implement such a name space, it is convenient to partition it into 

logical layers. 

The global layer is formed by highest-level nodes, that is, the root node and other directory 

nodes logically close to the root, namely its children. Nodes in the global layer are often 
characterized by their stability, in the sense that directory tables are rarely changed. Such 

nodes may represent organizations, or groups of organizations, for which names are stored 

in the name space. The administrational layer is formed by directory nodes that together are 

managed within a single organization. A characteristic feature of the directory nodes in the 

administrational layer is that they represent groups of entities that belong to the same 
organization or administrational unit. For example, there may be a directory node for each 

department in an organization, or a directory node from which all hosts can be found. 

Another directory node may be used as the starting point for naming all users, and so forth. 
The nodes in the administrational layer are relatively stable, although changes generally 

occur more frequently than to nodes in the global layer [29]. 

Finally, the managerial layer consists of nodes that may typically change regularly. For 

example, nodes representing hosts in the local network belong to this layer. For the same 

reason, the layer includes nodes representing shared files such as those for libraries or 

binaries. Another important class of nodes includes those that represent user-defined 

directories and files. In contrast to the global and administrational layer, the nodes in the 
managerial layer are maintained not only by system administrators, but also by individual 

end users of a distributed system. 

To make matters more concrete, an example of the partitioning of part of the DNS name 
space, including the names of files within an organization that can be accessed through the 

Internet, for example, Web pages and transferable files. The name space is divided into no 
overlapping parts, called zones in DNS. A zone is a part of the name space that is 

implemented by a separate name server.  If we take a look at availability and performance, 
name servers in each layer have to meet different requirements. High availability is 

especially critical for name servers in the global layer.  
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If a name server fails, a large part of the name space will be unreachable because name 

resolution cannot proceed beyond the failing server. Performance is somewhat subtle. Due 
to the low rate of change of nodes in the global layer, the results of lookup operations 

generally remain valid for a long time. Consequently, those results can be effectively 
cached by the clients. The next time the same lookup operation is performed, the results can 

be retrieved from the client’s cache instead of letting the name server return the results.  As 

a result, name servers in the global layer do not have to respond quickly to  a single lookup 

request. On the other hand, throughput may be important, especially in large-scale systems 

with millions of users. 

The availability and performance requirements for name servers in the global layer can be 

met by replicating servers, in combination with client-side caching. Updates in this layer 

generally do not have to come into effect immediately, making it much easier to keep 
replicas consistent. Availability for a name server in the administrational layer is primarily 

important for clients in the same organization as the name server. If the name server fails, 

many resources within the organization become unreachable because they cannot be looked 

up. On the other hand, it may be less important that resources in an organization are temporarily 

unreachable for users outside that organization. 

With respect to performance, name servers in the administrational layer have similar  

characteristics as those in the global layer. Because changes to nodes do not occur all that 
often, caching lookup results can be highly effective, making performance less critical. 

However, in contrast to the global layer, the administrational layer should take care that 

lookup results are returned within a few milliseconds, either directly from the server or 
from the client’s local cache. Likewise, updates should generally be processed quicker than 

those of the global layer. For example, it is unacceptable that an account for a new user 
takes hours to become effective. 

These requirements can often be met by using relatively powerful machines to run name 

servers. In addition, client-side caching should be applied, combined with replication for 
increased overall availability. Availability requirements for name servers at the managerial 

level are generally less demanding. In particular, it often suffices to use a single machine 

to run name servers at the risk of temporary unavailability. However, performance is crucial: 

operations must take place immediately. Because updates occur regularly, client-side 

caching is often less effective.  

Table 1: Represented that A comparison between name servers for implement ing  
nodes from a large-scale name space partitioned into a global layer, an 
administrational layer, and a managerial layer. 

Issue Global Administrational Managerial 

Geographical scale Worldwide Organization Department 

Number of nodes Few Many Vast numbers 

Responsiveness to lookups Seconds Milliseconds Immediate 

Update propagation Lazy Immediate Immediate 

Number of replicas Many None or few None 

Client-side caching Yes Yes Sometimes 
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A comparison between name servers at different layers is shown in Table 1. In distr ibuted 

systems, name servers in the global and administrational layer are the most difficult to  
implement. Difficulties are caused by replication and caching, which are needed for 

availability and performance, but which also introduce consistency problems. Some of the 
problems are aggravated by the fact that caches and replicas are spread across a wide-area 

network, which may introduce long communication delays during lookups. 

The DNS Name Space 

The DNS name space is hierarchically organized as a rooted tree. A label is a case-

insensitive string made up of alphanumeric characters. A label has a maximum length of 
63 characters; the length of a complete path name is restricted to 255 characters. The string 

representation of a path name consists of listing its labels, starting with the rightmost one, 

and separating the labels by a dot (“.”). The root is represented by a dot. So, for example, 
the path name root: [nl, vu, cs, flits], is represented by the string “flits.cs.vu.nl.”, which 

includes the rightmost dot to indicate the root node. We generally omit this dot for 

readability because each node in the DNS name space has exactly one incoming edge (with 

the exception of the root node, which has no incoming edges), the label attached to a node’s 

incoming edge is also used as the name for that node. A subtree is called a domain a path name 
to its root node is called a domain name. Note that, just like a path name, a domain name can 

be either absolute or relative. The contents of a node is formed by a collection of resource 
records. There are different types of resource records. The major ones are shown in Table 

2. 

Table 2: Represented that the most important types of resource records forming the 
con- tents of nodes in the DNS name space. 

Type Refers to Description 

SOA Zone Holds info on the represented 

zone 

A Host IP addr. of host this node 
represents 

MX Domain Mail server to handle mail for this 
node 

SRV Domain Server handling a specific service 

NS Zone Name server for the represented 
zone 

CNAME Node Symbolic link 

PTR Host Canonical name of a host 

HINFO Host Info on this host 

TXT Any kind Any info considered useful 

A node in the DNS name space will often represent several entities at the same time. For 

example, a domain name such as vu.nl is used to represent a domain and a zone. In this 

case, the domain is implemented by means of several zones. An SOA (start of authority) 
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resource record contains information such as an e-mail address of the system administrator 

responsible for the represented zone, the name of the host where data on the zone can be 
fetched, and so on. 

An A (address) record, represents a particular host in the Internet. The A record contains 
an IP address for that host to allow communication. If a host has several IP addresses, as is 

the case with multi-homed machines, the node will contain an A record for each address. 

Another type of record is the MX (mail exchange) record, which is like a symbolic link 

to a node representing a mail server.  For example, the node representing the domain cs.vu.nl 

has an MX record containing the name zephyr.cs.vu.nl which refers to a mail server. That 
server will handle all incoming mail addressed to users in the cs.vu.nl domain. There may 

be several MX records stored in a node [30]. 

Related to MX records are SRV records, which contain the name of a server for a specific 
service.  The service itself is identified by means of a name along with the name of a 

protocol. For example, the Web server in the cs.vu.nl domain could be named by means of an 

SRV record such as _http_tcp.cs.vu.nl. This record would then refer to the actual name of 

the server (which is soling.cs.vu.nl). An important advantage of SRV records is that clients 

need no longer know the DNS name of the host providing a specif ic service. Instead, only 
service names need to be standardized, after which the providing host can be looked up. 

Nodes that represent a zone, contain one or more NS (name server) records. Like MX records, 
an NS record contains the name of a name server that implements the zone represented by 

the node.  In principle, each node in the name space can store an NS record referring to the 

name server that implements it. However, as we discuss below, the implementation of the 
DNS name space is such that only nodes representing zones need to store NS records. 

DNS distinguishes aliases from what are called canonical names. Each host is assumed to 
have a canonical, or primary name. An alias is implemented by means of node storing a 

CNAME record containing the canonical name of a host. The name of the node storing 

such a record is thus the same as a symbolic link. DNS maintains an inverse mapping of IP 
addresses to host names by means of PTR (pointer) records. To accommodate the lookups of 

host names when given only an IP address, DNS maintains a domain named in-addr.arpa, 

which contains nodes that represent Internet hosts and which are named by the IP address 

of the represented host. For example, host www.cs.vu.nl has IP address 130.37.20.20. DNS 

creates a node named 20.20.37.130.in-addr.arpa, which is used to store the canonical name of 

that host which happens to be soling.cs.vu.nl in a PTR record. Finally, an HINFO (host info) 

record is used to store additional information on a host such as its machine type and operating 
system. In a similar fashion, TXT records are used for any other kind of data that a user finds 

useful to store about the entity represented by the node.  

DNS Implementation 

In essence, the DNS name space can be divided into a global layer and an administrational 

layer. The managerial layer, which is generally formed by local file systems, is formally 

not part of DNS and is therefore also not managed by it. Each zone is implemented by a 

name server, which is vir tually always replicated for availability. Updates for a zone are 

normally handled by the primary name server. Updates take place by modifying the DNS 
database local to the primary server. Secondary name servers do not access the database 

directly, but, instead, request the primary server to transfer its content. The latter is called 
a zone transfer in DNS terminology. 
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A DNS database is implemented as a (small) collection of files, of which the most important 

one contains all the resource records for all the nodes in a particular zone. This approach 
allows nodes to be simply identified by means of their domain name, by which the notion 

of a node identifier reduces to an (implicit) index into a file. Web server, as well as the 
department’s FTP server are implemented by a single machine, called soling.cs.vu.nl. By 

executing both servers on the same machine (and essentially using that machine only for 

Internet services and not anything else), system management becomes easier. For example, 

both servers will have the same view of the file system, and for efficiency, part of the file 

system may be implemented on soling.cs.vu.nl. This approach is often applied in the case 
of WWW and FTP services. 

The Network File System 

As another, and very different example, consider naming in NFS. The funda- mental idea  
underlying the NFS naming model is to provide clients complete transparent access to a 

remote file system as maintained by a server. This transparency is achieved by letting a 

client be able to mount a remote file system into its own local file system. 

Instead of mounting an entire file system, NFS allows clients to mount only part of a 

file system, as also shown in Figure 7. A server is said to export a directory when it 
makes that directory and its entries available to clients. An exported directory can be 

mounted into a client’s local name space. This design approach has a serious implication: 
in principle, users do not share name spaces. The file named /remote/vu/mbox at client A is 

named /work/me/mbox at client B. A file’s name therefore depends on how clients 

organize their own local name space, and where exported directories are mounted. The 
drawback of this approach in a distributed file system is that sharing f iles becomes much 

harder. For example, Alice cannot tell Bob about a file using the name she assigned to that 
file, for that name may have a completely different meaning in Bob’s name space of files. 

There are several ways to solve this problem, but the most common one is to provide each 

client with a name space that is partly standardized. For example, each client may be 
using the local directory /usr/bin to mount a file system containing a standard collection of 

programs that are available to everyone. Likewise, the directory /local may be used as a 

standard to mount a local file system that is located on the client’ host. 

An NFS server can itself mount directories that are exported by other servers. However, it is  

not allowed to export those directories to its own clients. Instead, a client will have to 

explicitly mount such a directory from the server that maintains it, as shown in Figure 8. This 

restriction comes partly from simplicity. If a server could export a directory that it mounted 
from another server, it would have to return special file handles that include an identifier for 

a server. NFS does not support such file handles. 

FSA from which it exports the directory /packages. This directory contains a subdirectory 

/draw that acts as a mount point for a file system FSB that is exported by server B and mounted 

by A. Let A also export /packages/draw to its own clients, and assume that a client has mounted 
/packages into its local directory /bin. If name resolution is iterative, then to resolve the name 

/bin/draw/install, the client contacts server A when it has locally resolved /bin and requests A 

to return a file handle for directory /draw. In that case, server A should return a file handle that 
includes an identifier for server B, for only B can resolve the rest of the path name, in this 

case /install. As we have said, this kind of name resolution is not supported by NFS. 

Name resolution in earlier versions of NFS is strictly iterative in the sense that only a single 

file name at a time can be looked up. In other words, resolving a name such as /bin/draw/install 
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requires three separate calls to the NFS server. Moreover, the client is fully responsible for 

implementing the resolution of a path name. NFSv4 also supports recursive name lookups. 
In this case, a client can pass a complete path name to a server and request that server to resolve 

it. 

There is another peculiarity with NFS name lookups that has been solved with the most 

recent version (NFSv4). Consider a file server hosting several file systems. With the strict 

iterative name resolution, whenever a lookup is done for a directory on which another file 

system was mounted, the lookup would return the file handle of the directory. 

Subsequently reading that directory would return its original content, not that of the root 
directory of the mounted file system. 

To explain, assume that in our previous example that both file systems FSA and FSB are 

hosted by a single server. If the client has mounted /packages into its local directory /bin, 
then looking up the f ile name draw at the server would return the file handle for draw. A 

subsequent call to the server for listing the directory entries of draw by means of readdir 
would then return the list of directory entries that were originally stored in FSA in 

subdirectory/packages/draw. Only if the client had also mounted file system FSB, would it 

be possible to properly resolve the path name draw/install relative to /bin. 

NFSv4 solves this problem by allowing lookups to cross mount points at a server. In particular, 

lookup returns the file handle of the mounted directory instead of that of the original directory. 
The client can detect that the lookup has crossed a mount point by inspecting the file system 

identifier of the looked up file. If required, the client can locally mount that file system as 

well. A file handle is a reference to a file within a f ile system. It is independent of the name 
of the file it refers to. A file handle is created by the server that is hosting the file system 

and is unique with respect to all file systems exported by the server. It is created when the 
file is created. The client is kept ignorant of the actual content of a file handle; it is 

completely opaque.  

Ideally, a file handle is implemented as a true identif ier for a file relative to a file system. 

For one thing, this means that as long as the file exists, it should have one and the same file 

handle. This persistence requirement allows a client to store a file handle locally once the 
associated file has been looked up by means of its name. One benefit is performance: as 

most file operations require a file handle instead of a name, the client can avoid having to 

look up a name repeatedly before every file operation. Another benefit of this approach is 
that the client can now access the file regardless which (current) name it has because a file 

handle can be locally stored by a client, it is also important that a server does not reuse a file 

handle after deleting a file. Otherwise, a client may mistakenly access the wrong file when it 

uses its locally stored file handle. 

Note that the combination of iterative name lookups and not letting a lookup operation 
allow crossing a mount point introduces a problem with getting an initial file handle. In 

order to access files in a remote f ile system, a client will need to provide the server with a 
file handle of the directory where the lookup should take place, along with the name of the 

file or directory that is to be resolved. NFSv3 solves this problem through a separate mount 

protocol, by which a client actually mounts a remote f ile system. After mounting, the client 

is passed back the root file handle of the mounted file system, which it can subsequently 

use as a starting point for looking up names. 

In NFSv4, this problem is solved by providing a separate operation put roofs that tells the 

server to solve all file names relative to the root file handle of the file system it manages. 
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The root file handle can be used to look up any other file handle in the server’s file 

system. This approach has the additional benefit that there is no need for a separate mount 
protocol. Instead, mounting can be integrated into the regular protocol for looking up files. 

A client can simply mount a remote file system by requesting the server to resolve names 
relative to the file system’s root file handle using putrootfh. 

Attribute Based Naming 

Flat and structured names generally provide a unique and location-independent way of 

referring to entities. Moreover, structured names have been partly designed to provide a 

human-friendly way to name entities so that they can be conveniently accessed. In most cases, 
it is assumed that the name refers to only a single entity. However, location independence and 

human friendliness are not the only criterion for naming entities. In particular, as more 

information is being made available it becomes important to effectively search for entities. 
This approach requires that a user can provide merely a description of what he is looking 

for. 

There are many ways in which descriptions can be provided, but a popular one in distributed 

systems is to describe an entity in terms of (attribute, value) pairs, generally referred to as 

attribute-based naming.   In this approach, an entity is assumed to have an associated 
collection of attributes. Each attribute says something about that entity. By specifying which 

values a specific attribute should have, a user essentially constrains the set of entities that he 
is interested in. It is up to the naming system to return one or more entities that meet the 

user’s description. In this section we take a closer look at attribute-based naming systems. 

Directory services 

Attribute-based naming systems are also known as directory services, whereas systems that 

support structured naming are generally called naming systems. With directory services, 
entities have a set of associated attributes that can be used for searching. In some cases, the 

choice of attributes can be relatively simple. For example, in an e-mail system, messages 

can be tagged with attributes for the sender, recipient, subject, and so on. However, even 
in the case of e-mail, matters become difficult when other types of descriptors are needed, 

as is illustrated by the difficulty of developing filters that will allow only certain messages 

(based on their descriptors) to be passed through. What it all boils down to is that designing 

an appropriate set of attributes is not trivial. In most cases, attribute design has to be done 

manually. Even if there is consensus on the set of attributes to use, practice shows that 

setting the values consistently by a diverse group of people is a problem by itself, as many will 

have experienced when accessing music and video databases on the Internet. 

To alleviate some of these problems, research has been conducted on unifying the ways that 

resources can be described. In the context of distributed systems, one particularly relevant 

development is the resource descript ion framework (RDF). Fundamental to the RDF 
model is that resources are described as triplets consisting of a subject, a predicate, and an 

object. For example, (Person, name, Alice) describes a resource named Person whose name is 

Alice. In RDF, each subject, predicate, or object can be a resource itself. This means that 

Alice may be implemented as a reference to a f ile that can be subsequently retrieved. In 

the case of a predicate, such a resource could contain a textual description of that predicate. 
Resources associated with subjects and objects can be anything. References in RDF are 

essentially URLs. 

If resource descriptions are stored, it becomes possible to query that storage in a way that 

is common for many attribute-based naming systems. For example, an application could 
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ask for the information associated with a person named Alice. Such a query would return 

a reference to the person resource associated with Alice. This resource can then subsequently 
be fetched by the application. 

In this example, the resource descriptions are stored at a central location. There is no reason 
why the resources should reside at the same location as well. However, not having the 

descriptions in the same place may incur a serious performance problem. Unlike structured 

naming systems, looking up values in an attribute-based naming system essentially requires 

an exhaustive search through all descriptors. Various techniques can be applied to avoid 

such exhaustive searches, one obvious being indexing. When considering performance, an 
exhaustive search may be less of problem within a single, non-distributed data store, but 

simply sending a search query to hundreds of servers that jointly implement a distr ibuted 

data store is generally not such a good idea. In the following, we will take a look at different 
approaches to solving this problem in distributed systems.  

Hierarchical implementations: LDAP 

A common approach to tackling distributed directory services is to combine structured 

naming with attr ibute-based naming. This approach has been widely adopted, for example, 

in Microsoft’s Active Directory service and other systems. Many of these systems use, or 
rely on the lightweight directory access protocol commonly referred simply as LDAP. The 

LDAP directory service has been derived from OSI’s X.500 directory service. As with many 
OSI services, the quality of their associated implementations hindered widespread use, and 

simplifications were needed to make it useful. Detailed information on LDAP.  

Conceptually, an LDAP directory service consists of a number of records, usually referred 
to as directory entr ies. A directory entry is comparable to a resource record in DNS. Each 

record is made up of a collection of (at- tribute, value) pairs, where each attribute has an 
associated type. A distinction is made between single-valued attributes and multiple-valued 

attributes. The latter typically represent arrays and lists.  As an example, a simple directory 

entry identifying the network addresses of some general servers from Figure 5.23 is shown 
in Table 1. 

Table 1: Represented that the simple example of an LDAP directory entry using 
LDAP naming conventions. 

Attribute Abbr. Value 

Country C NL 

Locality L Amsterdam 

Organization O VU University 

Organizational 

Unit 

OU Computer Science 

Common Name CN Main server 

Mail_Servers – 137.37.20.3, 130.37.24.6, 

137.37.20.10 

FTP_Server – 130.37.20.20 

WWW_Server – 130.37.20.20 
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In our example, we have used a naming convention described in the LDAP standards, which 
applies to the first five attributes. The attributes Organization and Organization Unit describe, 

respectively, the organization and the department associated with the data that are stored in the 
record. Likewise, the attributes Locality and Country provide additional information on 

where the entry is stored. The Common Name attribute is often used as an (ambiguous) name to 

identify an entry within a limited part of the directory. For example, the name “Main server” 

may be enough to find our example entry given the specific values for the other four attributes 

Country, Locality, Organization, and Organizational Unit. In our example, only attribute 
Mail_Servers has multiple values associated with it. All other attributes have only a single 

value. 

The collection of all directory entr ies in an LDAP directory service is called a directory 
information base (DIB). An important aspect of a DIB is that each record is uniquely named 

so that it can be looked up. Such a globally unique name appears as a sequence of naming 

attributes in each record. Each naming attribute is called a relative distinguished name, or 

RDN for short. In our example in Figure 5.28 the first five attributes are all naming 

attributes. Using the conventional abbreviations for representing naming attributes in LDAP, 
as shown in Figure 5.28 the attributes Country, Organization, and Organizational Unit could 

be used to form the globally unique name /C = NL/O = VU University/OU = Computer Science. 
Analogous to the DNS name nl.vu.cs. 

As in DNS, the use of globally unique names by listing RDNs in sequence, leads to a hierarchy 

of the collection of directory entries, which is referred to as a directory information tree 
(DIT). A DIT essentially forms the naming graph of an LDAP directory service in which each 

node represents a directory entry. In addition, a node may also act as a directory in the 
traditional sense, in that there may be several children for which the node acts as parent. To 

explain, consider the naming graph as partly shown in Figure 56. (Recall that labels are 

associated with edges.) 

Node N corresponds to the directory entry at the same time, this node acts as a parent to a 

number of other directory entries that have an additional naming attribute Hostname that is 

used as an RDN. For example, such entries may be used to represent hosts.  A node in an 

LDAP naming graph can thus simultaneously represent a directory in the traditional sense 

as we discussed previously, as well as an LDAP record. This distinction is supported by 

two different lookup operations. The read operation is used to read a single record given its 

path name in the DIT. In contrast, the list operation is used to list the names of all outgoing 
edges of a given node in the DIT.  

Implementing an LDAP directory service proceeds in much the same way as implementing 

a naming service such as DNS, except that LDAP supports more lookup operations as we 
will discuss shortly. When dealing with a large- scale directory, the DIT is usually partitioned 

and distributed across several servers, known as directory service agents (DSA). Each part of 

a partitioned DIT thus corresponds to a zone in DNS. Likewise, each DSA behaves very 

much the same as a normal name server, except that it implements a number of typical 

directory services, such as advanced search operations. 

Clients are represented by what are called directory user agents, or simply DUA. A DUA is 

similar to a name resolver in structured-naming services. A DUA exchanges information 
with a DSA according to a standardized access protocol. What makes an LDAP 

implementation different from a DNS implementation are the facilities for searching through 
a DIB. In particular, facilities are provided to search for a directory entry given a set of 
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criteria that attributes of the searched entries should meet. For example, suppose that we want 

a list of all main servers at VU University. Using the notation defined in Howes [1997], such 
a list can be returned using a search operation like 

search(‘‘(C=NL)(O=VU University)(OU=*)(CN=Main server)’’) 

In this example, we have specif ied that the place to look for main servers is the 

organization named VU_University in country NL, but that we are not interested in a 

particular organizational unit. However, each returned result should have the CN attribute 

equal to Main_server. 

As we already mentioned, searching in a directory service is generally an expensive 
operation. For example, to find all main servers at VU University requires searching all 

entries at each department and combining the results in a single answer. In other words, we 

will generally need to access several leaf nodes of a DIT in order to get an answer. In 
practice, this also means that several DSAs need to be accessed. In contrast, naming 

services can often be implemented in such a way that a lookup operation requires accessing 

only a single leaf node. 

This whole setup of LDAP can be taken one step further by allowing several trees to co-

exist, while also being linked to each other. This approach is followed in Microsoft’s 
Active Directory leading to a forest of LDAP domains [Allen and Lowe-Norris, 2003]. 

Obviously, searching in such an organization can be overwhelmingly complex. To 
circumvent some of the scalability problems, Active Directory usually assumes there is a 

global index server (called a global catalog) that can be searched first. The index will 

indicate which LDAP domains need to be searched further. 

Although LDAP by itself already exploits hierarchy for scalability, it is common to 

combine LDAP with DNS. For example, every tree in LDAP needs to be accessible at the 
root (known in Active Directory as a domain controller). The root is often known under a 

DNS name, which, in turn, can be found through an appropriate SRV record as we 

explained above. 

Decentralized Implementations 

Notably with the advent of peer-to-peer systems, researchers have also been looking for 

solutions for decentralized attribute-based naming systems. In particular, peer-to-peer 

systems are often used to store files. Initially, files could not be searched—they could only 

be looked up by their key. However, having the possibility to search for a file based on 

descriptors can be extremely convenient, where each descriptor is nothing but an (attribute, 

value) pair. Obviously, querying every node in a peer-to-peer system to see if it contains a 
file matching one or more of such pairs is infeasible. What we need is a mapping of 

(attribute, value) pairs to index servers, which, in turn, point to files matching those pairs.
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In the previous chapters, we have looked at processes and communication between 
processes. While communication is important, it is not the entire story. Closely related is 

how processes cooperate and synchronize with one another. Cooperation is partly 

supported by means of naming, which allows processes to at least share resources, or 

entities in general. In this chapter, we mainly concentrate on how processes can 

synchronize and coordinate their actions. For example, it is important that multiple 

processes do not simultaneously access a shared resource, such as a file, but instead 

cooperate in granting each other temporary exclusive access. Another example is that multiple 
processes may sometimes need to agree on the ordering of events, such as whether message 

m1 from process P was sent before or after message m2 from process Q. 

Synchronization and coordination are two closely related phenomena. In process 
synchronization we make sure that one process waits for another to complete its operation. 

When dealing with data synchronization, the problem is to ensure that two sets of data are the 
same. When it comes to coordination, the goal is to manage the interactions and dependencies 

between activities in a distributed system. From this perspective, one could state that 

coordination encapsulates synchronization [31]. 

As it turns out, coordination in distr ibuted systems is often much more difficult compared 

to that in uniprocessor or multiprocessor systems. The problems and solutions that are 
discussed in this chapter are, by their nature, rather general, and occur in many different 

situations in distributed systems. We start with a discussion of the issue of synchronization 

based on actual time, followed by synchronization in which only relative ordering matters 

rather than ordering in absolute time. In many cases, it is important that a group of 

processes can appoint one process as a coordinator, which can be done by means of election 
algorithms. We discuss various election algorithms in a separate section.  

Before that, we look into a number of algorithms for coordinating mutual exclusion to a 

shared resource. As a special class of coordination problems, we also dive into location 
systems by which we place a process in a multidimensional plane. Such placements come 

in handy when dealing with very large distr ibuted systems. 

We already came across publish-subscribe systems, but have not yet dis- cussed in any 

detail how we actually match subscriptions to publications. There are many ways to do 

this and we look at centralized as well as decentralized implementations. Finally, we 
consider three different gossip-based coordination problems: aggregation, peer sampling, 

and overlay construction. 

Clock synchronization 

In a centralized system, time is unambiguous. When a process wants to know the time, it 

simply makes a call to the operating system. If process A asks for the time, and then a little 
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later process B asks for the time, the value that B gets will be higher than (or possibly equal 

to) the value A got. It will certainly not be lower. In a distributed system, achieving 
agreement on time is not trivial. Just think, for a moment, about the implications of the 

lack of global time on the UNIX make program, as a simple example. Normally, in Unix 
large programs are split up into multiple source files, so that a change to one source file 

requires only one file to be recompiled, not all the files. If a program consists of 100 files, 

not having to recompile everything because one file has been changed greatly increases the 

speed at which programmers can work. 

The way make normally works is simple. When the programmer has finished changing all 
the source files, he runs make, which examines the times at which all the source and object 

files were last modified. If the source file input.c has time 2151 and the corresponding 

object file input.o has time 2150, make knows that input.c has been changed since input.o was 
created, and thus input.c must be recompiled. On the other hand, if output.c has time 2144 and 

output.o has time 2145, no compilation is needed. Thus make goes through all the source files 

to find out which ones need to be recompiled and calls the compiler to recompile them. 

Now imagine what could happen in a distributed system in which there was no global 

agreement on time. Suppose that output has time 2144 as above, and shortly thereafter output 
is modified but is assigned time 2143 because the clock on its machine is slightly behind, 

as shown in Figure 1. Make will not call the compiler. The resulting executable binary program 
will then contain a mixture of object files from the old sources and the new sources. It will 

probably crash and the programmer will go crazy trying to understand what is wrong with the 

code. 

There are many more examples where an accurate account of time is needed. The example 

above can easily be reformulated to file timestamps in general. In addition, think of 
application domains such as financial brokerage, security auditing, and collaborative 

sensing, and it will become clear that accurate timing is important. Since time is so basic 

to the way people think and the effect of not having all the clocks synchronized can be so 
dramatic, it is fitting that we begin our study of synchronization with the simple question: 

Is it possible to synchronize all the clocks in a distributed system? The answer is 

surprisingly complicated. 

Physical clocks 

Nearly all computers have a circuit for keeping track of time. Despite the widespread use 

of the word “clock” to refer to these devices, they are not actually clocks in the usual sense. 

Timer is perhaps a better word. A computer timer is usually a precisely machined quartz 
crystal. When kept under tension, quartz crystals oscillate at a well-defined frequency that 

depends on the kind of crystal, how it is cut, and the amount of tension. Associated with 

each crystal are two registers, a counter and a holding register. Each oscillation of the crystal 
decrements the counter by one. When the counter gets to zero, an interrupt is generated and 

the counter is reloaded from the holding register. In this way, it is possible to program a 

timer to generate an interrupt 60 times a second, or at any other desired frequency. Each 

interrupt is called one clock tick. 
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When the system is booted, it usually asks the user to enter the date and time, which is then 

converted to the number of ticks after some known starting date and stored in memory. Most 
computers have a special battery-backed up CMOS RAM so that the date and time need 

not be entered on subsequent boots. At every clock tick, the interrupt service procedure 
adds one to the time stored in memory. In this way, the (software) clock is kept up to date. 

With a single computer and a single clock, it does not matter much if this clock is off by a 

small amount. Since all processes on the machine use the same clock, they will still be 

internally consistent. For example, if the file input.c has time 2151 and file input.o has time 

2150, make will recompile the source file, even if the clock is off by 2 and the true times are 
2153 and 2152, respectively. All that really matters are the relative times[32]. 

As soon as multiple CPUs are introduced, each with its own clock, the sit- uation changes 

radically. Although the frequency at which a crystal oscillator runs is usually fairly stable, 
it is impossible to guarantee that the crystals in different computers all run at exactly the 

same frequency. In practice, when a system has n computers, all n crystals will run at 

slightly different rates, causing the (software) clocks gradually to get out of sync and give 

different values when read out. This difference in time values is called c lock skew. As a 

consequence of this clock skew, programs that expect the time associated with a file, 
object, process, or message to be correct and independent of the machine on which it was 

generated (i.e., which clock it used) can fail, as we saw in the make example above. 

Clock Synchronization Algorithms 

If one machine has a UTC receiver, the goal becomes keeping all the other machines 

synchronized to it. If no machines have UTC receivers, each machine keeps track of its own 
time, and the goal is to keep all the machines together as well as possible. Many algorithms 

have been proposed for doing this synchronization. 

All clocks are based on some harmonic oscillator: an object that resonates at a certain 

frequency and from which we can subsequently derive time. Atomic clocks are based on 

the transitions of the cesium 133 atom, which is not only very high, but also very constant. 
Hardware clocks in most computers use a crystal oscillator based on quartz, which is also 

capable of producing a very high, stable frequency, although not as stable as that of atomic 

clocks. A software clock in a computer is derived from that computer’s hardware clock. 

In particular, the hardware clock is assumed to cause an interrupt f times per second. When 

this timer goes off, the interrupt handler adds 1 to a counter that keeps track of the number 

of ticks (interrupts) since some agreed- upon time in the past. This counter acts as a software 

clock C, resonating at frequency F. 

When the UTC time is t, denote by Cp(t) the value of the software clock on machine p. The 

goal of clock synchronization algorithms is to keep the deviation between the respective 

clocks of any two machines in a distributed system, within a specified bound, known as the 
precision π: 

∀t, ∀p, q : |Cp(t) − Cq(t)| ≤ π
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p F 0 dt F 

Note that precision refers to the deviation of clocks only between machines that are part of a 

distributed system. When considering an external reference point, like UTC, we speak of 
accuracy, aiming to keep it bound to a value α: 

∀t, ∀p : |Cp(t) − t| ≤ α 

The whole idea of clock synchronization is that we keep clocks precise, referred to as internal 
synchronization or accurate, known as external synchronization. A set of clocks that are 
accurate within bound α, will be precise within bound π = 2α. However, being precise does not 

allow us to conclude anything about the accuracy of clocks. 

 

 

In a perfect world, we would have  Cp(t) = t for  all  p and  all  t,  and thus α = π = 0. 

Unfortunately, hardware clocks, and thus also software clocks, are subject to clock drift: 

because their frequency is not perfect and affected by external sources such as temperature, 
clocks on different machines will gradually start  showing different  values for  time.  This 

is known as the clock drift rate: the difference per unit of time from a perfect reference 

clock. A typical quartz-based hardware clock has a clock drift rate of some 10−6 seconds 

per second, or approximately 31.5 seconds per year. Computer hardware clocks exist that 

have much lower drift rates. 

The specifications of a hardware clock include its maximum clock drift  rate ρ. If F(t) 

denotes the actual oscillator frequency of the hardware clock at time t and F its ideal (constant)  
frequency, then a hardware clock is living up

to its specifications 

if 

 

∀t : (1 − ρ) ≤ 

 

F(t) 

F 
≤ (1 + ρ) 

By using hardware interrupts we are directly coupling a software clock to the hardware 
clock, and thus also its clock drift rate. In particular, we have that 

C (t) = 
1 
∫  t 

F(t)dt, and thus:  
dCp (t) 

= 
F(t)

 

 

which brings us to our ultimate goal, namely keeping the software clock drift rate also 

bounded to ρ: 

∀t : 1 − ρ ≤ dCp(t) 

dt 
≤ 1 + ρ
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If two clocks are drifting from UTC in the opposite direction, at a time ∆t after they 

were synchronized, they may be as much as 2ρ ∆t apart. If the system designers want to 
guarantee a precision π, that is, that no two clocks ever differ by more than π seconds, clocks 

must be resynchronized (in software) at least every π/(2ρ) seconds. The various algorithms 
differ in precisely how this resynchronization is done.  

Network Time Protocol 

A common approach in many protocols and originally proposed by Cristian [1989], is to 

let clients contact a time server. The latter can accurately provide the current time, for 

example, because it is equipped with a UTC receiver or an accurate clock. The problem, 
of course, is that when contacting the server, message delays will have outdated the 

reported time.  

In this case, will send a request to B, timestamped with value  T1.  B, in turn, will record 
the time of receipt T2 (taken from its own local clock), and returns a response timestamped 

with value T3, and piggybacking the previously recorded value T2. Finally, A records the 

time of the response’s arrival, T4. Let us assume that the propagation delays from A to B 

is roughly the same as B to A, meaning that  

δTreq = T2    T1    T4     T3 = δTres. 

In that case, A can estimate its offset relative to B as 

θ = T3 + 
(T2 − T1) + (T4 − T3) − T4 = 

(T2 − T1) + (T3 − T4)

Of course, time is not allowed to run backward. If A’s clock is fast, θ < 0, meaning that A 

should, in principle, set its clock backward. This is not allowed as it could cause serious 

problems such as an object file compiled just after the clock change having a time earlier  
than the source which was modified just before the clock change. 

Such a change must be introduced gradually. One way is as follows. Suppose that the timer 
is set to generate 100 interrupts per second. Normally, each interrupt would add 10 msec to  

the time. When slowing down, the interrupt routine adds only 9 msec each time until the 

correction has been made. Similarly, the clock can be advanced gradually by adding 11 
msec at each interrupt instead of jumping it forward all at once. 

In the case of the network time protocol (NTP), this protocol is set up pairwise between 

servers. In other words, B will also probe A for its current time. The offset θ is computed as 

given above, along with the estimation δ for the delay: 

δ = 
(T4 − T1) − (T3 − T2) 

Eight pairs of (θ, δ) values are buffered, finally taking the minimal value found for δ as the 

best estimation for the delay between the two servers, and subsequently the associated value 
θ as the most reliable estimation of the offset.  

Applying NTP symmetrically should, in principle, also let B adjust its clock to that of A. 

However, if B’s clock is known to be more accurate, then such an adjustment would be 
foolish. To solve this problem, NTP divides servers into strata. A server with a reference clock 

such as a UTC receiver or an atomic clock, is known to be a stratum-1 server (the clock itself 

is said to operate at stratum 0). When A contacts B, it will adjust only its time if its own stratum 

level is higher than that of B. Moreover, after the synchronization, A’s stratum level will 

become one higher than that of B. In other words, if B is a stratum-k server, then A will become 
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a stratum-(k + 1) server if its original stratum level was already larger than k. Due to the 

symmetry of NTP, if A’s stratum level was lower than that of B, B will adjust itself to A. 
There are many important features about NTP, of which many relate to identifying and 

masking errors, but also security attacks. NTP was originally described in and is known to 
achieve (worldwide) accuracy in the range of 1–50 msec [33]. 

Mutual Exclusion 

Fundamental to distributed systems is the concurrency and collaboration among multiple 

processes. In many cases, this also means that processes will need to simultaneously access 

the same resources. To prevent that such concurrent accesses corrupt the resource, or make 
it inconsistent, solutions are needed to grant mutual exclusive access by processes. In this 

section, we take a look at some important and representative distr ibuted algorithms that 

have been proposed. 

A Centralized Algorithm 

A straightforward way to achieve mutual exclusion in a distributed system is to simulate 

how it is done in a one-processor system. One process is elected as the coordinator. 

Whenever a process wants to access a shared resource, it sends a request message to the 

coordinator stating which resource it wants to access and asking for permission. If no other 
process is currently accessing that resource, the coordinator sends back a reply granting 

permission. When the reply arrives, the requester can go ahead. 

Now suppose that another process, P2 in asks for permission to access the resource. The 

coordinator knows that a different process is already at the resource, so it cannot grant 

permission. The exact method used to deny permission is system dependent. In the 
coordinator just refrains from replying, thus blocking process P2, which is waiting for a 

reply. Alternatively, it could send a reply saying “permission denied.” Either way, it 
queues the request from P2 for the time being and waits for more messages. 

The coordinator takes the first item off the queue of deferred requests and sends that 

process a grant message.   If the process was still blocked (i.e., this is the first message to  
it), it unblocks and accesses the resource. If an explicit message has already been sent 

denying permission, the process will have to poll for incoming traffic or block later. Either  

way, when it sees the grant, it can go ahead as well. 

It is easy to see that the algorithm guarantees mutual exclusion: the coordinator lets only 

one process at a time access the resource. It is also fair, since requests are granted in the 

order in which they are received. No process ever waits forever no starvation. The scheme 

is easy to implement, too, and requires only three messages per use of resource request, 
grant, release. Its simplicity makes it an attractive solution for many practical situations. 

The centralized approach also has shortcomings. The coordinator is a single point of 

failure, so if it crashes, the entire system may go down. If processes normally block after  
making a request, they cannot distinguish a dead coordinator from “permission denied” 

since in both cases no message comes back. In addition, in a large system, a single 

coordinator can become a performance bottleneck. Nevertheless, the benefits coming from 

its simplicity outweigh in many cases the potential drawbacks.  

A Distributed Algorithm 

Using Lamport’s logical clocks, and inspired by Lamport’s original solution for distr ibuted 

mutual exclusion which we discussed provided the following algorithm. Their solution 
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requires a total ordering of all events in the system. That is, for any pair of events, such as 

messages, it must be unambiguous which one actually happened first. The algorithm works 
as follows. When a process wants to access a shared resource, it builds a message 

containing the name of the resource, its process number, and the current (logical) time. It 
then sends the message to all other processes, conceptually including itself. The sending 

of messages is assumed to be reliable; that is, no message is lost. When a process receives 

a request message from another process, the action it takes depends on its own state with 

respect to the resource named in the message. Three different cases have to be clearly 

distinguished: 

If the receiver is not accessing the resource and does not want to access it, it sends back 

an OK message to the sender. If the receiver already has access to the resource, it simply 

does not reply. Instead, it queues the request. If the receiver wants to access the resource 
as well but has not yet done so, it compares the timestamp of the incoming message with 

the one contained in the message that it has sent everyone. The lowest one wins. If the 

incoming message has a lower timestamp, the receiver sends back an OK message. If its 

own message has a lower timestamp, the receiver queues the incoming request and sends 

nothing. 

Process P0 sends everyone a request with timestamp 8, while at the same time, process P2 

sends everyone a request with timestamp 12. P1 is not interested in the resource, so it sends 
OK to both senders. Processes P0 and P2 both see the conflict and compare timestamps. 

P2 sees that it has lost, so it grants permission to P0 by sending OK. Process P0 now queues 

the request from P2 for later processing and accesses the resource, as shown in Figure 
60(b). When it is f inished, it removes the request from P2 from its queue and sends an OK 

message to P2, allowing the latter to go ahead, as shown in Figure 60(c). The algorithm 
works because in the case of a conflict, the lowest timestamp wins and everyone agrees on 

the ordering of the timestamps. 

Unfortunately, this algorithm has N points of failure. If any process crashes, it will fail to 
respond to requests. This silence will be interpreted (incorrectly) as denial of permission, thus 

blocking all subsequent attempts by all processes to enter any of their respective critical 

regions. The algorithm can be patched up as follows. When a request comes in, the receiver 

always sends a reply, either granting or denying permission. Whenever either a request or a 

reply is lost, the sender times out and keeps trying until either a reply comes back or the sender 

concludes that the destination is dead. After a request is denied, the sender should block 

waiting for a subsequent OK message. 

Another problem with this algorithm is that either a multicast communication primitive must 

be used, or each process must maintain the group membership list itself, including processes 

entering the group, leaving the group, and crashing. The method works best with small groups 
of processes that never change their group memberships. Finally, note that all processes are 

involved in all decisions concerning accessing the shared resource, which may impose a 

burden on processes running on resource-constrained machines. 

Various minor improvements are possible to this algorithm. For example, getting permission 

from everyone is overkill. All that is needed is a method to prevent two processes from 
accessing the resource at the same time. The algorithm can be modified to grant permission 

when it has collected permission from a simple majority of the other processes, rather than 
from all of them [34]. 
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A Token Ring Algorithm 

A completely different approach to deterministically achieving mutual ex- clusion in a 
distributed system. In software, we construct an overlay network in the form of a logical 

ring in which each process is assigned a position in the ring. All that matters is that each 
process knows who is next in line after itself. When the ring is initialized, process P0 is 

given a token. The token circulates around the ring. Assuming there are N processes, the 

token is passed from process Pk to process P(k+1) mod N in point-to-point messages.  

When a process acquires the token from its neighbor, it checks to see if it needs to access 

the shared resource. If so, the process goes ahead, does all the work it needs to, and releases 
the resources. After it has finished, it passes the token along the ring. It is not permitted to 

immediately enter the resource again using the same token. If a process is handed the token by 

its neighbor and is not interested in the resource, it just passes the token along. As a 
consequence, when no processes need the resource, the token just circulates around the ring. 

The correctness of this algorithm is easy to see. Only one process has the token at any 
instant, so only one process can actually get to the resource. Since the token circulates among 

the processes in a well-defined order, starvation cannot occur. Once a process decides it 

wants to have access to the resource, at worst it will have to wait for every other process to 
use the resource. 

This algorithm has its own problems. If the token is ever lost, for example, because its holder 

crashes or due to a lost message containing the token, it must be regenerated. In fact, 

detecting that it is lost may be difficult, since the amount of time between successive 

appearances of the token on the network is unbounded. The fact that the token has not been 

spotted for an hour does not mean that it has been lost; somebody may still be using it. 

The algorithm also runs into trouble if a process crashes, but recovery is relatively easy. If 
we require a process receiving the token to acknowledge receipt, a dead process will be 

detected when its neighbor tries to give it the token and fails. At that point the dead process 

can be removed from the group, and the token holder can throw the token over the head of the 
dead process to the next member down the line, or the one after that, if necessary. Of course, 

doing so requires that everyone maintains the current ring configuration. 

A Decentralized Algorithm 

Let us take a look at fully decentralized solution. Each resource is assumed to be replicated 

N times. Every replica has its own coordinator for controlling the access by concurrent 
processes. However, whenever a process wants to access the resource, it will simply need 

to get a majority vote from m > N/2 coordinators. We assume that when a coordinator 
does not give permission to access a resource which it will do when it had granted 

permission to another process, it will tell the requester. 

The assumption is that when a coordinator crashes, it recovers quickly but will have forgotten 

any vote it gave before it crashed. Another way of viewing this is that a coordinator resets itself 

at arbitrary moments. The risk that we are taking is that a reset will make the coordinator forget 
that it had previously granted permission to some process to access the resource. As a 

consequence, it may incorrectly grant this permission again to another process after its 

recovery. 

Election Algorithms 

Many distributed algorithms require one process to act as coordinator, initiator, or otherwise 

perform some special role. In general, it does not matter which process takes on this special 
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responsibility, but one of them has to do it. In this section we will look at algorithms for 

electing a coordinator. If all processes are exactly the same, with no distinguishing 
characteristics, there is no way to select one of them to be special. Consequently, we will 

assume that each process P has a unique identifier id(P). In general, election algorithms 
attempt to locate the process with the highest identifier and designate it as coordinator. 

The algorithms differ in the way they locate the coordinator.  

Furthermore, we also assume that every process knows the identifier of every other 

process. In other words, each process has complete knowledge of the process group in which 

a coordinator must be elected. What the processes do not know is which ones are currently 
up and which ones are currently down. The goal of an election algorithm is to ensure that 

when an election starts, it concludes with all processes agreeing on who the new coordinator 

is to be.  

The bully algorithm 

A well-known solution for electing a coordinator is the bully algorithm de- vised by 

Garcia-Molina [1982]. In the following, we consider N processes P0, . . . , PN 1   and let 

id(Pk) = k. When any process notices that the coordi- nator is no longer responding to 

requests, it initiates an election. A process, Pk, holds an election as follows: 

a. Pk sends an ELECTION message to all processes with higher identifiers:

Pk+1, Pk+2, . . . , PN−1.

b. If no one responds, Pk wins the election and becomes coordinator.

If one of the higher-ups answers, it takes over and Pk’s job is done. 

At any moment, a process can get an ELECTION message from one of its lower-numbered 

colleagues. When such a message arrives, the receiver sends an OK message back to the 

sender to indicate that he is alive and will take over. The receiver then holds an election, 
unless it is already holding one. Eventually, all processes give up but one, and that one is 

the new coordinator. It announces its victory by sending all processes a message telling them 

that starting immediately it is the new coordinator. 

If a process that was previously down comes back up, it holds an election. If it happens to  

be the highest-numbered process currently running, it will win the election and take over 
the coordinator’s job. Thus the biggest guy in town always wins, hence the name “bully 

algorithm.” 

The group consists of eight processes, with identifiers numbered from 0 to 7. Previously 
process P7 was the coordinator, but it has just crashed. Process P4 is the first one to notice 

this, so it sends ELECTION messages to all the processes higher than it, namely P5, P6, 
and P7, as shown in Figure 5(a). Processes P5 and P6 both respond with OK, as shown in 

Figure 5(b). Upon getting the first of these responses, P4 knows that its job is over, knowing 

that either one of P5 or P6 will take over and become coordinator. Process P4 just sits back 

and waits to see who the winner will be although at this point it can make a pretty good 

guess. 

In both P5 and P6 hold elections, each one sending messages only to those processes with 

identifiers higher than itself. At this point P6 knows that P7 is dead and that it (P6) is the 

winner. If there is state information to be collected from disk or elsewhere to pick up where 
the old coordinator left off, P6 must now do what is needed. When it is ready to take over, 
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it announces the takeover by sending a COORDINATOR message to all running 

processes. When P4 gets this message, it can now continue with the operation it was trying 
to do when it discovered that P7 was dead, but using P6 as the coordinator this time. In this 

way the failure of P7 is handled and the work can continue. 
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Consider the following election algorithm that is based on the use of a (logical) ring. Unlike 
some ring algorithms, this one does not use a token. We assume that each process knows 

who its successor is. When any process notices that the coordinator is not functioning, it 

builds an ELECTION message containing its own process identifier and sends the message 

to its successor. If the successor is down, the sender skips over the successor and goes to 

the next member along the ring, or the one after that, until a running process is located. At each 

step along the way, the sender adds its own identifier to the list in the message effectively 

making itself a candidate to be elected as coordinator. 

Eventually, the message gets back to the process that started it all. That pro- cess recognizes 

this event when it receives an incoming message containing its own identifier. At that point, 

the message type is changed to COORDINATOR and circulated once again, this time to inform 
everyone else who the coordinator is (the list member with the highest identifier) and who the 

members of the new ring are. When this message has circulated once, it is removed and 
everyone goes back to work. 

We see what happens if two processes, P3 and P6, discover simultaneously that the previous 

coordinator, process P7, and has crashed. Each of these builds an ELECTION message and 
each of them starts circulating its message, independent of the other one. Eventually, both 

messages will go all the way around, and both P3 and P6 will convert them into 
COORDINATOR messages, with exactly the same members and in the same order. When 

both have gone around again, both will be removed. It does no harm to have extra messages 

circulating; at worst it consumes a little bandwidth, but this is not considered wasteful [35]. 

Elections in Wireless Environments 

Traditional election algorithms are generally based on assumptions that are not realistic in 
wireless environments. For example, they assume that message passing is reliable and that 

the topology of the network does not change. These assumptions are false in most wireless 

environments, especially those for mobile ad hoc networks. 

Only few protocols for elections have been developed that work in ad hoc networks. A 

solution that can handle failing nodes and partitioning networks. An important property of 

their solution is that the best leader can be elected rather than just a random one as was 

more or less the case in the previously discussed solutions. Their protocol works as follows. 

To simplify our discussion, we concentrate only on ad hoc networks and ignore that nodes 
can move. 

Consider a wireless ad hoc network. To elect a leader, any node in the network, called the 
source, can initiate an election by sending an ELECTION message to its immediate 

neighbors (i.e., the nodes in its range). When a node receives an ELECTION for the first 

time, it designates the sender as its parent, and subsequently sends out an ELECTION message 
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to all its immediate neighbors, except for the parent. When a node receives an ELECTION 

message from a node other than its parent, it merely acknowledges the receipt. 

When node R has designated node Q as its parent, it forwards the ELECTION message to  

its immediate neighbors (excluding Q) and waits for acknowledgments to come in before 
acknowledging the ELECTION message from Q. This waiting has an important consequence. 

First, note that neighbors that have already selected a parent will immediately respond to R. 

More specifically, if all neighbors already have a parent, R is a leaf node and will be able to  

report back to Q quickly. In doing so, it will also report information such as its battery 

lifetime and other resource capacities. 

This information will later allow Q to compare R’s capacities to that of other downstream 

nodes, and select the best eligible node for leadership. Of course, Q had sent an ELECTION 

message only because its own parent P had done so as well. In turn, when Q eventually 
acknowledges the ELECTION message previously sent by P, it will pass the most eligible 

node to P as well. In this way, the source will eventually get to know which node is best to  

be selected as leader, after which it will broadcast this information to all other nodes. 

When multiple elections are initiated, each node will decide to join only one election. To 

this end, each source tags its ELECTION message with a unique identifier. Nodes will 
participate only in the election with the highest identifier, stopping any running 

participation in other elections. With some minor adjustments, the protocol can be shown to 
operate also when the network partitions, and when nodes join and leave.  

Elections in large-scale systems 

Many leader-election algorithms apply to only relatively small distributed systems. 
Moreover, algorithms often concentrate on the selection of only a single node. There are 

situations when several nodes should actually be selected, such as in the case of super 
peers in peer-to-peer networks. In this section, we concentrate specifically on the problem 

of selecting super peers. 

The following requirements need to be met for super-peer selection: 

A. Normal nodes should have low-latency access to super peers. 

B. Super peers should be evenly distributed across the overlay network. 

C. There should be a predefined portion of super peers relative to the total number of 

nodes in the overlay network. 

D. Each super peer should not need to serve more than a fixed number of normal 

nodes. 

Fortunately, these requirements are relatively easy to meet in most peer-to- peer systems, given 
the fact that the overlay network is either structured as in DHT-based systems, or randomly 

unstructured as, for example, can be realized with gossip-based solutions. In the case of DHT-

based systems, the basic idea is to reserve a fraction of the identifier space for super peers. 
In a DHT-based system, each node receives a random and uniformly assigned m-bit 

identifier. Now suppose we reserve the first (i.e., lef tmost) k bits to identify super peers. 

For example, if we need N superpeers, then the first log2(N) bits of any key can be used to 

identify these nodes. 

To explain, assume we have a (small) Chord system with m = 8 and k = 3. When 
looking up the node responsible for a specific key K, we can first decide to route the lookup 
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request to the node responsible for the pattern K 11100000 which is then treated as the 

superpeer.1 Note that each node with identifier ID can check whether it is a super peer by
looking up ID   11100000 to see if this request is routed to itself. Provided node identifiers are 

uniformly assigned to nodes, it can be seen that with a total of N nodes the number of super 

peers is, on average, equal to 2k−m N.

A completely different approach is based on positioning nodes in an m- dimensional 

geometric space. In this case, assume we need to place N super peers evenly throughout 
the overlay. The basic idea is simple: a total of N tokens are spread across N randomly 

chosen nodes. No node can hold more than one token. Each token represents a repelling 
force by which another token is inclined to move away. The net effect is that if all tokens exert 

the same repulsion force, they will move away from each other and spread themselves 

evenly in the geometric space. 

This approach requires that nodes holding a token learn about other tokens. To this end, 

we can use a gossiping protocol by which a token’s force is disseminated throughout the 

network. If a node discovers that the total forces that are acting on it exceed a threshold, it 

will move the token in the direction of the combined forces. When a token is held by a 

node for a given amount of time, that node will promote itself to super-peer. 

Location systems 

When looking at very large distributed systems that are dispersed across a wide-area 
network, it is often necessary to take proximity into account. Just imagine a distr ibuted 

system organized as an overlay network in which two processes are neighbors in the 

overlay network, but are actually placed far apart in the underlying network. If these two 
processes communicate a lot, it may have been better to ensure that they are also physically 

placed in each other’s proximity. In this section, we take a look at location-based techniques 

to coordinate the placement of processes and their communication. 

GPS: Global Positioning System 

Let us start by considering how to determine your geographical position anywhere on Earth. 
This positioning problem is by itself solved through a highly specific, dedicated distributed 

system, namely GPS, which is an acronym for Global Positioning System. GPS is a satellite-
based distributed system that was launched in 1978. Although it initially was used mainly for 

military applications, it by now has found its way too many civilian applications, notably for 

traffic navigation. However, many more application domains exist. For example, modern 

smartphones now allow owners to track each other’s position. This principle can easily be 

applied to tracking other things as well, including pets, children, cars, boats, and so on. 

GPS uses up to 72 satellites each circulating in an orbit at a height of approximately 20,000 

km. Each satellite has up to four atomic clocks, which are regularly calibrated from special 

stations on Earth. A satellite continuously broadcasts its position, and time stamps each 
message with its local time. This broadcasting allows every receiver on Earth to accurately 

compute its own position using, in principle, only four satellites. To explain, let us first assume 

that all clocks, including the receiver’s, are synchronized. 

In order to compute a position, consider first the two-dimensional case, in which three 

satellites are drawn, along with the circles representing points at the same distance from each 
respective satellite. We see that the intersection of the three circles is a unique point. 
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This principle of intersecting circles can be expanded to three dimensions, meaning that we 

need to know the distance to four satellites to determine the longitude, latitude, and altitude 
of a receiver on Earth. This positioning is all fairly straightforward, but determining the 

distance to a satellite becomes complicated when we move from theory to practice. There are 
at least two important real-world facts that we need to take into account: 

i. It takes a while before data on a satellite’s position reaches the receiver. 

ii. The receiver’s clock is generally not in sync with that of a satellite. 

Assume that the timestamp from a satellite is completely accurate. Let ∆r denote the 

deviation of the receiver’s clock from the actual time. When a message is received from 
satellite Si with timestamp Ti, then the measured delay ∆i by the receiver consists of two 

components: the actual delay, along with its own deviation: 

∆i = (Tnow − Ti) + ∆r 

where Tnow is the actual current time. As signals travel with the speed of light, c, the measured 

distance d˜i to satellite Si is equal to c ·  ∆i. With 

di = c ·  (Tnow − Ti) 

being the real distance between the receiver and satellite Si, the measured distance can be 

rewritten to d˜i = di + c ·  ∆r. The real distance is now computed 

d̃ i − c ·  ∆r = 
q

( xi − xr)2  + (yi − yr)2  + (zi − zr)2 

where xi, yi, and zi denote the coordinates of satellite Si. What we see now is a system of 

quadratic equations with four unknowns (xr, yr, zr, and also ∆r). We thus need four reference 

points (i.e., satellites) to find a unique solution that will also give us ∆r. A GPS measurement 

will thus also give an account of the actual time. 

So far, we have assumed that measurements are perfectly accurate. Of course, they are not.   

There are many sources of errors, starting with the fact that the atomic clocks in the 
satellites are not always in perfect sync, the position of a satellite is not known precisely, 

the receiver’s clock has a finite accuracy, the signal propagation speed is not constant (as 

signals appear to slow down when entering, e.g., the ionosphere), and so on. On average, 
this leads to an error of some 5–10 meters. Special modulation techniques, as well as 

special receivers, are needed to improve accuracy. Using so-called differential GPS, by 

which corrective information is sent through wide-area links, accuracy can be further 

improved. 

When GPS is Not an Option 

A major drawback of GPS is that it can generally not be used indoors. For that purpose, 

other techniques are necessary. An increasingly popular technique is to make use of the 
numerous WiFi access points available. The basic idea is simple: if we have a database of 

known access points along with their coordinates, and we can estimate our distance to  an 

access point, then with only three detected access points, we should be able to compute our 

position. Of course, it really is not that simple at all. 

A major problem is determining the coordinates of an access point. A popular approach is 
to do this through war driving: using a WiFi-enabled device along with a GPS receiver, 

someone drives or walks through an area and records observed access points. An access point 
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can be identified through its SSID or its  MAC-level  network  address.  Accuracy can be 

improved by taking the observed signal strength into account, and giving more weight to a 
location with relatively high observed signal strength than to a location where only a weak 

signal was detected. In the end, we obtain an estimation of the coordinates of the access 
point. The accuracy of this estimation is strongly influenced by: 

1. The accuracy of each GPS detection point →xi 

2. The fact that an access point has a non-uniform transmission range 

3. The number of sampled detection points N. 

Studies show that estimates of the coordinates of an access point may be tens of meters off 
from the actual location. Moreover, access points come and go at a relatively high rate. 

Nevertheless, locating and positioning access points is widely popular, exemplified by the 

open-access Wigle database which is populated through crowd sourcing.  

Logical Positioning of Nodes 

Instead of trying to find the absolute location of a node in a distributed system, an alternative 

is to use a logical, proximity-based location. In geometric overlay networks each node is 

given a position in an m-dimensional geometric space, such that the distance between two 

nodes in that space reflects a real- world performance metric. Computing such a position is the 
core business of a Network Coordinates System, or simply NCS, which are surveyed by Donnet 

et al. [2010]. The simplest, and most applied example, is where distance corresponds to 

internode latency. In other words, given two nodes P and Q, then the distance d (̂P, Q) 

reflects how long it would take for a message to travel from P to Q and vice versa. We use 

the notation d  ̂to denote distance in a system where nodes have been assigned coordinates. 

There are many applications of geometric overlay networks. Consider the situation where a 

Web site at server O has been replicated to multiple servers S1, . . . , SN on the Internet. When 

a client C requests a page from O, the latter may decide to redirect that request to the server 

closest to C, that is, the one that will give the best response time. If the geometric location 

of C is known, as well as those of each replica server, O can then simply pick that server Si 

for which d (̂C, Si) is minimal. Note that such a selection requires only local processing at 

O. In other words, there is, for example, no need to sample all the latencies between C and 
each of the replica servers. 

Another example is optimal replica placement.   Consider again a Web site that has 

gathered the positions of its clients. If the site were to replicate its content to N servers, it 
can compute the N best positions where to place replicas such that the average client-to-

replica response time is minimal. Performing such computations is almost trivially feasible 

if clients and servers have geometric positions that reflect internode latencies. 

As a last example, consider position-based routing (see, e.g., [Popescu et al., 2012] or [Bilal 

et al., 2013]). In such schemes, a message is forwarded to its destination using only 
positioning information. For example, a naive routing algorithm to let each node forward a 

message to the neighbor closest to the destination. Although it can be easily shown that this 
specific algorithm need not converge, it illustrates that only local information is used to take a 

decision. There is no need to propagate link information or such to all nodes in the network, 

as is the case with conventional routing algorithm
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An important issue in distributed systems is the replication of data. Data are generally  
replicated to enhance reliability or improve performance. One of the major problems is 

keeping replicas consistent. Informally, this means that when one copy is updated we need 

to ensure that the other copies are updated as well; otherwise the replicas will no longer be 

the same. In this chapter, we take a detailed look at what consistency of replicated data actually 

means and the various ways that consistency can be achieved. 

We start with a general introduction discussing why replication is useful and how it relates 

to scalability. We then continue by focusing on what consistency actually means. An 
important class of what are known as consistency models assumes that multiple processes 

simultaneously access shared data. Consistency for these situations can be formulated with 

respect to what processes can expect when reading and updating the shared data, knowing 
that others are accessing that data as well. 

Consistency models for shared data are often hard to implement efficiently in large-scale 
distributed systems. Moreover, in many cases simpler models can be used, which are also 

often easier to implement. One specif ic class is formed by client-centr ic consistency 

models, which concentrate on consistency from the perspective of a single (possibly 
mobile) client. Client-centric consistency models are discussed in a separate section. 

Consistency is only half of the story. We also need to consider how consistency is actually 
implemented.   There are essentially two, more or less independent, issues we need to 

consider. First of all, we start with concentrating on managing replicas, which takes into 

account not only the placement of replica servers, but also how content is distributed to  

these servers. 

The second issue is how replicas are kept consistent. In most cases, applications require a 
strong form of consistency. Informally, this means that updates are to be propagated more or 

less immediately between replicas. There are various alternatives for implementing strong 

consistency, which are discussed in a separate section. Also, attention is paid to caching 
protocols, which form a special case of consistency protocols. 

Being arguably the largest distributed system, we pay separate attention to caching and 

replication in Web-based systems, notably looking at content delivery networks as well as 

edge-server caching techniques[36]. 

Introduction 

In this section, we start with discussing the important reasons for wanting to replicate data in 

the first place. We concentrate on replication as a technique for achieving scalability, and 
motivate why reasoning about consistency is so important. 
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Reasons for replication 

There are two primary reasons for replicating data. First, data are replicated to increase the 
reliability of a system. If a file system has been replicated it may be possible to continue 

working after one replica crashes by simply switching to one of the other replicas. Also, 
by maintaining multiple copies, it becomes possible to provide better protection against 

corrupted data. For example, imagine there are three copies of a file and every read and 

write operation is performed on each copy. We can safeguard ourselves against a single, 

failing write operation, by considering the value that is returned by at least two copies as 

being the correct one. 

The other reason for replicating data is performance. Replication for performance is important 

when a distributed system needs to scale in terms of size or in terms of the geographical area it 

covers. Scaling with respect to size occurs, for example, when an increasing number of 
processes needs to access data that are managed by a single server. In that case, performance 

can be improved by replicating the server and subsequently dividing the workload among the 

processes accessing the data. 

Scaling with respect to a geographical area may also require replication. The basic idea is 

that by placing a copy of data in proximity of the process using them, the time to access 
the data decreases. As a consequence, the performance as perceived by that process 

increases. This example also illus trates that the benefits of replication for performance may 
be hard to evaluate. Although a client process may perceive better performance, it may also 

be the case that more network bandwidth is now consumed keeping all replicas up to date. 

If replication helps to improve reliability and performance, who could be against it? 
Unfortunately, there is a price to be paid when data are replicated. The problem with 

replication is that having multiple copies may lead to consistency problems. Whenever a 
copy is modified, that copy becomes different from the rest. Consequently, modifications 

have to be carried out on all copies to ensure consistency. Exactly when and how those 

modifications need to be carried out determines the price of replication. 

To understand the problem, consider improving access times to Web pages. If no special 

measures are taken, fetching a page from a remote Web server may sometimes even take 

seconds to complete. To improve performance, Web browsers often locally store a copy 

of a previously fetched Web page (i.e., they cache a Web page). If a user requires that page 

again, the browser automatically returns the local copy. The access time as perceived by the 

user is excellent. However, if the user always wants to have the latest version of a page, 

he may be in for bad luck. The problem is that if the page has been modified in the 
meantime, modifications will not have been propagated to cached copies, making those 

copies out-of-date. 

One solution to the problem of returning a stale copy to the user is to forbid the browser to 
keep local copies in the first place, effectively letting the server be fully in charge of 

replication. However, this solution may still lead to poor access times if no replica is placed 

near the user. Another solution is to let the Web server invalidate or update each cached 

copy, but this requires that the server keeps track of all caches and sending those 

messages. This, in turn, may degrade the overall performance of the server. We return to  
performance versus scalability issues below: 
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Replication as scaling technique 

Replication and caching for performance are widely applied as scaling techniques. 
Scalability issues generally appear in the form of performance problems. Placing copies 

of data close to the processes using them can improve performance through reduction of 
access time and thus solve scalability problems. 

A possible trade-off that needs to be made is that keeping copies up to date may require more 

network bandwidth. Consider a process P that accesses a local replica N times per second, 

whereas the replica itself is updated M times per second. Assume that an update completely 

refreshes the previous version of the local replica. If N   M, that is, the access-to-update 
ratio is very low, we have the situation where many updated versions of the local replica 

will never be accessed by P, rendering the network communication for those versions 

useless. In this case, it may have been better not to install a local replica close to P, or to  
apply a different strategy for updating the replica. 

A more serious problem, however, is that keeping multiple copies consistent may itself be 

subject to serious scalability problems. Intuitively, a collection of copies is consistent when 

the copies are always the same. This means that a read operation performed at any copy 

will always return the same result. Consequently, when an update operation is performed 
on one copy, the update should be propagated to all copies before a subsequent operation 

takes place, no matter at which copy that operation is initiated or performed. 

This type of consistency is sometimes informally (and imprecisely) referred to as tight 

consistency as provided by what is also called synchronous replication. The key idea is that 

an update is performed at all copies as a single atomic operation, or transaction. Unfor 
tunately, implementing atomicity involving a large number of replicas that may be widely 

dispersed across a large-scale network is inherently difficult when operations are also 
required to complete quickly. 

Difficulties come from the fact that we need to synchronize all replicas. In essence, this 

means that all replicas f irst need to reach agreement on when exactly an update is to be 
performed locally. For example, replicas may need to decide on a global ordering of 

operations using Lamport timestamps, or let a coordinator assign such an order. Global 

synchronization simply takes a lot of communication time, especially when replicas are 

spread across a wide-area network. 

We are now faced with a dilemma. On the one hand, scalability problems can be alleviated 

by applying replication and caching, leading to improved performance. On the other hand, to  

keep all copies consistent generally requires global synchronization, which is inherently 
costly in terms of performance. The cure may be worse than the disease. 

In many cases, the only real solution is to relax the consistency constraints. In other words, if 

we can relax the requirement that updates need to be executed as atomic operations, we may 
be able to avoid (instantaneous) global synchronizations, and may thus gain performance. 

The price paid is that copies may not always be the same everywhere. As it turns out, to  

what extent consistency can be relaxed depends highly on the access and update patterns 

of the replicated data, as well as on the purpose for which those data are used[37]. 

Data-centric consistency models 

Traditionally, consistency has been discussed in the context of read and write operations on 

shared data, available by means of distributed shared memory, a distributed shared database, 
or a (distributed) file system. Here, we use the broader term data store. A data store may 
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be physically distributed across multiple machines. In particular, each process that can access 

data from the store is assumed to have a local or nearby copy available of the entire store. Write 
operations are propagated to the other copies, as shown in Figure 67. A data operation is 

classified as a write operation when it changes the data, and is otherwise classified as a read 
operation. 

A consistency model is essentially a contract between processes and the data store. It says that 

if processes agree to obey certain rules, the store promises to work correctly. Normally, a 

process that performs a read operation on a data item, expects the operation to return a value 

that shows the results of the last write operation on that data. 

In the absence of a global clock, it is difficult to define precisely which write operation is 

the last one. As an alternative, we need to provide other definitions, leading to a range of 

consistency models. Each model effectively restricts the values that a read operation on a 
data item can return. As is to be expected, the ones with major restrictions are easy to use, 

for example when developing applications, whereas those with minor restrictions are 

generally considered to be difficult to use in practice. The trade-off is, of course, that the easy-

to-use models do not perform nearly as well as the difficult ones. Such is life. 

Continuous Consistency 

There is no such thing as a best solution to replicating data. Replicating data poses 

consistency problems that cannot be solved efficiently in a general way. Only if we loosen 
consistency can there be hope for attaining efficient solutions. Unfortunately, there are also no 

general rules for loosening consistency: exactly what can be tolerated is highly dependent 

on applications. 

There are different ways for applications to specify what inconsistencies they can tolerate. 

Yu and Vahdat [2002] take a general approach by distin- guishing three independent axes 
for defining inconsistencies: deviation in numerical values between replicas, deviation in  

staleness between replicas and deviation with respect to the ordering of update operations. 

They refer to these deviations as forming continuous consistency ranges. 

Measuring inconsistency in terms of numerical deviations can be used by applications 

for which the data have numerical semantics. One obvious example is the replication of 

records containing stock market prices. In this case, an application may specify that two 

copies should not deviate more than $0.02, which would be an absolute numerical deviation. 

Alternatively, a relative numerical deviation could be specified, stating that two copies should 

differ by no more than, for example, 0.5%. In both cases, we would see that if a stock goes 

up (and one of the replicas is immediately updated) without violating the specif ied 
numerical deviations, replicas would still be considered to be mutually consistent. 

Numerical deviation can also be understood in terms of the number of updates that have been 

applied to a given replica, but have not yet been seen by others. For example, a Web cache 
may not have seen a batch of operations carried out by a Web server. In this case, the 

associated deviation in the value is also referred to as its weight. 

Staleness deviations relate to the last time a replica was updated. For some applications, it can 

be tolerated that a replica provides old data as long as it is not too old. For example, weather 

reports typically stay reasonably accurate over some time, say a few hours. In such cases, a 
main server may receive timely updates, but may decide to propagate updates to the replicas 

only once in a while. 
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Finally, there are classes of applications in which the ordering of updates are allowed to be 

different at the various replicas, as long as the differences remain bounded. One way of 
looking at these updates is that they are applied tentatively to a local copy, awaiting global 

agreement from all replicas. As a consequence, some updates may need to be rolled back 
and applied in a different order before becoming permanent. Intuitively, ordering 

deviations are much harder to grasp than the other two consistency metrics. 

The Notion of a Conit 

To define inconsistencies, Yu and Vahdat introduce a consistency unit, ab- breviated to  

conit. A conit specifies the unit over which consistency is to be measured. For example, 
in our stock-exchange example, a conit could be defined as a record representing a single 

stock. Another example is an individual weather report. To give an example of a conit, 

and at the same time illustrate numerical and ordering deviations, consider the situation of 
keeping track of a fleet of cars. In particular, the fleet owner is interested in knowing how 

much he pays on average for gas. To this end, whenever a driver tanks gasoline, he reports 

the amount of gasoline that has been tanked (recorded as g), the price paid (recorded as p), 

and the total distance since the last time he tanked (recorded by the variable d). Technically, 

the three variables g, p, and d form a conit. This conit is replicated across two servers, as 
shown in Figure 68, and a driver regularly reports his gas usage to one of the servers by 

separately updating each variable (without further considering the car in question)[38]. 

The task of the servers is to keep the conit “consistently” replicated. To this end, each 

replica server maintains a two-dimensional vector clock. We use the notation T, R to express 

an operation that was carried out by replica R at (its) logical time T. 

The numerical deviation at a replica R consists of two components: the number of 

operations at all other replicas that have not yet been seen by R, along with the sum of 
corresponding missed values (more sophisticated schemes are, of course, also possible). 

In our example, A has not yet seen operations 6, B and 7, B with a total value of 70 + 412 

units, leading to a numerical deviation of (2, 482). Likewise, B is still missing the three tentative 
operations at A, with a total summed value of 686, bringing B’s numerical deviation to (3, 

686). 

Using these notions, it becomes possible to specify specific consistency schemes. For 

example, we may restrict order deviation by specifying an acceptable maximal value. 

Likewise, we may want two replicas to never numerically deviate by more than 1000 units. 

Having such consistency schemes does require that a replica knows how much it is 

deviating from other replicas, implying that we need separate communication to keep 
replicas informed. The underlying assumption is that such communication is much less 

expensive than communication to keep replicas synchronized. Admittedly, it is 

questionable if this assumption also holds for our example. 
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For our last topic on consistency protocols, let us draw our attention to implementing client-

centric consistency. Implementing client-centric consistency is relatively straightforward if 

performance issues are ignored. In a naive implementation of client-centric consistency, 
each write opera- tion W is assigned a globally unique identifier. Such an identifier is 

assigned by the server to which the write had been submitted. We refer to this server as 

the origin of W. Then, for each client, we keep track of two sets of writes. The read set for 
a client consists of the writes relevant for the read operations performed by a client. Likewise, 

the write set consists of the (identifiers of the) writes performed by the client. 

Monotonic-read consistency is implemented as follows. When a client performs a read 

operation at a server, that server is handed the client’s read set to check whether all the 

identified writes have taken place locally. If not, it contacts the other servers to ensure that 
it is brought up to date before carrying out the read operation. Alternatively, the read operation 

is forwarded to a server where the write operations have already taken place. After the read 
operation is performed, the write operations that have taken place at the selected server and 

which are relevant for the read operation are added to the client’s read set[39]. 

Note that it should be possible to determine exactly where the write operations identified in the 

read set have taken place. For example, the write identifier could include the identifier of the 

server to which the operation was submitted. That server is required to, for example, log the 
write operation so that it can be replayed at another server. In addition, write operations should 

be performed in the order they were submitted. Ordering can be achieved by letting the client 

generate a globally unique sequence number that is included in the write identifier. If each 
data item can be modified only by its owner, the latter can supply the sequence number. 

Monotonic-write consistency is implemented analogous to monotonic reads. Whenever a 

client initiates a new write operation at a server, the server is handed over the client’s write 

set. Again, the size of the set may be prohibitively large in the face of performance 

requirements. An alternative solution is discussed below. It then ensures that the identif ied 

write operations are performed first and in the correct order. After performing the new 

operation, that operation’s write identifier is added to the write set. Note that bringing the 
current server up to date with the client’s write set may introduce a considerable increase in 

the client’s response time since the client then waits for the operation to fully complete. 

Likewise, read-your-writes consistency requires that the server where the read operation is 
performed has seen all the write operations in the client’s write set. The writes can simply 

be fetched from other servers before the read operation is performed, although this may 
lead to a poor response time. Alternatively, the client-side software can search for a server 

where the identified write operations in the client’s write set have already been performed. 

Finally, writes-follow-reads consistency can be implemented by first bring- ing the selected 

server up to date with the write operations in the client’s read set, and then later adding the 
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identifier of the write operation to the write set, along with the identifiers in the read set 

which have now become relevant for the write operation just performed. 

For clarity, assume that for each server, writes from Sj are processed in the order that they 

were submitted.  Whenever a client issues a request to perform a read or write operation 

O at a specific server, that server returns its current timestamp along with the results of O. 

Read and write sets are subsequently represented by vector timestamps. More specifically, 

for each session A, we construct a vector timestamp SVCA with SVCA[i] set equal to the 

maximum timestamp of all write operations in A that originate from server Si: 

SVCA[j] = max{ts(W)|W ∈ A and origin(W) = Sj}  

In other words, the timestamp of a session always represents the latest write operations that 
have been seen by the applications that are being executed as part of that session. The 

compactness is obtained by representing all observed write operations originating from the 

same server through a single timestamp. 

As an example, suppose a client, as part of session A, logs in at server Si. To that end, it 

passes SVCA to Si. Assume that SVCA[j] > WVCi[j]. What this means is that Si has not 

yet seen all the writes originating from Sj that the client has seen. Depending on the 

required consistency, server Si may now have to fetch 

these writes before being able to consistently report back to the client. Once the operation 

has been performed, server Si will return its current timestamp WVCi. At that point, SVCA 

is adjusted to: 

SVCA[j] ← max{SVCA[j], WVCi[j]} 

Again, we see how vector timestamps can provide an elegant and compact way of representing 

history in a distributed system. 

The Web is arguably the largest distributed system ever built. Originating from a relatively 

simple client-server architecture, it is now a sophisticated system consisting of many 
techniques to ensure stringent performance and availability requirements. These requirements 

have led to numerous proposals for caching and replicating Web content. Where the original 

schemes (which are still largely deployed) have been targeted toward supporting static content, 
much effort has also been put into supporting dynamic content, that is, supporting documents 

that are generated on-the-spot as the result of a request, as well as those containing scripts and 
such.  

Client-side caching in the Web generally occurs at two places. In the first place, most browsers 

are equipped with a relatively simple caching facility. Whenever a document is fetched it is  
stored in the browser’s cache from where it is loaded the next time. In the second place, a 

client’s site often runs a Webproxy. A Web proxy accepts requests from local clients and 
passes these to Web servers. When a response comes in, the result is passed to the client. The 

advantage of this approach is that the proxy can cache the result and return that result to 

another client, if necessary. In other words, a Web proxy can implement a shared cache. With 

so many documents being generated on the fly, the server generally provides the document in 

pieces instructing the client to cache only those parts that are not likely to change when the 
document is requested a next time. 

In addition to caching at browsers and proxies, ISPs generally also place caches in their  

networks. Such schemes are mainly used to reduce network traffic (which is good for the 
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ISP) and to improve performance (which is good for end users). However, with multiple 

caches along the request path from client to server, there is a risk of increased latencies 
when caches do not contain the requested information. 

As an alternative to  building hierarchical caches, one can also organize caches for 
cooperative deployment. In cooperative caching or distributed caching, whenever a cache 

miss occurs at a Web proxy, the proxy first checks a number of neighboring proxies to see 

if one of them contains the requested document. If such a check fails, the proxy forwards 

the request to the Web server responsible for the document. In more traditional settings, this 

scheme is primarily deployed with Web caches belonging to the same organization or 
institution. 

As mentioned, there are essentially only three (related) measures that can be taken to change 

the behavior of a Web hosting service: changing the placement of replicas, changing 
consistency enforcement, and deciding on how and when to redirect client requests. We 

already discussed the first two measures extensively. Client-request redirection deserves some 

more attention. Before we discuss some of the trade-offs, let us first consider how consistency 

and replication are dealt with in a practical setting by considering the Akamai situation. 

The basic idea is that each Web document consists of a main HTML (or XML) page in  
which several other documents such as images, video, and audio have been embedded. To 

display the entire document, it is necessary that the embedded documents are fetched by 
the user’s browser as well. The assumption is that these embedded documents rarely 

change, for which reason it makes sense to cache or replicate them. 

Each embedded document is normally referenced through a URL. However, in Akamai’s 
CDN, such a URL is modified such that it refers to a virtual ghost, which is a reference 

to an actual server in the CDN. The URL also contains the host name of the origin server 
for reasons we explain next. The name of the virtual ghost includes a DNS name such as 

ghosting.com, which is resolved by the regular DNS naming system to a CDN DNS server  

the result of step 3).    

Each such DNS server keeps track of servers close to the client. To this end, any of the 

proximity metrics we have discussed previously could be used. In effect, the CDN DNS 

servers redirect the client to a replica server best for that client (step 4), which could mean 

the closest one, the least-loaded one, or a combination of several such metrics the actual 

redirection policy is proprietary. 

Finally, the client forwards the request for the embedded document to the selected CDN 

server. If this server does not yet have the document, it fetches it from the original. If the 
document was already in the CDN server’s cache, it can be returned forthwith. Note that 

in order to fetch the embedded document, the replica server must be able to send a request 

to the origin server, for which reason its host name is also contained in the embedded 
document’s URL.  

An interesting aspect of this scheme is the simplicity by which consistency of documents can 

be enforced. Clearly, whenever a main document is changed, a client will always be able to  

fetch it from the origin server. In the case of embedded documents, a different approach 

needs to be followed as these documents are, in principle, fetched from a nearby replica 
server. To this end, a URL for an embedded document not only refers to a special host name 

that eventually leads to a CDN DNS server, but also contains a unique identifier that is 
changed every time the embedded document changes. In effect, this identifier changes the 

name of the embedded document. As a consequence, when the client is redirected to a 



 

 

141 Distributed System 

specific CDN server, that server will not find the named document in its cache and will thus 

fetch it from the origin server. The old document will eventually be evicted from the server’s 
cache as it is no longer referenced. 

This example already shows the importance of client-request redirection. In principle, by 
properly redirecting clients, a CDN can stay in control when it comes to client-perceived 

performance, but also taking into account global system performance by, for example, avoiding 

that requests are sent to heavily loaded servers. These so-called adaptive redirection policies 
can be applied when information on the system’s current behavior is provided to the processes 

that take redirection decisions. This brings us partly back to the metric estimation techniques 
discussed previously[40]. 

Besides the different policies, an important issue is whether request redirection is transparent 

to the client or not. In essence, there are only three redirection techniques: TCP handoff, DNS 
redirection, and HTTP redirection. We already discussed TCP handoff. This technique is 

applicable only for server clusters and does not scale to wide-area networks. 

DNS redirection is a transparent mechanism by which the client can be kept completely 

unaware of where documents are located. Akamai’s two-level redirection is one example of 

this technique. We can also directly deploy DNS to return one of several addresses as we 
discussed before. Note, however, that DNS redirection can be applied only to an entire site: the 

name of individual documents does not fit into the DNS name space. 

HTTP redirection, finally, is a nontransparent mechanism. When a client requests a 

specific document, it may be given an alternative URL as part of an HTTP response 

message to which it is then redirected. An important observation is that this URL is visible 
to the client’s browser.  In fact, the user may decide to bookmark the referral URL, 

potentially rendering the redirection policy useless. 

Up to this point we have mainly concentrated on caching and replicating static Web 

content. In practice, we see that the Web is increasingly offering more dynamically 

generated content, but that it is also expanding toward offering services that can be called 
by remote applications. Also in these situa- tions we see that caching and replication can help 

considerably in improving the overall performance, although the methods to reach such 

improvements are more subtle than what we discussed so far. 

When considering improving performance of Web applications through caching and 

replication, matters are complicated by the fact that several solutions can be deployed, with 

no single one standing out as the best. Let us consider the edge-server situation as sketched. 

In this case, we assume a CDN in which each hosted site has an origin server that acts as 
the authoritative site for all read and update operations.  

Recall that in an edge-server architecture, Web clients request data through an edge server, 

which, in turn, gets its information from the origin server associated with the specific Web 
site referred to by the client. As also shown in Figure 4 we assume that the origin server consists 

of a database from which responses are dynamically created. Although we have shown only 

a single Web server, it is common to organize each server according to a multitier  

architecture as we discussed before. An edge server can now be roughly organized along 

the following lines. 

First, to improve performance, we can decide to apply full replication of the data stored at 

the origin server. This scheme works well whenever the update ratio is low and when 
queries require an extensive database search. As mentioned above, we assume that all 
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updates are carried out at the origin server, which takes responsibility for keeping the replicas 

and the edge servers in a consistent state. Read operations can thus take place at the edge 
servers. Here we see that replicating for performance will fail when the update ratio is high, 

as each update will incur communication over a wide-area network to bring the replicas 
into a consistent state.  The read/update ratio is the determining factor to  what extent the 

origin database in a wide-area setting should be replicated. 

Another case for full replication is when queries are generally complex. In the case of a 

relational database, this means that a query requires that multiple tables need to be searched 

and processed, as is generally the case with a join operation. Opposed to complex queries are 
simple ones that generally require access to only a single table in order to produce a response. 

In the latter case, partial replication by which only a subset of the data is stored at the edge 

server may suffice.  

An alternative to partial replication is to make use of content-aware caches. The basic idea in 

this case is that an edge server maintains a local database that is now tailored to the type of 

queries that can be handled at the origin server. To explain, in a full-fledged database system 

a query will operate on a database in which the data has been organized into tables such 

that, for example, redundancy is minimized. Such databases are also said to be normalized. 

In such databases, any query that adheres to the data schema can, in principle, be processed, 

although perhaps at considerable costs. With content- aware caches, an edge server maintains 
a database that is organized according to the structure of queries. What this means is that 

queries are assumed to adhere to a limited number of templates, effectively meaning that the 

different kinds of queries that can be processed is restricted. In these cases, whenever a query 
is received, the edge server matches the query against the available templates, and subsequently 

looks in its local database to compose a response, if possible. If the requested data is not 
available, the query is forwarded to the origin server after which the response is cached before 

returning it to the client. 

In effect, what the edge server is doing is checking whether a query can be answered with the 
data that is stored locally. This is also referred to as a query containment check. Note that such 

data was stored locally as responses to previously issued queries. This approach works best 

when queries tend to be repeated. Part of the complexity of content-aware caching comes 

from the fact that the data at the edge server needs to be kept consistent. To this end, 

the origin server needs to know which records are associated with which templates, so that 

any update of a record, or any update of a table, can be properly addressed by, for example, 

sending an invalidation message to the appropriate edge servers. Another source of 
complexity comes from the fact that queries still need to be processed at edge servers. In other 

words, there is no negligible computational power needed to handle queries.  

Considering that databases often form a performance bottleneck in Web servers, alternative 
solutions may be needed. Finally, caching results from queries that span multiple tables 

(i.e., when queries are complex) such that a query containment check can be carried out 

effectively is not trivial. The reason is that the organization of the results may be very 

different from the organization of the tables on which the query operated. 

These observations lead us to a third solution, namely content-blind caching. The idea of 
content-blind caching is extremely simple: when a client submits a query to an edge server, 

the server first computes a unique hash value for that query. Using this hash value, it 
subsequently looks in its cache whether it has processed this query before.  If not, the query 

is forwarded to the origin and the result is cached before returning it to the client. If the 
query had been processed before, the previously cached result is returned to the client. 
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The main advantage of this scheme is the reduced computational effort that is required from 

an edge server in comparison to the database approaches described above. However, content-
blind caching can be wasteful in terms of storage as the caches may contain much more 

redundant data in comparison to content-aware caching or database replication. Note that such 
redundancy also complicates the process of keeping the cache up to date as the origin server 

may need to keep an accurate account of which updates can potentially affect cached query 

results. These problems can be alleviated when assuming that queries can match only a limited 

set of predefined templates as we discussed above. 
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A characteristic feature of distributed systems that distinguishes them from single-machine 

systems is the notion of partial failure: part of the system is failing while the remaining part 

continues to operate, and seemingly correctly. An important goal in  distributed-systems 
design is to construct the system in such a way that it can automatically recover from 

partial failures without seriously affecting the overall performance. In particular, whenever 

a failure occurs, the system should continue to operate in an acceptable way while repairs 
are being made. In other words, a distributed system is expected to be fault tolerant. 

In this chapter, we take a closer look at techniques to achieve fault tolerance. After  

providing some general background, we will first look at process resilience through 

process groups. In this case, multiple identical processes cooperate providing the 

appearance of a single logical process to ensure that one or more of them can fail without 
a client noticing. A specifically difficult point in process groups is reaching consensus 

among the group members on which a client-requested operation is to perform. By now, 
Paxos is a commonly adopted, yet relatively intricate algorithm, which we explain by 

building it from the ground up. Likewise, we carefully examine the cases in which 

consensus can be reached, and under which circumstances. 

Achieving fault tolerance and reliable communication are strongly related. Next to reliable 

client-server communication we pay attention to reliable group communication and 
notably atomic multicasting. In the latter case, a message is delivered to all nonfaulty 

processes in a group, or to none at all. Having atomic multicasting makes development of 

fault- tolerant solutions much easier. 

Atomicity is a property that is important in  many applications. In this chapter, we pay 

attention to what are known as distributed commit protocols by which a group of processes 

are conducted to either jointly commit their local work, or collectively abort and return to  

a previous system state. Finally, we will examine how to recover from a failure. In 

particular, we consider when and how the state of a distributed system should be saved to 

allow recovery to that state later on[41]. 

Introduction to fault tolerance 

Fault tolerance has been subject to much research in computer science. In this section, we 

start with presenting the basic concepts related to processing failures, followed by a discussion 

of failure models. The key technique for handling failures is redundancy, which is also 
discussed.  
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Basic concepts 

To understand the role of fault tolerance in distributed systems we first need to take a closer 
look at what it actually means for a distributed system to tolerate faults. Being fault tolerant is 

strongly related to what are called dependable systems. Dependability is a term that covers a 
number of useful requirements for distributed systems including the following: 

Availab ility 

It is defined as the property that a system is ready to be used immediately. In general, it 

refers to the probability that the system is operating correctly at any given moment and is 

available to perform its functions on behalf of its users. In other words, a highly available 
system is one that will most likely be working at a given instant in time. 

Reliability 

It refers to the property that a system can run continuously without failure. In contrast to  
availability, reliability is defined in terms of a time interval instead of an instant in time. 

A highly reliable system is one that will most likely continue to work without interruption 

during a relatively long period of time. This is a subtle but important difference when 

compared to availability. If a system goes down on average for one, seemingly random 

millisecond every hour, it has an availability of more than 99.9999 percent, but is still 
unreliable. Similarly, a system that never crashes but is shut down for two specific weeks 

every August has high reliability but only 96 percent availability. The two are not the 
same. 

Safety 

It refers to the situation that when a system temporarily fails to operate correctly, no 
catastrophic event happens. For example, many process- control systems, such as those used 

for controlling nuclear power plants or sending people into space, are required to provide a 
high degree of safety. If such control systems temporarily fail for only a very brief moment, 

the effects could be disastrous. Many examples from the past (and probably many more yet to 

come) show how hard it is to build safe systems. 

Maintainability 

It refers to how easily a failed system can be repaired. A highly maintainable system 

may also show a high degree of availability, especially if failures can be detected and 

repaired automatically. However, as we shall see later in this chapter, automatically 

recovering from failures is easier said than done. 

Failure models 

A system that fails is not adequately providing the services it was designed for. If we consider 
a distributed system as a collection of servers that communicate with one another and with 

their clients, not adequately providing services means that servers, communication 

channels, or possibly both, are not doing what they are supposed to do. However, a 
malfunctioning server itself may not always be the fault we are looking for. If such a server 

depends on other servers to adequately provide its services, the cause of an error may need 

to be searched for somewhere else. 

Such dependency relations appear in abundance in distributed systems. A failing disk may 

make life difficult for a file server that is designed to provide a highly available file system. 
If such a file server is part of a distributed database, the proper working of the entire database 
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may be at stake, as only part of its data may be accessible. To get a better grasp on how serious 

a failure actually is, several classification schemes have been developed. One such scheme 
is shown in Table 1. 

Table 1: Represented that Different types of failures. 

Type of failure Description of server’s behavior 

Crash failure Halts, but is working correctly until it halts 

Omission failure 

Receive omission Send 

omission 

Fails to respond to incoming requests 

Fails to receive incoming messages Fails to 

send messages 

Timing failure Response lies outside a specified time 

interval 

Response failure 

Value failure 

State-transition failure 

Response is incorrect 

The value of the response is wrong Deviates 

from the correct flow of control 

Arbitrary failure May produce arbitrary responses at arbitrary 

times 

A crash failure occurs when a server prematurely halts, but was working correctly until it 
stopped. An important aspect of crash failures is that once the server has halted, nothing is 

heard from it anymore. A typical example of a crash failure is an operating system that 
comes to a grinding halt, and for which there is only one solution: reboot it. Many personal 

computer systems suffer from crash failures so often that people have come to expect them to 

be normal. Consequently, moving the reset button from the back of a cabinet to the front 

was done for good reason. Perhaps one day it can be moved to the back again, or even 

removed altogether. 

An omission failure occurs when a server fails to respond to a request. Several things might go 

wrong. In the case of a receive-omission failure, possibly the server never got the request in 

the first place. Note that it may well be the case that the connection between a client and a 
server has been correctly established, but that there was no thread listening to incoming 

requests. Also, a receive-omission failure will generally not affect the current state of the 

server, as the server is unaware of any message sent to it [42]. 

Likewise, a send-omission failure happens when the server has done its work, but somehow 

fails in sending a response. Such a failure may happen, for example, when a send buffer 

overflows while the server was not prepared for such a situation. Note that, in contrast to a 

receive-omission failure, the server may now be in a state reflecting that it has just 
completed a service for the client. As a consequence, if the sending of its response fails, the 

server has to be prepared for the client to reissue its previous request. 

Other types of omission failures not related to communication may be caused by software 
errors such as infinite loops or improper memory management by which the server is said to  

“hang.” 
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Another class of failures is related to timing. Timing failures occur when the response lies 

outside a specified real-time interval. For example, in the case of streaming video’s, 
providing data too soon may easily cause trouble for a recipient if there is not enough 

buffer space to hold all the incoming data. More common, however, is that a server responds 
too late, in which case a performance failure is said to occur. 

A serious type of failure is a response failure, by which the server’s response is simply 

incorrect. Two kinds of response failures may happen. In the case of a value failure, a 

server simply provides the wrong reply to a request. For example, a search engine that 

systematically returns Web pages not related to any of the search terms used, has failed. 

The other type of response failure is known as a state-transition failure. This kind of failure 

happens when the server reacts unexpectedly to an incoming request. For example, if a 

server receives a message it cannot recognize, a state-transition failure happens if no 
measures have been taken to handle such messages. In particular, a faulty server may 

incorrectly take default actions it should never have initiated. 

The most serious are arbitrary failures, also known as Byzantine failures. In effect, when 

arbitrary failures occur, clients should be prepared for the worst. In particular, it may happen 

that a server is producing output it should never have produced, but which cannot be detected 
as being incorrect. We return to such failures below. 

Many of the aforementioned cases deal with the situation that a process P no longer 
perceives any actions from another process Q. However, can P conclude that Q has indeed 

come to a halt? To answer this question, we need to make a distinction between two types 

of distributed systems: 

1. In an asynchronous system, no assumptions about process execution speeds or message 

delivery times are made. The consequence is that when process P no longer perceives 
any actions from Q, it cannot conclude that Q crashed. Instead, it may just be slow or 

its messages may have been lost. 

2. In a synchronous system, process execution speeds and message-delivery times are 
bounded. This also means that when Q shows no more activity when it is expected to do 

so, process P can rightfully conclude that Q has crashed. 

Unfortunately, pure synchronous systems exist only in theory. On the other hand, simply 

stating that every distributed system is asynchronous also does not do just to what we see in 

practice and we would be overly pessimistic in designing distributed systems under the 

assumption that they are necessarily asynchronous. Instead, it is more realistic to assume that 

a distributed system is partially synchronous: most of the time it behaves as a synchronous 
system, yet there is no bound on the time that it behaves in an asynchronous fashion. In other 

words, asynchronous behavior is an exception, meaning that we can normally use timeouts to 

conclude that a process has indeed crashed, but that occasionally such a conclusion is false. In 
practice, this means that we will have to design fault-tolerant solutions that can withstand 

incorrectly detecting that a process halted [43]. 

1. Fail-stop failures refer to crash failures that can be reliably detected. This may occur 

when assuming nonfaulty communication links and when the failure-detecting process 

P can place a worst-case delay on responses from Q. 

2. Fail-noisy failures are like fail-stop failures, except that P will only eventually come 

to the correct conclusion that Q has crashed. This means that there may be some a priori 
unknown time in which P’s detections of the behavior of Q are unreliable. 
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3. When dealing with fail-silent failures, we assume that communication links are

nonfaulty, but that process P cannot distinguish crash failures from omission failures.

4. Fail-safe failures cover the case of dealing with arbitrary failures by process Q, yet

these failures are benign: they cannot do any harm.

5. Finally, when dealing with fail-arbitrary failures, Q may fail in any possible way; failures

may be unobservable in addition to being harmful to the otherwise correct behavior of

other processes.

Clearly, having to deal with fail-arbitrary failures is the worst that can happen. As we shall 

discuss shortly, we can design distributed systems in such a way that they can even tolerate 
these types of failures. 

Failure masking by redundancy 

If a system is to be fault tolerant, the best it can do is to try to hide the occurrence of failures 
from other processes. The key technique for masking faults is to use redundancy. Three kinds 

are possible: information redundancy, time redundancy, and physical redundancy with 

information redundancy, extra bits are added to allow recovery from garbled bits. For example, 

a Hamming code can be added to transmitted data to recover from noise on the transmission 

line. 

With time redundancy, an action is performed, and then, if need be, it is performed again. 

Transactions use this approach. If a transaction aborts, it can be redone with no harm. 
Another well-known example is retransmitting a request to a server when lacking an expected 

response. Time redundancy is especially helpful when the faults are transient or intermittent 

[44]. 

With physical redundancy, extra equipment or processes are added to make it possible for 

the system as a whole to tolerate the loss or malfunction- ing of some components. Physical 
redundancy can thus be done either in hardware or in software. For example, extra 

processes can be added to the system so that if a small number of they crash, the system 

can still function correctly. In other words, by replicating processes, a high degree of fault 
tolerance may be achieved. We return to this type of software redundancy later in this 

chapter [45]. 
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QUESTIONS FOR REVISION 

1. What is the architectural model? 

2. What is Interaction Models, Failure models, Security models? 

3. What are the types of communication paradigm in DS? 

4. What are Software and hardware service layers in distributed systems? 

5. What are Difficulties and threats for distributed systems? 

6. What is the difference between RMI and RPC? 

7. Difference between synchronous and asynchronous communication? 

8. What infrastructure provided by multicast message for distributed system? 

9. What are the Applications of publish-subscribe systems? 

10. What are the three types of communication paradigm in distributed system? 

11. Compare the communicating entities: object, components and web services. 
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