
ARTIFICIAL
INTELLIGENCE

Rakesh Kumar Dwivedi

J E R S E Y C I T Y, U S A

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

Rakesh Kumar Dwivedi

First Published 2022

This book contains information obtained from highly regarded resources.
Copyright for individual contents remains with the authors.

A wide variety of references are listed. Reasonable efforts have been made
to publish reliable data and information, but the author and the publisher

cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means,

now known or hereinafter invented, including photocopying,
microfilming and recording, or any information storage or retrieval system,

without permission from the publishers.

For permission to photocopy or use material electronically
from this work please access alexispress.us

© RESERVED

ALEXIS PRESS

Published by: Alexis Press, LLC, Jersey City, USA
www.alexispress.us

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data

Includes bibliographical references and index.

ISBN 979-8-89161-293-8

Artificial Intelligence by Rakesh Kumar Dwivedi

CONTENTS

Chapter 1. Artificial Intelligence: An Introduction to the World of Intelligent 1

— Rakesh Kumar Dwivedi

Chapter 2. Intelligent Agent: Empowering Machines with Decision-Making Abilities 10

— Ashendra Kumar Saxena

Chapter 3. Solving Problems by Searching: Exploring Algorithms for Intelligent Exploration 20

— Mohan Vishal Gupta

Chapter 4. Local Search Algorithms: Optimizing Solutions through Local Exploration................... 27

— Neeraj Kumari

Chapter 5. Adversarial Search: Strategies for Outwitting Opponents in Games and Beyond 34

— Priyank Singhal

Chapter 6. Constraint Satisfaction Problems: Resolving Complex Challenges with Constraints 46

— Rajendra P. Pandey

Chapter 7. Logical Agents: Reasoning and Decision-Making with Logic .. 54

— Rupal Gupta

Chapter 8. First-Order Logic: Unveiling the Power of Quantification and Predicates 65

— Vineet Saxena

Chapter 9. Inference in First-Order Logic: Deriving New Knowledge through Logical Reasoning .. 74

— Amit Kumar Bishnoi

Chapter 10. Classical Planning: Creating Efficient Plans through Logical Representation 83

— Navneet Vishnoi-I

Chapter 11. Planning and Acting in the Real World: From Concept to Execution 97

— Shambhu Bharadwaj

Chapter 12. Knowledge Representation: Encoding Information for Intelligent Systems 105

— Ajay Rastogi

Chapter 13. Quantifying Uncertainty: Dealing with Imperfect Information in AI 115

— Manish Joshi

Chapter 14. Probabilistic Reasoning: Uncertainty Management in AI and Decision Making 125

— Namit Gupta

Chapter 15. Probabilistic Reasoning over Time: Modeling Dynamic Uncertainty in AI 136

— Ashish Bishnoi

Chapter 16. Making Simple Decisions: Foundations of Rational and Intelligent Choice 148

— Anu Sharma

Chapter 17. Complex Decisions: Challenges and Strategies for Intelligent Decision-Making 159

— Pradeep Kumar Shah

Chapter 18. Learning: The Key to Adaptive Intelligence .. 166

Chapter 18. Learning: The Key to Adaptive Intelligence .. 166

— Hina Hashmi

Chapter 19. Knowledge in Learning: Building Foundations for Intelligent Adaptation 180

— Abhilash Kumar Saxena

Chapter 20. Learning Probabilistic Models: Enhancing Intelligence with Uncertainty 189

— Ajay Chakravarty

Chapter 21. Reinforcement Learning: Training Intelligent Agents through Trial and Error............ 194

— Rohaila Naaz

Chapter 22. Natural Language Processing: Unleashing the Power of AI in Human Language 201

— Ramesh Chandra Tripathi

Chapter 23. Natural Language for Communication: Bridging the Gap between Humans and AI.... 208

— Gaurav Kumar Rajput

Chapter 24. Perception: Unraveling the Senses in Artificial Intelligence 218

— Aaditya Jain

Chapter 25. Robotics: Advancing Automation and Intelligence in the Physical World 224

 — Harjinder Singh

1 Artificial Intelligence

CHAPTER 1

ARTIFICIAL INTELLIGENCE: AN INTRODUCTION

TO THE WORLD OF INTELLIGENT

Rakesh Kumar Dwivedi, Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- r_dwivedi2000@yahoo.com

ABSTRACT:

AI has become a catch-all word for apps that execute difficult activities that formerly needed
human intervention, such as online customer service or chess. The phrase is often used
interchangeably with the subfields of machine learning (ML) and deep learning.The primary
purpose of artificial intelligence is to offer decision-making mechanisms. This judgment is based
on uncommon facts as input and will provide artificial intelligence results similar to the human
mind. To answer real issues, AI employs concepts from probability theory, economics, and
algorithm design. Furthermore, the AI area incorporates computer science, mathematics,
psychology, and languages. Computer science tools are used to develop and create algorithms,
whereas mathematics tools are used to represent and solve the ensuing optimization issues.

KEYWORDS:

Brain, Computer, Cognitive, Human, Science.

INTRODUCTION

Because intellect is so crucial to us, we name ourselves Homo sapiens. For thousands of years,
people have sought to figure out how humans think, or how a little amount of matter can see,
comprehend, anticipate, and manage a universe considerably bigger and more complex than itself.
The discipline of artificial intelligence, or AI, goes much further: it aims not just to comprehend
but also to produce intelligent beings. AI is one of the most recent scientific and technical topics.
Work began in earnest shortly after World War II, and the term was created in 1956. Along with
molecular biology, artificial intelligence (AI) is often identified as the field I would most like to
be in by scientists from other fields. A physics student would fairly believe that all of the excellent
ideas have already been stolen by Galileo, Newton, Einstein, and others. AI, on the other hand, is
still looking for full-time Einsteins and Edisons. AI now includes a wide range of subfields, from
the general learning and perception to the specialized playing chess, proving mathematical
theorems, creating poetry, driving a vehicle on a busy street, and detecting illnesses. AI is
applicable to any intellectual work; it is genuinely a multidisciplinary science [1]–[3].

The definitions at the top are concerned with cognitive processes and reasoning, while the
definitions at the bottom are concerned with behaviour. The definitions on the left define success
in terms of faithfulness to human performance, while the definitions on the right define success in
terms of an ideal performance metric known as rationality. A system is logical if it performs the
right thing, given what it knows. Historically, each of the four approaches to AI has been pursued,
each by a different person using a different technique. A human-centered approach must be
empirical in nature, based on observations and theories regarding human behaviour. A rationalist1

2

Artificial Intelligence

approach incorporates mathematics and engineering. The different groups have both criticized and
aided one another. Let's take a closer look at the four methods [4], [5].

Acting Humanly

Turing Test was intended to offer a sufficient practical definition of intelligence. A computer
passes the test if a human interrogator cannot distinguish whether the written replies are from a
person or from a computer after presenting certain written questions delves into the specifics of
the exam and whether a computer that passed would be really intelligent. For the time being, we
should notice that programming a computer to pass a carefully applied test gives enough of
material to work with. The computer would need to have the following capabilities natural
language processing to be able to communicate effectively in English

The majority of AI is composed on these six areas, and Turing deserves credit for developing a
test that is still relevant 60 years later. However, AI researchers have made minimal attempt to
pass the Turing Test, claiming that studying the basic concepts of intelligence is more essential
than replicating an example. The Wright brothers and others achieved artificial flight when they
stopped emulating birds and began utilizing wind tunnels and learning about aerodynamics.
Aeronautical engineering textbooks do not define their field's goal as machines that fly so exactly
like pigeons that they can fool even other pigeons [6]–[8].

Thinking Humanly

The cognitive modelling approach If we are to say that a given program thinks like a human, we
must first determine how humans think. We must investigate the inner workings of human brains.
There are three methods for doing so introspection trying to capture our own thoughts as they pass
by, psychological experiments observing a person in activity, and brain imaging observing the
brain in action. Once we've developed a sufficiently exact understanding of the mind, we may
describe it as a computer program. If the program's input-output behaviour corresponds to
equivalent human behaviour, this indicates that some of the program's processes may also be active
in people. For example, Allen Newell and Herbert Simon, the creators of GPS, the General
Problem Solver, were not satisfied with just having their software answer problems properly. They
were more interested in comparing the trail of its reasoning stages to traces of human individuals
answering the identical issues.

Cognitive Science

Cognitive science is an interdisciplinary study that combines computer models from AI with
experimental methodologies from psychology to develop accurate and testable explanations of the
human mind. Cognitive science is an enthralling subject in and of itself, deserving of multiple
textbooks and at least one encyclopedia. We will periodically make observations on the parallels
and differences between AI approaches and human cognition. True cognitive science, on the other
hand, must be founded on experimental research on real people or animals. We'll leave it to other
books since we believe the reader has just a computer to play with. There was sometimes
misunderstanding between the methods in the early days of AI an author might claim that an
algorithm performs well on a job and is hence a good model of human performance, or vice versa.
Modern writers distinguish between the two types of statements; this difference has accelerated
the development of AI and cognitive research. The two disciplines are still fertile, most notably in
computer vision, which blends neurophysiological data into computational models.

3

Artificial Intelligence

Thinking Logically

The laws of thought approach Aristotle, the Greek philosopher, was among the first to seek to
codify right thinking, that is, unassailable reasoning processes. His syllogisms provided patterns
for argument structures that always yielded correct conclusions when given correct premisesfor
example, Socrates is a man; all men are mortal therefore, Socrates is mortal. In the nineteenth
century, logicians devised a precise notation for claims about all types of things in the world and
their relationships. This is in contrast to regular arithmetic notation, which only allows for
assertions about numbers. By 1965, programs were available that could, in theory, answer any
solvable issue given in logical notation. However, if no solution exists, the program may run
indefinitely. The logicist school within artificial intelligence seeks to build on such algorithms to
construct intelligent systems. This strategy has two major challenges. First, it is difficult to
translate informal information into the formal phrases needed by logical notation, especially when
the knowledge is less than 100% definite. Second, there is a significant gap between in principle
and in practice issue resolution. Even issues with a few hundred facts might exhaust a computer's
computing capacity unless it is given some direction as to which reasoning processes to undertake
first. Both of these challenges apply to any endeavour to develop computational reasoning systems,
although they first surfaced in the logicist school [9], [10].

Acting Logically

The rational agent approach agent An agent is simply anything that acts the word agent originates
from the Latin agere, which means to do. Of course, all computer programs do some function, but
computer agents are intended to perform more act autonomously, observe their surroundings,
endure over time, adapt to rational agent change, and generate and pursue objectives. A rational
actor is one who behaves in such a way that the best result or, in the case of uncertainty, the best
predicted outcome is obtained. The focus in the laws of thought approach to AI was on valid
inferences. Making proper inferences is sometimes part of being a rational actor, since reasoning
logically to the conclusion that a specific action would accomplish one's objectives and then acting
on that conclusion is one way to behave rationally. On the other hand, right inference is not the
end of rationality in certain cases, there is no provably proper action to take, yet something must
be taken. There are other reasonable actions that cannot be stated to entail inference.

Recoiling from a hot stove, for example, is a reflex response that is generally more effective than
a slower action made after careful consideration. All of the abilities required for the Turing Test
enable an agent to behave logically. Agents can make effective judgments thanks to knowledge
representation and reasoning. To function in a complicated society, we must be able to construct
understandable phrases in natural language. Learning is important not just for erudition, but also
for improving our capacity to develop successful behaviour. The rational-agent method offers two
benefits over the other methods. For starters, it is more generic than the laws of thought approach
since proper inference is just one of multiple ways for obtaining rationality. Second, it lends itself
better to scientific advancement than techniques based on human behaviour or cognition. The
rationality standard is mathematically well defined and entirely universal, and it may be unpacked
to yield agent designs that achieve it provably.

Human behaviour, on the other hand, is well suited to a certain context and is described by, well,
the sum amount of everything people do. As a result, this book focuses on broad concepts of
rational agents as well as components for building them. We shall show that, despite the seeming
ease with which the problem may be presented, a wide range of complications arise when we

4

Artificial Intelligence

attempt to solve it. Some of these difficulties are discussed in further depth in Chapter 2. One thing
to remember reaching complete rationality always doing the correct thing is not possible in
complex circumstances. The computational needs are just too great. However, for the most of the
book, we shall assume that perfect rationality is a reasonable starting point for analysis. It
simplifies the issue and offers an adequate framework for the majority of the field's core content.
Chapters 5 and 17 deal specifically with the subject of limited rationality acting with limited
rationality when there isn't enough time to conduct all of the calculations one would want.

The next stage was to discover the limitations of logic and com algorithm putation. Euclid's
approach for determining greatest common divisors is regarded to be the first nontrivial algorithm.
The term algorithm and the concept of studying them stems from al-Khowarazmi, a 9th century
Persian mathematician whose works also brought Arabic numbers and algebra to Europe. Boole
and others studied logical deduction methods, and by the late nineteenth century, attempts were
underway to codify broad mathematical reasoning as logical deduction. This foundational
conclusion may alternatively be understood as demonstrating that certain integer functions cannot
be represented by an algorithm, and so cannot be calculated. This concept is somewhat difficult
since the concept of a computation or effective technique cannot be formalized. However, the
Church-Turing thesis, which claims that the Turing machine can compute every computable
function, is widely considered as a sufficient definition. Turing also demonstrated that certain
functions could not be computed by a Turing machine. For example, no computer can predict
whether a particular program will produce a response to a given input or continue indefinitely.
Although decidability and computability are vital in understanding computation, the concept of
tractability has had a bigger influence. In general, a problem is said to be intractable if the time
needed to solve instances of it rises exponentially with the number of the instances.

In the mid-1960s, the contrast between polynomial and exponential complexity increase was
initially highlighted. It is significant because, due to exponential growth, even modestly big
examples cannot be solved in any acceptable period. As a result, rather than intractable difficulties,
one should seek to split the overall challenge of creating intelligent behaviour into tractable
subproblems. How can an intractable situation be identified? Cook and Karp demonstrated the
existence of vast classes of NP-complete canonical combinatorial search and reasoning problems.
Any issue class that can be reduced to the class of NP-complete problems is likely to be intractable.
While it has not been shown that NP-completproblems are inherently intractable, most
theoreticians assume they are. These findings contrast with the enthusiasm with which the public
press welcomed the first computersElectronic Super-Brains that were Faster than Einstein
Intelligent systems will be distinguished by their careful use of resources, despite the increasing
speed of computers. Simply put, the globe is a massive issue instance.

DISCUSSION

AI research has helped to explain why certain NP-complete problems are difficult while others are
simple. Aside from logic and computing, the probability theory of probability is the third major
contribution of mathematics to AI. Gerolamo Cardano (1501-1576), an Italian, defined probability
by outlining the probable outcomes of gaming situations. In a letter to Pierre Fermat (1601-1665)
in 1654, Blaise Pascal (1623-1662) demonstrated how to predict the future of an incomplete
gambling game and allocate average payoffs to the players. Probability rapidly became an essential
component of the quantitative disciplines, assisting in the handling of imprecise observations and
imperfect theories. The idea was expanded and new statistical methods were presented by James

5

Artificial Intelligence

Bernoulli (1654-1705), Pierre Laplace (1749-1827), and others. The front cover of this book
features Thomas Bayes (1702-1761), who devised a formula for revising probability in light of
new data. Most recent methods to uncertain reasoning in AI systems are based on Bayes' rule.

The discipline of economics began in 1776, with the publication of An Inquiry into the Nature and
Causes of the Wealth of Nations by Scottish philosopher Adam Smith (1723-1790). While the
ancient Greeks and others had made contributions to economic philosophy, Smith was the first to
approach it as a science, based on the premise that economies are made up of individual actors
optimizing their own economic well-being. Most people associate economics with money, but
economists argue that they are really interested in how individuals make decisions that lead to
desirable results. When McDonald's offers a $1 hamburger, they are claiming that they would
prefer the dollar and hope that consumers would utility prefer the hamburger. L'eon Walras (1834-
1910) formalized the mathematical study of preferred outcomes or utility, which was further
enhanced by Frank Ramsey (1931) and later by John von Neumann and Oskar Morgenstern in
their book The Theory of Games and Economic Behaviour (1944).

Decision Theory

Decision theory, which combines probability theory with utility theory, offers a comprehensive
framework for choices made in the face of uncertaintythat is, in circumstances where probabilistic
descriptions adequately describe the decision maker's environment. This is appropriate for large
economies in which each agent does not need to pay attention to the behaviour of other agents as
individuals. For small economies, the situation is much more akin to a game: one player's actions
might have a considerable impact on the utility of another either favourably or adversely. The
unanticipated conclusion of Von Neumann and Morgenstern's invention of game.

 Game Theory

Unlike decision theory, game theory does not provide a clear prescription for choosing actions.
Economists, for the most part, did not address the third challenge outlined above, namely, how to
make rational judgments when the payoffs from acts are not instantaneous but rather result from
multiple actions conducted in succession. This issue was addressed in the discipline of operations
research, which arose during World War II from British attempts to improve radar installations,
and eventually found civilian applications in complicated management choices. Richard Bellman's
(1957) work formalized a class of sequential choice problems known as Markov decision
processes, which we will look at in Chapters 17 and 21. Although work in economics and
operations research has contributed significantly to our understanding of rational agents, AI
research has grown along wholly independent routes for many years. One factor was the seeming
difficulty of logical decision-making. Herbert Simon (1916-2001), a pioneering AI researcher,
won the Nobel Prize in economics in 1978 for his early satisficing work, which demonstrated that
models based on satisficingmaking decisions that are good enough, rather than laboriously
calculating an optimal decisionprovided a better description of actual human behaviour. There has
been a renaissance of interest in decision-theoretic strategies for agent systems since the 1990s.

Neuroscience

The study of the nervous system, especially the brain, is known as neuroscience. Although the
precise mechanism by which the brain permits cognition is one of science's great mysteries, the
fact that it does enable thought has been known for thousands of years due to evidence that

6

Artificial Intelligence

powerful blows to the head may result in mental incapacity. It has also long been recognized that
human brains are unique; around about 335 B.C. Aristotle said, Of all the animals, man has the
largest brain in proportion to his size.5 However, it was not until the middle of the 18th century
that the brain was commonly acknowledged as the seat of awareness. Previously, possible areas
included the heart and spleen. In 1861, Paul Broca (1824-1880) proved the presence of discrete
regions of the brain responsible for distinct cognitive processes in his research of aphasia speech
loss in brain-damaged individuals.

He demonstrated, in particular, that speech production was localized to the portion of the left
hemisphere now known as Broca's area. Although it was known at the time that the brain was made
up of nerve cells, or neurons, it was not until 1873 that Camillo Golgi developed a staining
technique that allowed the observation of individual neurons in the brain . We now have some
information on the connections between brain regions and the portions of the body that they govern
or from which they get sensory input. Such mappings may vary dramatically in a few of weeks,
and some species seem to have numerous maps. Furthermore, we do not completely comprehend
how other regions might assume functions when one area is harmed. There are essentially no
theories on how individual memories are preserved.

Hans Berger's discovery of the electroencephalograph (EEG) in 1929 marked the beginning of the
measuring of complete brain activity. The recent discovery of functional magnetic resonance
imaging (fMRI) provides neuroscientists with unprecedentedly precise pictures of brain activity,
allowing measurements that match to current cognitive processes in intriguing ways. Advances in
single-cell recording of neuron activity supplement these findings. Individual neurons may be
activated electrically, chemically, or even optically, enabling neuronal input-output interactions to
be mapped. Despite these breakthroughs, we are still a long way from fully comprehending
cognitive processes. Mysticism is the only viable alternative theory: brains work in some spiritual
world beyond physical science. The features of brains and digital computers vary somewhat. The
brain compensates for this by having significantly more storage and connections than even a high-
end home computer, while even the greatest supercomputers have capacity comparable to the
brain's.

Psychology

The work of Hermann von Helmholtz (1821-1894) and his pupil Wilhelm Wundt (1832-1920) is
often regarded as the foundation of scientific psychology. Helmholtz used science to explore
human vision, and his Handbook of Physiological Optics is still regarded as the single most
important treatise on the physics and physiology of human vision (Nalwa, 1993, p.15). Wundt
established the first laboratory of experimental psychology at the University of Leipzig in 1879.
Wundt insisted on meticulously controlled studies in which his employees would undertake a
perceptual or sociative task while introspecting on their cognitive processes. The strict controls
contributed significantly to psychology becoming a discipline, but the subjective character of the
data made it improbable that an investigator would ever disprove his or her own hypotheses.
Animal behaviour biologists, on the other hand, lacked introspective data and devised an objective
technique, as explained by H.

Behaviour

In his famous book Behaviour of behaviourism the Lower Organisms, S. Jennings (1906). When
it came to people, the behaviourism movement, founded by John Watson (1878-1958), rejected

7

Artificial Intelligence

any hypothesis including mental processes on the grounds that introspection could not produce
trustworthy proof. Behaviourists concentrated on analyzing only objective measurements of an
animal's percepts and its subsequent behaviours . Behaviourism learned a lot about rats and pigeons
but struggled to grasp people. Cognitive psychology, which regards the brain as an information-
processing apparatus, may be traced back to the writings of William James (1842-1910).
Helmholtz also emphasized on the existence of an unconscious logical inference in perception.
The cognitive perspective was largely superseded by behaviourism in the United States, while
cognitive modelling flourished at Cambridge's Applied Psychology Unit, supervised by Frederic
Bartlett (1886-1969).

Engineering in Computer Science

Introspection could not produce trustworthy evidence. Behaviourists concentrated on analyzing
only objective measurements of an animal's percepts and its subsequent behaviours. Behaviourism
learned a lot about rats and pigeons but struggled to grasp people. Cognitive psychology, which
regards the brain as an information-processing apparatus, may be traced back to the writings of
William James (1842-1910). Helmholtz also emphasized on the existence of an unconscious
logical inference in perception.

The cognitive perspective was largely superseded by behaviourism in the United States, while
cognitive modelling flourished at Cambridge's Applied Psychology Unit, supervised by Frederic
Bartlett (1886-1969). The first operating computer was the electromechanical Heath Robinson8,
which Alan Turing's team created in 1940 for a single purpose: decoding German transmissions.
The Z-3, invented by Konrad Zuse in Germany in 1941, was the first operational programmed
computer.

Zuse also devised floating-point integers and Plankalk ul, the first high-level programming
language. The ABC, the first electrical computer, was built at Iowa State University between 1940
and 1942 by John Atanasoff and his student Clifford Berry. The ENIAC, built as part of a covert
military project at the University of Pennsylvania by a team comprising John Mauchly and John
Eckert, proved to be the most significant predecessor of modern computers; Atanasoff's research
got little funding or acknowledgment. Since then, each generation of computer hardware has
increased speed and capacity while decreasing price. Performance doubled every 18 months or so
until roughly 2005, when manufacturers began doubling the number of CPU cores rather than the
clock speed due to power dissipation issues. Current assumptions are that future improvements in
power will result from huge parallelisma strange convergence with brain features. Of course,
before the electrical computer, there were calculating machines. On page 6, we explored the oldest
automated devices, which date back to the 17th century. The earliest programmable machine was
a loom designed in 1805 by Joseph Marie Jacquard (1752-1834) that employed punched cards to
store weaving pattern information.

Charles Babbage (1792-1871) developed two machines in the mid-nineteenth century, neither of
which he completed. The Difference Engine was designed to do mathematical table computations
for engineering and scientific tasks. It was ultimately constructed and shown in 1991 at the Science
Museum in London. Babbage's Analytical Engine was significantly more ambitious, with
addressable memory, stored programs, and conditional jumps, making it the first device capable
of universal computing. Ada Lovelace, the poet Lord Byron's daughter and Babbage's coworker,
was perhaps the world's first programmer. She created programs for the incomplete Analytical
Engine and predicted that the computer might play chess or compose music. AI also owes a debt

8

Artificial Intelligence

to computer science's software side, which has provided the operating systems, programming
languages, and tools required to develop current programs. However, in one area, the debt has been
repaid: work in AI has pioneered many ideas that have made their way back to mainstream
computer science, such as time sharing, interactive interpreters, personal computers with windows
and mice, rapid development environments, the linked list data type, automatic storage
management, and key concepts of symbolic, functional, declarative, and object-oriented
programming.

CONCLUSION

Artificial intelligence and technology are two aspects of life that constantly fascinate and amaze
us with new ideas, themes, discoveries, products, and so on. AI is still not implemented as shown
in films, but there are many key attempts to achieve that level and compete in the market, such as
the robots seen on TV at times. Nonetheless, the growth and concealed initiatives in industrial
firms. In the last five years, the area of artificial intelligence has made amazing development, with
real-world implications for individuals, organizations, and society.

The capacity of computer programs to execute complex language- and image-processing tasks has
evolved greatly since the field's inception in the 1950s. Although present AI technology falls well
short of the field's primary goal of replicating complete human-like intelligence in computers,
research and development teams are capitalizing on these breakthroughs and merging them into
societal-facing applications. For example, the application of AI approaches in healthcare is
becoming a reality, and the brain sciences benefit from and contribute to AI advancements. To
differing degrees, old and new firms are devoting money and effort to discover methods to build
on this success and deliver services that scale in unprecedented ways.

REFERENCES:

[1] C. E. Bell, “Maintaining Project Networks in Automated Artificial Intelligence Planning,”
Manage. Sci., 1989, doi: 10.1287/mnsc.35.10.1192.

[2] A. D. Mali, “Plan merging and plan reuse as satisfiability,” in Lecture Notes in Artificial

Intelligence (Subseries of Lecture Notes in Computer Science), 2000. doi:
10.1007/10720246_7.

[3] A. D. Mali, “Refinement-based Planning as Satisfiability,” in Innovative Applications of

Artificial Intelligence - Conference Proceedings, 1998.

[4] M. Mauerkirchner, “Event based simulation of software development project planning,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1997. doi: 10.1007/BFb0025072.

[5] M. Ghallab, D. Nau, and P. Traverso, “Planning-Graph Techniques,” in Automated

Planning, 2004. doi: 10.1016/b978-155860856-6/50011-9.

[6] H. Yang, “Artifical intelligence and robots in education,” Turkish Online J. Educ. Technol.,
2017.

[7] S. Arockia Panimalar, U. Giri Pai, and K. Salman Khan, “Artifical Intelligence Techniques
for Cyber Security,” Int. Res. J. Eng. Technol., 2018.

9

Artificial Intelligence

[8] P. Hop, B. Allgood, and J. Yu, “Geometric Deep Learning Autonomously Learns Chemical
Features That Outperform Those Engineered by Domain Experts,” Mol. Pharm., 2018, doi:
10.1021/acs.molpharmaceut.7b01144.

[9] H. Hamdan, “Industri 4.0: Pengaruh Revolusi Industri Pada Kewirausahaan Demi
Kemandirian Ekonomi,” J. Nusant. Apl. Manaj. BISNIS, 2018, doi:
10.29407/nusamba.v3i2.12142.

[10] D. C. Brock, “Learning from artificial intelligence’s previous awakenings: The history of
expert systems,” AI Magazine. 2018. doi: 10.1609/aimag.v39i3.2809.

10

Artificial Intelligence

CHAPTER 2

INTELLIGENT AGENT: EMPOWERING MACHINES

WITH DECISION-MAKING ABILITIES

Ashendra Kumar Saxena, Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- ashendrasaxena@gmail.com

ABSTRACT:

As intelligent agents and social robots are increasingly envisioned as companions and aides in
workplaces and homes, one of the primary issues that such agents must overcome is the acquisition
of information in order to act and comprehend the human partner's behaviours. To increase the
efficiency and quality of the services provided by social robots in such environments, it is critical
that they be endowed with information that allows them to behave and interact organically. The
present technology enables us to automate sophisticated dialogues based on massive data analysis
and simple question-answer exchanges with people. However, models for the application and
general world knowledge are required, therefore domain ontologies that allow reasoning about
actions and entities must be included to the robot's knowledge base. Learning and equipping the
robot with real-size knowledge-bases may both help the robot gain knowledge. The latter may be
launched by analyzing human behaviours and organizing the participants' tacit knowledge with the
use of a crowd-sourcing approach that involves participants in engagement with one other, where
they explain their knowledge via interaction. The idea is to integrate non-tangible items like
information and awareness of activities with companionable agents.

KEYWORDS:

Agent, Development, Environment, Function, Rational.

INTRODUCTION

The idea of rational agents was highlighted as important to our approach to artificial intelligence
in Chapter 1. This concept is further developed in this chapter. We shall demonstrate that the idea
of rationality may be applied to a broad range of agents functioning in any environment
conceivable. In this book, we want to leverage this notion to create a limited set of design rules for
creating effective agents systems that may be termed intelligent. We begin by looking at agents,
surroundings, and the interactions between them. The fact that some agents behave better than
others inevitably leads to the concept of a rational agent one who acts as good as possible. The
nature of the environment influences how successfully an agent behaves; certain settings are more
demanding than others. We provide a rough classification of environments and demonstrate how
the qualities of an environment impact the creation of appropriate agents for that environment. We
discuss many basic skeleton agent concepts, which we fill out throughout the book [1]–[3].

Environmental Agents and Environments

An agent is defined as anything that perceives its surroundings via sensors and acts on that
perception through actuators. A human agent contains sensors such as eyes, ears, and other organs,
as well as actuators like as hands, legs, voice tracts, and so on. A robotic agent may have sensors

11

Artificial Intelligence

such as cameras and infrared range finders, as well as actuators such as different motors. A
software agent accepts sensory inputs like as keystrokes, file contents, and network packets and
acts on the environment by showing on the screen, creating files, and sending network packets.
There is anything to say about the agent. In mathematical terms, an agent's behaviour is
characterized by the agent function that translates every given percept sequence to an action. We
may envision tabulating the agent function that characterizes each particular agent; for most
agents, this would be an enormous table infinite, in fact, unless we set a limit on the length of
percept sequences to examine [4]–[6].

Given an agent to experiment with, we may build this table by attempting all conceivable percept
sequences and noting the behaviours the agent does in response. The table is, of course, an external
characterization of the agent. An agent program agent program will implement the agent function
for an artificial agent inside. It is critical to distinguish between these two concepts. The agent
function is a mathematical description that is abstract; the agent program is a concrete
implementation that runs inside a physical system. To demonstrate these concepts, consider the
vacuum-cleaner scenario. This universe is so basic that we can explain everything that occurs; it's
also a made-up world, so countless variants are possible. This universe only contains two locations:
squares A and B. The vacuum agent detects which square it is in and whether or not it contains
dirt. It has the option of moving left, right, sucking up dirt, or doing nothing. One basic agent
function is to suck if the current square is unclean else, go to the other square. So the obvious issue
is: What is the proper method to fill up the table? In other words, what distinguishes a good or
terrible agent, clever or stupid? In the next part, we will address these concerns. Before concluding
this section, it is important to note that the concept of an agent is intended to be a tool for
understanding systems rather than an absolute classification that separates the universe into agents
and non-agents. A hand-held calculator may be seen as an agent that selects the action of displaying
4 when given the percept sequence 2 + 2 =, however this analysis would not help us understand
the calculator. In some ways, all areas of engineering can be viewed as designing artifacts that
interact with the world AI operates at the most interesting end of the spectrum, where the artifacts
have significant computational resources and the task environment necessitates nontrivial decision
making.

Good Behaviour: The Concept Of Rationality Rational Agent

A rational agent is one who performs the proper thing that is, every item in the table for the agent
function is appropriately filled out. Obviously, doing the right thing is preferable than doing the
wrong thing, but what exactly does it entail? Before concluding this section, it is important to note
that the concept of an agent is intended to be a tool for understanding systems rather than an
absolute classification that separates the universe into agents and non-agents. A hand-held
calculator may be seen as an agent that selects the action of displaying when given the percept
sequence 2 + 2 =, however this analysis would not help us understand the calculator. In some ways,
all areas of engineering can be viewed as designing artifacts that interact with the world AI operates
at the most interesting end of the spectrum, where the artifacts have significant computational
resources and the task environment necessitates nontrivial decision making [7]–[9].

Good Behaviour: The Rationality Concept Rational Agent

A rational agent is one that performs the proper thing that is, every item in the table for the agent
function is correctly filled out. Obviously, doing the right thing is preferable than doing the wrong
thing, but what exactly does it entail?

12

Artificial Intelligence

Omniscience, Learning, and Self-Determination

We must be cautious in distinguishing between rationality and omniscience. Omniscience is
impossible in actuality because an omniscient agent knows the true result of its actions and may
adjust appropriately. Consider the following scenario: I'm going down the Champs-Elysées one
day when I see an old buddy across the street. There is no traffic around, and I am not else occupied,
so I begin to cross the street. Meanwhile, at 33,000 feet, a cargo door comes from a passing airliner,
and I am squashed before I reach the opposite side of the roadway. Was I crazy to cross the street?
It is doubtful that my obituary would state, Idiot attempts to cross street. This example
demonstrates that logic is not synonymous with perfection. While rationalism increases predicted
performance, perfection enhances actual performance [10].

Reducing the bar for perfection is more than simply being fair to agents. The argument is that if
we want an agent to conduct what turns out to be the optimal action after the event, designing an
agent to meet this specification will be impossible unless we enhance the performance of crystal
balls or time machines. So, our concept of rationality does not need omniscience, since rational
decision is based just on the percept sequence to date.

We must also verify that we have not mistakenly authorized the agent to engage in clearly inept
behaviour. For example, if an agent does not look both ways before crossing a busy street, its
percept sequence will not inform it that a heavy vehicle is coming at high speed. Is it now sensible
to cross the street, according to our understanding of rationality? Not at all. First, crossing the road
would be illogical given this uninformative perceptual sequence the chance of an accident from
crossing without looking is too significant. Second, before crossing the street, a rational agent
should take the looking action since it helps optimize predicted performance.

Doing activities in order to change future perceptions also known as information gatheringis an
essential aspect of rationality and is discussed in detail in Chapter 16. A second example of
knowledge gathering is the exploration that a vacuum-cleaning agent must perform in an initially
unfamiliar area. According to our concept, a rational agent must not only acquire information but
also learn as much as possible from what it sees.

The agent's initial design may represent some past knowledge of the environment, but this may be
updated and supplemented as the agent acquires experience. There are certain extreme
circumstances when the environment is totally understood ahead of time. In such instances, the
agent does not need to see or learn; it just behaves appropriately. Naturally, such agents are
vulnerable. Consider the insignificant dung beetle. It retrieves a clump of dung from a
neighbouring mound after excavating its nest and placing its eggs to seal the entrance. If the beetle
loses its grip on the dung ball on way, it continues its duty and pantomimes plugging the nest with
the nonexistent dung ball, never realising that it is missing. An assumption has been built into the
beetle's behaviour via evolution, and when it is broken, unsuccessful behaviour occurs.

Sphex wasps are somewhat more clever. The female sphex will dig a tunnel, then go out and sting
a caterpillar and pull it to the burrow, then enter the burrow again to make sure everything is okay,
drag the caterpillar inside, and deposit its eggs. When the eggs hatch, the caterpillar provides
sustenance. So far, so good, but if an entomologist moves the caterpillar a few inches away while
the sphex is doing the check, it will return to the drag stage of its plan and will continue the plan
unchanged, even after hundreds of caterpillar-moving interventions. The sphex is unable to see
that its intrinsic strategy is failing and hence refuses to alter it. We say an agent lacks autonomy

13

Artificial Intelligence

when it depends on the past knowledge of its creator rather than autonomy on its own percepts. A
rational agent should be self-sufficient, learning what it can to compensate for incomplete or
inaccurate past knowledge.

A vacuum-cleaning agent, for example, that learns to predict where and when extra dirt will surface
would perform better than one that does not. In practice, total autonomy is seldom required from
the start: if the agent has little or no experience, it will have to behave randomly unless the designer
provides some guidance. As a result, much as evolution gives animals with enough built-in reflexes
to allow them to live long enough to learn for themselves, it seems acceptable to equip an artificial
intelligent agent with some beginning knowledge as well as the capacity to learn. A rational agent's
behaviour may become effectively independent of its past knowledge with enough experience in
its surroundings. As a result, incorporating learning enables one to create a single rational agent
that will thrive in a wide range of contexts. Now that we've defined rationality, we can start
thinking about creating rational agents. However, we must first consider task environments, which
are essentially the problems to which rational agents are the solutions. We begin by demonstrating
how to describe a task environment, using a variety of examples to demonstrate the process. Then
we demonstrate that task contexts come in a number of flavours. The flavour of the task
environment has a direct impact on the design of the agent program.

DISCUSSION

Setting up the Job Environment

We have to describe the performance measure, the environment, and the agent's actuators and
sensors in our examination of the rationality of the basic vacuum-cleaner agent. All of this is
referred to as the task environment. We call this the PEAS (Performance, Environment, Actuators,
Sensors) description for the acronymically inclined. The initial step in building an agent should
always be to properly define the job environment. Let us examine a more sophisticated problem:
an autonomous cab driver, as an example from the vacuum world. Before the reader gets
concerned, we should note out that a completely autonomous cab is presently beyond the
capabilities of current technology. The whole driving job is fairly open-ended. Another reason we
picked it as a topic for debate is because the creative combinations of conditions that might happen
are limitless. First, what is the performance metric that we want our automated driver to strive for?
Obtaining the proper destination reducing fuel consumption and wear and tear; minimizing journey
time or expense minimizing infractions of traffic regulations and interruptions to other drivers;
optimizing safety and passenger comfort and maximizing earnings are all desirable attributes.
Obviously, some of these objectives are incompatible, therefore choices will be necessary.

Next, what will the taxi's driving environment be like? Any cab driver must navigate a wide range
of roadways, from country lanes and urban alleyways to 12-lane highways. Other traffic,
pedestrians, stray animals, road works, police vehicles, puddles, and potholes may all be found on
the roadways. In addition, the cab must engage with both prospective and present passengers.
There are also some other options. The taxi may be required to operate in Southern California,
where snow is seldom an issue, or in Alaska, where it is almost never a problem. It may always
drive on the right, or we could want it to be able to drive on the left in places like Britain or Japan.
Obviously, the simpler the design challenge, the more confined the surroundings. The actuators
for an autonomous taxi include those accessible to a human driver, such as control over the engine
through the accelerator and steering and braking control. It will also need output to a display screen
or speech synthesizer to converse with the passengers, as well as a method to communicate with

14

Artificial Intelligence

other vehicles, politely or otherwise. The taxi's basic sensors will comprise one or more
programmable video cameras to observe the road these may be supplemented with infrared or
sonar sensors to measure distances to other vehicles and obstructions.

To minimize speeding charges, the taxi should contain a speedometer, and an accelerometer to
appropriately regulate the vehicle, particularly on bends. The normal array of engine, fuel, and
electrical system sensors will be required to detect the mechanical status of the vehicle.

It, like many human drivers, may want a global positioning system (GPS) to avoid getting lost.
Finally, a keyboard or microphone will be required for the passenger to request a destination. Some
readers may be surprised to learn that our list of agent types includes programs that function solely
in an artificial environment defined by keyboard input and character output on a screen. Surely,
one could object, this isn't a real environment, is it? In reality, what counts is the intricacy of the
interaction between the agent's behaviour, the percept sequence created by the environment, and
the performance metric, not the difference between real and artificial environments. Some real
settings are really fairly simple. A robot designed to inspect parts as they pass by on a conveyor
belt, for example, can make a number of simplifying assumptions, such as that the lighting is
always perfect, that the only thing on the conveyor belt will be parts of a type that it is familiar
with, and that only two actions are possible.

Software Agent

In contrast, certain software agents also known as software robots or softbots exist in diverse,
unrestricted sectors. Consider a softbot Web site operator that scans Internet news sources and
displays the most interesting stuff to its readers while generating cash by selling advertising space.
To succeed, that operator will require natural language processing skills, the ability to understand
what each user and advertiser is interested in, and the ability to adjust its plans dynamicallyfor
example, when one news source's connection goes down or a new one comes up. The Internet is a
sophisticated ecosystem that rivals the actual world, and its residents include both artificial and
human entities.

Static Vs. Dynamic

 If an agent's surroundings may vary while deliberating, we say the environment is dynamic for
that agent; otherwise, it is static. Static settings are simple to deal with since the agent does not
need to continuously glancing about while deciding on an action, nor does it need to be concerned
about the passage of time.

In contrast, dynamic settings constantly ask the agent what it wants to do; if it hasn't chosen yet, it
counts as wanting to do nothing. If the environment does not vary over time but the agent's
performance score does, we call the environment semidynamic. cab driving is visibly dynamic:
other vehicles and the cab itself continue to move as the driving algorithm mulls over what to do
next. Chess is semidynamic when played against a clock. Crossword puzzles are immobile.

Discrete Vs. Continuous

The continuous dichotomy pertains to the state of the nvironment, the handling of time, and the
agent's perceptions and actions. The chess environment, for example, has a limited number of
unique states. Chess has a distinct set of perceptions and actions. Taxi driving is a continuous-state
and continuous-time problem: the taxi's and other cars' speeds and locations sweep over a range of

15

Artificial Intelligence

continuous values smoothly across time. The operations of a taxi driver are also continual steering
angles, etc. Digital camera input is discrete, technically speaking, but is often interpreted as
reflecting continually fluctuating intensities and positions.

Known Vs. Unknown

Strictly speaking, this difference relates to the agent's level of knowledge about the laws of physics
of the environment, rather than the environment itself. The outcomes or result probabilities if the
environment is stochastic for all actions are provided in a known environment. Obviously, if the
environment is unfamiliar, the agent must understand how it operates in order to make sound
judgments. It should be noted that the difference between known and unknown environments
differs from the distinction between completely and partly viewable settings. It is quite feasible
for a known environment to be partly observablefor example, I know the rules of solitaire card
games but am still unable to see the cards that have not yet been turned over. In contrast, an
unfamiliar environment might be totally visiblein a new video game, the screen may display the
whole game state, but I won't know what the buttons do until I try them. The most difficult
situation, as one would assume, is partly observable, multiagent, stochastic, sequential, dynamic,
continuous, and unknown.

Taxi driving is difficult in all of these ways, except that the driver's surroundings are mostly
recognized. It's a lot more fun to drive a rental automobile in a new nation with foreign landscape
and traffic restrictions. Figure 2.6 depicts the characteristics of some known places. It is important
to note that the solutions are not always black and white. For example, the component-picking
robot is described as episodic since it generally evaluates each part in isolation. However, if a
significant batch of faulty parts is discovered one day, the robot should learn from numerous
observations that the distribution of flaws has changed and adapt its behaviour for following parts.
We did not add a known/unknown column since, as previously said, this is not technically an
environmental property. Although it is quite simple to provide the agent with complete knowledge
of the rules for specific contexts, such as chess and poker, it is nonetheless intriguing to investigate
how an agent may learn to play these games without such information.

Several of the table's responses are dependent on how the task environment is described. We
classified the medical-diagnosis job as single-agent since the illness process in a patient cannot be
usefully modelled as an agent; nevertheless, a medical-diagnosis system may also have to deal
with obstinate patients and suspicious personnel, therefore the environment may be multiagent.
Furthermore, medical diagnosis is episodic if the job is seen of as picking a diagnosis from a list
of symptoms; the issue is sequential if the effort includes recommending a series of tests, assessing
progress throughout the course of therapy, and so on. Furthermore, many settings are episodic at
levels higher than the agent's individual acts. A chess tournament, for example, consists of a series
of games; each game is an episode since the contribution of the moves in one game to the agent's
total performance is unaffected by the movements in the previous game. Decision making inside
a single game, on the other hand, is unquestionably sequential.

The code repository associated with this book contains implementations of various environments,
as well as a general-purpose environment simulator that places one or more agents in a simulated
environment, observes their behaviour over time, and evaluates them based on a given
performance measure. Such studies are often carried out not for a single environment, but for a
group of settings taken from a class of environments. To assess a taxi driver in simulated traffic,
for example, we would conduct multiple simulations with varying traffic, lighting, and weather

16

Artificial Intelligence

circumstances. We may be able to take use of unique qualities of the particular instance if we
developed the agent for a single situation, but we might not be able to discover a viable design for
driving in general. As a result, the code repository contains an environment generator for each
environment class that picks certain environments in which to execute the agent. The vacuum
environment generator, for example, generates the dirt pattern and agent position at random.

The Agents' Structure

So far, we've discussed agents by describing behaviorthe action that follows any given sequence
of percepts. We must now bite the bullet and discuss the inner workings. AI's task is to create an
agent software that performs the agent functionthe mapping from percepts to actions. We presume
that this program will operate on an computer device with physical sensors and actuators, which
we call the architecture: agent = architecture + program.

Obviously, the software we choose must be suitable for the architecture. If the software is going
to advocate activities like Walk, the architecture has to stand on its own. The architecture might
be as simple as a PC or as complex as a robotic automobile with many onboard processors,
cameras, and other sensors. In general, the architecture provides the program with sensor percepts,
executes the program, and feeds the program's action options to the actuators as they are created.
The majority of this book is on developing agent programs, although Chapters 24 and 25 are about
sensors and actuators.

Agent Programs

All of the agent programs in this book have the same skeleton: they take the current percept as
input from the sensors and return an action to the actuators.4 Notice the difference between the
agent program, which takes the current percept as input, and the agent function, which takes the
entire percept history. Because nothing more is accessible from the environment, the agent
program only accepts the current percept as input; if the agent's actions must rely on the full percept
sequence, the agent must remember the percepts. The agent programs are described in the basic
pseudocode language.

The online code repository provides implementations in actual programming languages. It's worth
thinking about why the table-driven method to agent creation is guaranteed to fail. Let P represent
the collection of probable percepts and T represent the agent's lifespan. Consider an autonomous
taxi the visual input from a single camera is around 27 gigabytes per second 30 frames per second,
640 480 pixels with 24 bits of colour information. For an hour of driving, this results in a lookup
table with over 10250,000,000,000 entries. Even chess, a little, well-behaved fraction of the actual
universe, would contain at least 10150 entries.

Because of the intimidating size of these tables the number of atoms in the observable universe is
less than 1080, no physical agent in this universe will have the space to store the table, the designer
would not have time to create the table, no agent could ever learn all the right table entries from
its experience, and even if the environment is simple enough to yield a feasible table size, the
designer still has no guidance about how to fill in the table. Despite this, it accomplishes our goal:
it implements the needed agent function. The main AI problem is to figure out how to create
algorithms that, to the greatest degree feasible, generate sensible behaviour from a little program
rather than a large table. Many instances illustrate that this may be done effectively in other areas:
for example, prior to the 1970s, engineers and schoolchildren utilized massive tables of square

17

Artificial Intelligence

roots, which have since been replaced by a five-line software for Newton's method running on
electronic calculators. The issue is whether AI can do for general intelligent behaviour what
Newton accomplished for square roots.

We think the answer is yes. Understanding the existing status of the environment is not always
sufficient to determine what to do. At a road intersection, for example, the cab may turn left, right,
or continue straight. The proper option is determined by the location of the cab. In other words, in
addition to GOAL as a present state description, the agent need goal information that defines
desired conditions, such as being at the passenger's destination. The agent software may utilize
this information in conjunction with the model the same information used in the model-based
reflex agent to choose behaviours that meet the objective. Sometimes it will be more difficult, such
as when the agent must contemplate extended sequences of twists and turns in order to attain the
objective. The subfields of AI dedicated to identifying action sequences that accomplish the agent's
objectives include search and planning (. This kind of decision making differs fundamentally from
the condition-action rules outlined previously in that it incorporates future consideration both What
will happen if I do such-and-such? and Will it make me happy?

This information is not explicitly represented in reflex agent designs because the built-in rules map
directly from percepts to actions. When it detects brake lights, the reflex agent brakes. In theory,
a goal-based agent may reason that if the automobile in front of it has its brake lights on, it will
slow down. Given how the world often unfolds, the only action that will accomplish the aim of
avoiding colliding with other automobiles is to stop. Although the goal-based agent looks to be
less efficient, it is more adaptable since the information that underlies its choices is openly
expressed and modifiable. If it begins to rain, the agent may update its understanding of how
efficiently its brakes will function; this will immediately cause all relevant behaviours to be
changed to accommodate the new circumstances. We would have to rewrite numerous condition-
action rules for the reflex agent, on the other hand. The behaviour of the goal-based agent may be
readily altered to travel to a different location by designating that destination as the objective. The
reflex agent's rules for when to turn and when to travel straight will only function for one
destination; to go someplace new, they must all be updated.

When it detects brake lights, the reflex agent brakes. In theory, a goal-based agent may reason that
if the automobile in front of it has its brake lights on, it will slow down. Given how the world often
unfolds, the only action that will accomplish the aim of avoiding colliding with other automobiles
is to stop. Although the goal-based agent looks to be less efficient, it is more adaptable since the
information that underlies its choices is openly expressed and modifiable. If it begins to rain, the
agent may update its understanding of how efficiently its brakes will function; this will
immediately cause all relevant behaviours to be changed to accommodate the new circumstances.
We would have to rewrite numerous condition-action rules for the reflex agent, on the other hand.
The behaviour of the goal-based agent may be readily altered to travel to a different location by
designating that destination as the objective. The reflex agent's rules for when to turn and when to
travel straight will only function for one destination; to go someplace new, they must all be
updated. Methods of instruction. There is, however, a recurring motif. Learning in intelligent
agents may be defined as the process of modifying each component of the agent to bring it into
closer agreement with the available feedback information, hence improving the agent's overall
performance.

18

Artificial Intelligence

CONCLUSION

This chapter has been a bit of a crash course in AI, which we've defined as the science of agent
creation. The key aspects to remember are: An agent is anything that observes and acts in its
surroundings. An agent's agent function describes the action that the agent does in response to any
percept sequence.

The performance metric assesses the agent's behaviour in a given context. Given the percept
sequence it has observed so far, a rational agent works to maximize the predicted value of the
performance measure. The performance measure, the external environment, the actuators, and the
sensors are all part of the task environment definition. The initial step in building an agent should
always be to properly define the job environment. The size of task settings vary significantly.
They may be completely or partly observable, single-agent or multiagent, deterministic or
stochastic, episodic or sequential, static or dynamic, discrete or continuous, known or unknown,
and fully or partially observable. The agent function is implemented by the agent software. There
are many fundamental agent-program architectures that represent the kind of information made
explicit and employed in the decision process. The designs differ in terms of efficiency,
compactness, and adaptability. The nature of the environment influences the design of the agent
software. Simple reflex agents react to percepts directly, but model-based reflex agents keep an
internal state to monitor parts of the environment that are not visible in the present percept. Goal-
based agents work to attain their objectives, whereas utility-based agents attempt to maximize their
own predicted happiness. All agents may improve their performance via learning.

REFERENCES:

[1] A. F. Jimenez, P. F. Cardenas, A. Canales, F. Jimenez, and A. Portacio, “A survey on
intelligent agents and multi-agents for irrigation scheduling,” Computers and Electronics in

Agriculture. 2020. doi: 10.1016/j.compag.2020.105474.

[2] I. Rudowsky, “Intelligent Agents,” in 10th Americas Conference on Information Systems,

AMCIS 2004, 2004. doi: 10.2495/978-1-84564-060-6/01.

[3] C. C. Liang, W. Y. Liang, and T. L. Tseng, “Evaluation of intelligent agents in consumer-
to-business e-Commerce,” Comput. Stand. Interfaces, 2019, doi:
10.1016/j.csi.2019.03.002.

[4] M. Pawlak, A. Poniszewska-Maránda, and N. Kryvinska, “Towards the intelligent agents
for blockchain e-voting system,” in Procedia Computer Science, 2018. doi:
10.1016/j.procs.2018.10.177.

[5] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “JACK intelligent agents-summary
of an agent infrastructure,” Management, 2001.

[6] A. J. Fougères and E. Ostrosi, “Intelligent agents for feature modelling in computer aided
design,” J. Comput. Des. Eng., 2018, doi: 10.1016/j.jcde.2017.11.001.

[7] X. Ji and P. L. P. Rau, “A comparison of three think-aloud protocols used to evaluate a
voice intelligent agent that expresses emotions,” Behav. Inf. Technol., 2019, doi:
10.1080/0144929X.2018.1535621

.

19

Artificial Intelligence

[8] D. Xu and H. Wang, “Intelligent agent supported personalization for virtual learning
environments,” Decis. Support Syst., 2006, doi: 10.1016/j.dss.2005.05.033.

[9] R. J. Oskouei, H. N. Varzeghani, and Z. Samadyar, “Intelligent Agents: A Comprehensive
Survey,” Int. J. Electron. Commun. Comput. Eng., 2014.

[10] M. Z. Almuiet and F. Zawaideh, “Intelligent agent framework for knowledge acquisition in
supply chain management,” Int. J. Sci. Technol. Res., 2019.

20

Artificial Intelligence

CHAPTER 3

SOLVING PROBLEMS BY SEARCHING:

EXPLORING ALGORITHMS FOR INTELLIGENT EXPLORATION

Mohan Vishal Gupta, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- mvgsrm@indiatimes.com

ABSTRACT:

A search issue is made up of three parts: the search space, the start state, and the target state.
Through the evaluation of situations and alternatives, search algorithms assist AI agents in
achieving the target state. The algorithms give search solutions by performing a series of
operations that change the starting state to the desired one. Real-world issues are not always
amenable to algorithmic solutions. Humans, on the other hand, deal with these issues despite their
flawed problem-solving skills. Instead than attempting to build algorithms to solve issues, AI
researchers have focused on the more effective approaches employed by people. This study
examines problem solving in the context of Artificial Intelligence. This covers problem
representation for computing, weak techniques of searching for a solution to a problem, knowledge
representations that allow for more efficient search strategies, and planning - an advanced problem
solving strategy.

KEYWORDS:

Agent, Action, Search, States, Solutions.

INTRODUCTION

The reflex agents, which base their actions on a straightforward mapping from states to actions,
were the simplest agents addressed in Chapter 2. Such agents cannot function successfully in
contexts where this mapping would be too massive to store and learn. Goal-oriented agents, on the
other hand, think about future actions and the desirability of their results. This chapter explains a
specific kind of goal-based agent known as a problem-solving agent. Problem-solving agents
utilize atomic representations, which means that states of the world are viewed as wholes with no
internal structure apparent to the problem-solving algorithms. Planning agents are goal-based
agents who employ more complex factored or structured representations and are addressed in
Chapters 7 and 10. Our study of issue solving starts with specific definitions of problems and
solutions, followed by various examples to demonstrate these definitions.

Then, we explain a number of general-purpose search algorithms that may be utilized to tackle
these issues. We'll explore some uninformed search algorithms algorithms that are just given the
problem's specification and no additional knowledge about it. While some of these algorithms can
solve every issue, none of them are efficient. Informed search algorithms, on the other hand, may
perform well when given some direction on where to explore for answers. In this chapter, we focus
on the most basic kind of task environment, where the solution to a problem is always a set series
of operations. Chapter 4 deals with the more general issue, in which the agent's future behaviours
may differ based on future perceptions. Asymptotic complexity and NP-completeness are topics
used in this chapter.

21

Artificial Intelligence

Agents of Problem Solving

Intelligent agents should aim to optimize their performance metric. As we discussed in Chapter 2,
attaining this may be aided by the agent adopting a goal and aiming to fulfill it. Let's start with
why and how an agent may do this. Consider a travel agent in Arad, Romania, who is on a vacation.
Many things influence the agent's performance it wants to enhance its suntan, better its Ro manian,
see the sites, enjoy the nightlife , prevent hangovers, and so on. The choice issue is difficult,
requiring thorough study of guide books and various compromises. Assume the agent has a
nonrefundable ticket to Bucharest the next day. In such instance, the agent should set the target of
arriving in Bucharest. Courses of action that do not arrive in Bucharest on time may be rejected
without further consideration, considerably simplifying the agent's choice issue. Goals assist to
organize behaviour by restricting the goals that the agent is attempting to attain and, as a result,
the actions that must be considered. The first phase in issue resolution is goal formulation, which
is based on the present circumstance and the agent's performance metric [1]–[3].

A goal will be defined as a collection of world states exactly those states in which the objective is
met. The agent's role is to determine how to behave now and in the future in order to achieve a
desired state. Before it can do so, it must determine what kind of activities and states it should take
into account. If it considered actions at the level of move the left foot forward an inch or turn the
steering wheel one degree left, the agent would probably never make it out of the parking lot, let
alone to Bucharest, because there is too much uncertainty in the world and too many steps in a
solution at that level of detail. Given a goal, problem formulation is the process of selecting what
actions and states to examine. We will go through this technique in more detail later. Let us
suppose for the time being that the agent will examine activities at the level of driving from one
large town to another. As a result, each state corresponds to a certain town [4]–[6].

Our agent has now decided to go to Bucharest and is deciding where to go from Arad. There are
three exits from Arad: one to Sibiu, one to Timisoara, and one to Zerind. None of these achieve
the goal, so the agent will not know which road to take unless it is familiar with the geography of
Romania.1 In other words, the agent will not know which of its possible actions is best because it
does not yet know enough about the state that results from each action. If the agent does not have
any more information that is, if the environment is unknown in the sense indicated. it is forced to
attempt one of the actions at random. This heartbreaking circumstance is detailed in Chapter 4.
Assume, however, that the agent possesses a map of Romania. A map's purpose is to advise the
agent about the situations it could find itself in and the actions it can take. This information may
be used by the agent to evaluate following phases of a hypothetical travel via each of the three
towns, in order to determine a route that finally leads to Bucharest [6]–[8].

Once it has selected a route from Arad to Bucharest on the map, it may complete the trip by doing
the driving activities that correspond to the legs of the travel. In principle, an agent with numerous
immediate unknown-value possibilities may select what to do by first considering future actions
that ultimately lead to known-value states. To be more particular about what we mean by
examining future actions, we must define environmental attributes more precisely. For the time
being, we will assume that the environment is observable and that the agent is constantly aware of
its present state. It's acceptable to assume that each city on the map has a sign signalling its
existence to approaching drivers for the agent travelling in Romania. We also assume that the
environment is discrete, which means that there are only a limited number of actions to pick from
in any given state. This is true while travelling in Romania since each city is only linked to a few

22

Artificial Intelligence

other cities. We'll assume the environment is known, so the agent knows which states each action
achieves. For navigation issues, having an accurate map suffices [9], [10].

Finally, we assume that the environment is deterministic, so each action has only one result. This
is true for the Romanian agent under perfect circumstances, which implies that if it decides to
travel from Arad to Sibiu, it will arrive in Sibiu. Of fact, as seen in Chapter 4, circumstances are
not always optimal. The solution to any issue is a set series of activities under these assumptions.
Of course! says one.What else could it be? one could ask. In general, it might be a branching
method that advises alternative actions in the future according on the percepts that come. For
example, under less-than-ideal circumstances, the agent may intend to travel from Arad to Sibiu
and then to Rimnicu Vilcea, but must also have a backup plan in case it ends up in Zerind instead
of Sibiu. Fortunately, if the agent knows the beginning state and the environment is known and
predictable, it knows precisely where it will be and what it will experience after the first action.
Because there is only one potential percept after the first action, the solution can only identify one
possible second action, and so on. Search is the process of seeking for a series of activities that
leads to a goal. A search algorithm takes in a problem and outputs a solution in the form of an
action sequence. Once a solution is discovered, the activities it suggests may be implemented. The
execution phase refers to this As a result, the agent has a straightforward formulate, search, execute
architecture.

After defining a goal and an issue to address, the agent starts a search operation to find a solution.
It then guides its activities by executing whatever the answer proposes as the next step typically,
the first action of the sequence and then deleting that step from the sequence. Once the solution
has been implemented, the agent will devise a new objective. Notice how, when performing the
solution sequence, the agent ignores its percepts while selecting an action since it knows what they
will be. An agent who executes its plans with its eyes closed must be very confident of what is
going on. Because disregarding the percepts breaks the loop between agent and environment,
control theorists refer to this as an open-loop system. We begin by describing the problem
formulation method, and then concentrate the majority of the chapter to several algorithms for the
search function. We don't go into detail about the update-state and formulate-goal functions in this
chapter.

DISCUSSION

Creating Issues

We offered a formulation of the issue of travelling to Bucharest in terms of the beginning state,
actions, transition model, goal test, and route cost in the previous section. Although this
formulation seems to be fair, it is still a modelan abstract mathematical descriptionrather than the
actual thing. Compare the simple state description we've chosen, In, to a real cross-country trip,
where the state of the world includes so many variables the travelling companions, the current
radio program, the scenery out the window, the proximity of law enforcement officers, the distance
to the next rest stop, the condition of the road, the weather, and so on. All of these factors are
omitted from our state descriptions since they are unrelated to the difficulty of finding a way to
Bucharest. Abstraction refers to the process of eliminating detail from a representation. We must
abstract not just the state description but also the actions themselves. A driving action has several
consequences. Aside from altering the location of the vehicle and its occupants, it wastes time,
consumes fuel, causes pollution, and alters the agent. Only the change in location is taken into
consideration in our algorithm. There are also numerous acts that we leave out entirely, such as

23

Artificial Intelligence

turning on the radio, gazing out the window, slowing down for law enforcement personnel, and so
on. We don't identify actions at the level of turn steering wheel to the left by one degree. Can we
be more specific about specifying the right level of abstraction? Consider the abstract states and
actions we've selected to be vast collections of detailed world states and action sequences.

Consider a solution to the abstract problem:the route from Arad to Sibiu to Rimnicu Vilcea to
Pitesti to Bucharest, for example. This broad answer relates to a plethora of more specific
approaches. For example, we may listen to the radio between Sibiu and Rimnicu Vilcea, then turn
it off for the remainder of the journey. The abstraction is valid if any abstract solution can be
expanded into a solution in the more detailed world; a sufficient condition is that for every detailed
state that is in Arad, there is a detailed path to some state that is in Sibiu, and so on.5 The
abstraction is useful if carrying out each of the actions in the solution is easier than the original
problem; in this case, they are easy enough that they can be carried out without further search or
planning by an av Choosing a decent abstraction therefore entails eliminating as much information
as feasible while maintaining validity and ensuring that the abstract activities are simple to carry
out. Intelligent beings would be entirely overwhelmed by the actual world if they did not have the
capacity to form helpful abstractions.

Real-World Issues

We've previously seen how the route-finding issue is characterized in terms of predefined locations
and transitions along linkages between them. Routing methods are utilized in a wide range of
applications. Some, such as Web sites and in-car navigation systems, are relatively basic
adaptations of the Romania example. Others, such as video stream routing in computer networks,
military operations planning, and airline travel-planning systems, have even more sophisticated
requirements. Consider the airline travel issues that must be addressed by a trip-planning website:
States Each state clearly comprises a location and the current time. Furthermore, since the cost of
an activity may be affected by prior segments, fare bases, and whether the journey is local or
international, the state must collect additional information about these historical characteristics.

The initial state is determined by the user's inquiry. Take any flight from the present location, in
any seat class, departing after the current time, with extra time for a within-airport transfer if
necessary. The state resulting from taking a flight will have the trip's destination as the current
location and the arrival time as the current time. Are we at the user-specified destination? Path
cost: This is determined by monetary cost, waiting time, flight time, customs and immigration
processes, seat quality, time of day, aircraft type, frequent-flyer miles rewards, and other factors.
The travelling salesman problem (TSP) is a touring challenge that requires each place to be visited
precisely once. The goal is to discover the shortest trip possible. Although the issue is
acknowledged to be NP-hard, much effort has been devoted to increase the capabilities of TSP
algorithms. These algorithms have been utilized for tasks such as arranging movements of
automated circuit-board drills and stocking equipment on shop floors, in addition to organizing
visits for travelling salespeople.

Layout challenge necessitates the placement of millions of components and connections on a chip
in order to reduce space, circuit delays, stray capacitances, and manufacturing yield. After the
logical design phase, the layout issue is generally divided into two parts: cell layout and channel
routing. Cell arrangement groups the circuit's fundamental components into cells, each of which
performs a specific purpose. Each cell has a predetermined footprint and a set number of
connections to the other cells. The goal is to arrange the cells on the chip such that they do not

24

Artificial Intelligence

overlap and that connecting wires may be inserted between them. Channel routing determines the
best path for each wire via the spaces between the cells. These are highly tough search issues, yet
they are well worth tackling. Later in this chapter, we will provide several methods that can solve
them.

Robot Navigation

Robot navigation is an extension of the previously reported route-finding issue. A robot may
navigate in a continuous space with an endless number of potential actions and states, rather than
following a discrete set of paths. Space is effectively two-dimensional for a circular robot
travelling on a flat surface. When the robot has arms, legs, or wheels that must be operated, the
search space expands to a multidimensional space. Only advanced strategies are necessary to limit
the search space. In Chapter 25, we look at some of these strategies. Aside from the problem's
intricacy, practical robots must also cope with inaccuracies in sensor readings and motor controls.
The goal of assembly problems is to determine an order in which to assemble the pieces of an item.
If the improper order is selected, it will be impossible to add a section later in the sequence without
redoing some of the previous work. Checking the feasibility of a step in the sequence is a tough
geometrical search issue that is directly connected to robot navigation. As a result, the most costly
aspect of assembly sequencing is the development of legal proceedings. Any useful algorithm must
avoid investigating more than a small subset of the state space. Protein design is another major
assembly issue, in which the objective is to create a sequence of amino acids that will fold into a
three-dimensional protein with the necessary qualities to treat some ailment.

In Search of Solutions

We now need to fix the difficulties we've created. Because a solution is an action sequence, search
engines operate by examining multiple action sequences. Starting with the beginning state,
potential action sequences create a search tree with the initial state node at the root the branches
are actions, and the nodes correspond to states in the problem's state space. The initial few stages
in developing the search tree for determining a route from Arad to Bucharest are shown in Figure
3.6. The tree's root node corresponds to the beginning state, In. The first stage is to determine
whether or not this is a target state. Then we expandingly need to examine alternative options. We
do this by extending the present state that is, each legal action on the current state, resulting in a
new set of states. We create three branches from the parent node In Arad to three new child nodes
in this case. We must now decide one of these three choices to pursue further. This is the core of
searching: pursuing one possibility at a time while putting the others on hold in case the initial
choice does not lead to a solution. Assume we start with Sibiu. We may then choose one of these
four options or return to leaf node and select Timisoara or Zerind.

Each of these six nodes is a leaf node, or a node in the tree with no offspring. The frontier is the
collection of all leaf nodes that are accessible for expansion at any particular frontier point. Search
algorithms all have this fundamental structure they differ only in how they decide which state to
expand nextthe so-called search strategy. The astute reader will note one unique feature of the
search. In Arad repeating state is a repeating state in the search tree, in this instance formed via a
loopy route. Because there is no limit to how many times a loop may be traversed, the entire search
tree for Romania is infinite when considering loopy path. The state space, on the other hand,
contains just 20 states. Loopy routes are a subset of the broader idea of redundant paths, which
occur anytime there are several paths from one state to another. Consider the routes Arad-Sibiu
and Arad-Zerind-Oradea-Sibiu. The second approach is obviously redundantit's simply a worse

25

Artificial Intelligence

method to go to the same place. If you're worried about achieving the goal, there's no need to retain
more than one route to any given state, since every goal state that can be reached by extending one
path can also be reached by extending the other. In certain circumstances, it is feasible to specify
the issue such that duplicate pathways are avoided. For example, if the 8-queens problem is
formulated such that a queen may be put in any column, then any state with n queens can be
reached.

Different pathways exist however, if we reformulate the issue such that each new queen is put in
the leftmost vacant column, each state can only be reached by one path. In other circumstances,
duplicate pathways cannot be avoided. This comprises any problems with reversible actions, such
as route-finding puzzles and sliding-block puzzles. A very important example in computer games
is route finding on a rectangular grid. Each state has four successors in such a grid, therefore a
search tree with depth d that contains repeated states has 4d leaves; yet, there are only around 2d2
different states within d steps of any given state. For d = 20, this translates to around a trillion
nodes but only approximately 800 unique states. Following duplicate pathways might therefore
make a tractable task intractable. This is true even for algorithms that are capable of avoiding
endless loops. Algorithms that forget their past, as the adage goes, are bound to repeat it.
Remembering where one has been may help one avoid exploring repetitive pathways.

To do this, we T supplement the algorithm with a data structure known as the explored set also
known as the closed list, which records every enlarged node. Newly produced nodes that match
previously generated nodes in the explored set or the frontier may be dis carded rather than added
to the frontier. This generic design is used in the individual algorithms in this chapter. Clearly, the
algorithm's search tree has just one copy of each state, so we may think of it as forming a tree
directly on the state-space graph. Another useful aspect of the approach is that the frontier divides
the state-space graph into the explored and unexplored regions, such that any route from the
beginning state to an undiscovered state must travel through a state in the frontier. We can see that
the algorithm is methodically analyzing the states in the state space, one by one, as each step moves
a state from the frontier into the explored zone while transferring other states from the unexplored
sector into the frontier.

CONCLUSION

Search algorithms are algorithms that aid in the resolution of search issues. A search issue is made
up of three parts: the search space, the start state, and the target state. Through the evaluation of
situations and alternatives, search algorithms assist AI agents in achieving the target state. The
algorithms give search solutions by performing a series of operations that change the starting state
to the desired one. AI machines and apps cannot perform search functions and identify feasible
answers without these techniques.earch algorithms improve issue solving in artificial intelligence
by using logical search processes like as problem specification, actions, and search space. Many
AI tasks may be implemented in terms of search, which improves the formulation of a solution to
a given issue. Search algorithms improve the efficiency with which goal-based agents operate.
These agents tackle issues by attempting to find the optimum sequence of behaviours that will
deliver the greatest solution to a problem. In AI, search algorithms aid in the functioning of
production systems. These are systems that aid AI applications by using rules and the methods for
applying them. Search algorithms are used in production systems to find the sequence of rules that
may result in the desired action. These algorithms are also significant in neural network systems.
These are networked computer systems with a hidden layer, an input layer, and an output layer. In

26

Artificial Intelligence

artificial intelligence, neural networks are utilized to accomplish a variety of tasks. Search
algorithms aid in the discovery of connection weights that will result in the required input-output
mapping.

REFERENCES:

[1] S. J. Russell and P. Norvig, Solving problems by searching. 2016.

[2] K. Dutta, “Solving wicked problems: Searching for the critical cognitive trait,” Int. J.

Manag. Educ., 2018, doi: 10.1016/j.ijme.2018.09.002.

[3] S. Russell and P. Norvig, Artificial Intelligence A Modern Approach Third Edition. 2010.
doi: 10.1017/S0269888900007724.

[4] M. Barak, “Impacts of learning inventive problem-solving principles: Students’ transition
from systematic searching to heuristic problem solving,” Instr. Sci., 2013, doi:
10.1007/s11251-012-9250-5.

[5] N. Matloff et al., “From Algorithms to Z-Scores�: Probabilistic and Statistical Modeling
in Computer Science,” Design, 2013.

[6] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary Algorithms for
Reinforcement Learning,” J. Artif. Intell. Res., 1999, doi: 10.1613/jair.613.

[7] J. L. Bentley and J. H. Friedman, “Data Structures for Range Searching,” ACM Comput.

Surv., 1979, doi: 10.1145/356789.356797.

[8] S. D. Purborini and R. C. Hastari, “Analisis Kemampuan Spasial Pada Bangun Ruang Sisi
Datar Ditinjau Dari Perbedaan Gender,” J. Deriv. J. Mat. dan Pendidik. Mat., 2019, doi:
10.31316/j.derivat.v5i1.147.

[9] G. J. Hwang and F. R. Kuo, “A structural equation model to analyse the antecedents to
students’ web-based problem-solving performance,” Australas. J. Educ. Technol., 2015.

[10] N. Prayekti, T. Nusantara, Sudirman, H. Susanto, and I. Rofiki, “Students’ mental models
in mathematics problem-solving,” Journal of Critical Reviews. 2020. doi:
10.31838/jcr.07.12.83.

27

Artificial Intelligence

CHAPTER 4

LOCAL SEARCH ALGORITHMS: OPTIMIZING SOLUTIONS

THROUGH LOCAL EXPLORATION

Neeraj Kumari, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- arun.k.chauhan@relianceada.com

ABSTRACT:

This chapter looked at search algorithms for issues other than finding the "classical" example of
finding the shortest route to a goal in an observable, predictable, discrete environment. Local
search techniques like hill climbing use complete-state formulations and store just a limited
number of nodes in memory. Several stochastic techniques, including simulated annealing, have
been developed to produce optimum solutions when given a suitable cooling schedule. Many local
search strategies are applicable to issues in continuous spaces as well. Linear programming and
convex optimization problems are constrained by particular constraints on the form of the state
space and the nature of the objective function, and therefore permit polynomial-time methods that
are often exceedingly fast in practice. A genetic algorithm is a stochastic hill-climbing search that
maintains a huge population of states.

KEYWORDS:

Algorithms, Agent, Local, Online, Search.

INTRODUCTION

The search algorithms we've examined so far are meant to systematically investigate search areas.
This systematicity is accomplished by remembering one or more pathways and noting which
options were evaluated at each stage along the journey. When a goal is discovered, the road to that
goal is also a solution to the issue. However, in many issues, the approach to the objective is
immaterial. In the 8-queens issue, for example, the ultimate arrangement of queens is important,
not the sequence in which they are introduced. Many key applications, such as integrated circuit
design, factory-floor layout, job-shop scheduling, automated programming, telecommunications
network optimization, vehicle routing, and portfolio management, have this basic trait. If the road
to the objective is unimportant, we may investigate a new class. Local search algorithms use a
single current node and often travel solely to that node's neighbours. Normally, the pathways used
by the search are not saved [1]–[3].

Although local search algorithms are not systematic, they have two major advantages they utilize
extremely little memory usually a constant amount of memory and they may often discover good
solutions in huge or infinite state spaces that systematic algorithms cannot. Local search algorithms
are effective for tackling pure optimization problems, in which the goal is to discover the optimum
state based on an objective function. Nature, for example, supplies an objective function
reproductive fitness that Darwinian evolution may be understood as striving to optimize, but there
is no goal test or path cost for this issue. A landscape has location specified by the state and
elevation determined by the heuristic cost function or objective function value. If height
corresponds to the worldwide cost, the goal is to locate the lowest valleya worldwide minimum if

28

Artificial Intelligence

elevation corresponds to the cost, the goal is to find the highest peaka global maximum. By
introducing a negative sign, you may change from one to the other [4]–[6].

Steepest ascent is merely a loop that proceeds in the direction of increasing value. It ends when it
reaches a peak value for which no neighbour has a greater value. Because the method does not
keep a search tree, the data structure for the current node just has to store the state and value of the
goal function. Hill climbing does not look beyond the present state's near neighbours. This is like
to attempting to reach the summit of Mount Everest in a dense fog while suffering from amnesia.
We'll take the 8-queens problem to demonstrate hill climbing. Local search algorithms commonly
use a complete-state formulation, with 8 queens on the board, one in each column. A state's
successors are all conceivable states that may be formed by shifting a single queen to another
square in the same column.

The number of pairs of queens fighting each other, either directly or indirectly, is the heuristic cost
function h. This function's global minimum is zero, which happens only at perfect solutions. Hill
climbing is also known as greedy local search since it gets a nice neighbouring state without
considering where to go next. Despite the fact that greed is one of the seven deadly sins, greedy
algorithms typically perform pretty well. Because it is typically very straightforward to fix a poor
situation, hill climbing frequently makes quick progress toward a remedy. For example, it takes
just five steps from the state to the state which has h = 1 and is extremely close to a solution.
Unfortunately, hill climbing often becomes impassable for the following reasons. Local maxima
are peaks that are higher than each of their bordering states but lower than the global maximum.
Hill-climbing algorithms that approach a local maximum will be pulled higher toward the summit,
but will then be stranded with nowhere else to go.

More In each scenario, the algorithm reaches a point where no more progress is achieved. Starting
with a randomly generated 8-queens state, steepest-ascent hill climbing becomes stuck 86% of the
time, with just 14% of issue cases being solved. It operates swiftly, taking on average four steps
when it succeeds and three when it failsnot bad for a state space with 8817 million statesIs it not
worth it to keep goingto allow a sideways move in the expectation that the plateau is, in fact, a
shoulder. The answer is typically yes, but we must use caution. If we constantly allow sideways
movements when there are no uphill moves, the algorithm will enter an endless loop if it finds a
flat local maximum that is not a shoulder. One frequent technique is to restrict the number of
consecutive sideways movements. In the 8-queens problem, for example, we may allow up to 100
successive sideways movements. The proportion of issue occurrences handled by hill climbing
therefore increases from 14% to 94%. The method takes around 21 steps for each successful
occurrence and 64 steps for each failure [7], [8].

Annealing Simulation

A hill-climbing algorithm that never travels downhill toward states with lower value or greater
cost is sure to be insufficient since it may get trapped on a local maxi tum. A fully random walk,
on the other hand, is complete but exceedingly wasteful going to a successor picked uniformly at
random from the collection of successors. As a result, it becomes sensible to attempt to combine
hill climbing with a random walk in a method that maximizes both efficiency and completeness.
One such algorithm is simulated annealing. Simulated annealing in metallurgy refers to the process
of tempering or hardening metals and glass by heating them to a high temperature and then
gradually cooling them, enabling the material to enter a low energy crystalline form. To understand
simulated annealing, consider the challenge of putting a ping-pong ball into the deepest fissure in

29

Artificial Intelligence

a bumpy surface from the perspective of hill climbing to gradient descent. If we simply let the ball
roll, it will come to a local stop. We can bounce the ball out of the local minimum by shaking the
surface. The goal is to shake just hard enough to bounce the ball out of the local minimum but not
so hard that it falls out of the global minimum.

The simulated-annealing solution is to begin by shaking vigorously and progressively decrease the
strength of the shaking. The simulated-annealing algorithm's innermost loop is quite similar to hill
climbing. Instead of selecting the optimal move, it selects a random move. It is usually approved
if the relocation improves the situation. Otherwise, the motion is accepted with a probability
smaller than one. The chance falls exponentially as the badness of the manoeuvre increasesthe
amount E by which the assessment worsens. The likelihood falls as the temperature T drops bad
movements are more likely to be permitted at the start when T is high, and they become less
probable as T decreases. If the schedule gradually decreases T, the algorithm will discover a global
optimum with a probability close to one. In the early 1980s, simulated annealing was widely
employed to tackle VLSI layout difficulties. It is commonly used in factory scheduling and other
large-scale optimization projects. You are requested to compare its performance to that of random-
restart hill climbing on the 8-queens [9], [10].

DISCUSSION

Algorithms Based On Natural Selection

A genetic is a stochastic beam search variation in which successor states are formed by merging
two parent states rather than changing a single state. The similarity to natural selection is the same
as it is in stochastic beam search, except that we are now dealing with sexual reproduction rather
than asexual reproduction. GAs, like beam searches, start with a population of k randomly
generated states termed the population. Each state or person is represented as a string over a finite
alphabetmost often, a string of 0s and 1s. An 8-queens state, for example, must indicate the
locations of 8 queens, each in a column of 8 squares, using 8 log2 8 = 24 bits. Alternatively, the
state might be represented by eight numbers ranging from 1 to 8. Because a fitness function should
yield larger values for better states, we utilize the number of nonattacking pairs of queens as a
solution for the 8-queens issue, which has a value of 28. The four states have values of 24, 23, 20,
and 11. The likelihood of being picked for reproduction in this variation of the genetic algorithm
is directly related to the fitness score, and the percentages are shown next to the raw scores. Two
couples are chosen at random for replication based on the probabilities . One person is picked
twice and one is not chosen at all.

The children are formed by crossing over the parent strings at the crossover point. The first kid of
the first pair, for example, receives the first three digits from the first parent and the remaining
digits from the second parent, while the second child receives the first three digits from the second
parent and the remainder from the first parent. The example demonstrates that when two parent
states are quite distinct, the crossover operation might create a state that is far from either parent
state. Because the population is typically extremely varied early in the process, crossover like
simulated annealing frequently takes huge leaps in the state space early in the search process and
fewer steps later when most individuals are relatively similar. Genetic algorithms, like stochastic
beam search, combine an upward trend with random exploration and information sharing across
parallel search threads. The crossover operation is the principal benefit, if any, of genetic
algorithms. However, it is analytically shown that if the places of the genetic code are first
permuted in a random order, crossover has no benefit. Intuitively, the benefit stems from

30

Artificial Intelligence

crossover's capacity to integrate big blocks of letters that have developed separately to generate
effective functions, hence increasing the degree of granularity at which the search runs. It is
possible, for example, that placing the first three queens in positions 2, 4, and 6 where they do not
fight each other creates a helpful block that may be combined with other blocks to build a solution.
The theory of genetic algorithms explains how this works by introducing the concept of a schema,
which is a substring with some locations left undefined.

It can be shown that if the average fitness of a schema's instances is greater than the mean, the
number of examples of the schema in the population will increase with time. Clearly, if
neighbouring bits are completely unconnected to each other, this impact is unlikely to be
considerable since there will be few continuous blocks that give a consistent advantage. When
schemata relate to relevant components of a solution, genetic algorithms perform best. For
example, if the string represents an antenna, the schemata may represent antenna components such
as reflectors and deflectors.

Search Locally In Continuous Spaces

We discussed the dichotomy between discrete and continuous settings in Chapter 2, pointing out
that most real-world contexts are continuous. But, with the exception of first-choice hill climbing
and simulated annealing, none of the algorithms we've presented can handle continuous state and
action spaces since they have infinite branching factors. This section gives a quick overview of
different local search approaches for discovering optimum solutions in continuous spaces. Many
of the fundamental approaches arose in the 17th century, when Newton and Leibniz developed
calculus.6 We discover applications for these techniques throughout the book, including the
chapters on learning, vision, and robotics.

Agents of Online Search And Unknown Environments Offline Search

So far, we've focused on agents that use offline search techniques. They calculate a full solution
before entering the actual world and then execute it. An online search agent, on the other hand,
interleaves calculation and action: it does an action first, then observes the environment and
computes the next action.

Online search is useful in dynamic or semidynamic environments, where there is a penalty for
sitting and computing for too long. Online search is especially useful in nondeterministic domains
because it enables the agent to concentrate its computing resources on situations that actually occur
rather than those that could but are unlikely to occur. There is, of course, a tradeoff the more an
agency prepares ahead, the less likely it is to find itself up the creek without a paddle. For unknown
contexts where the agent does not know what states exist or what its actions do, online search is a
vital notion.

The agent confronts an exploration challenge in this state of ignorance and must utilize its actions
as experiments to learn enough to make deliberation worthwhile. The classic example of internet
search is a robot that is put in a new building and must investigate it in order to create a map that
it can use to navigate from point A to point B. Online search algorithms include methods for escape
labyrinths, which were essential knowledge for aspiring heroes of antiquity. However, spatial
exploration is not the sole kind of exploration. Consider a newborn baby: it has many potential
actions but knows the consequences of none of them, and it has only experienced a handful of the
conceivable states. The baby's increasing understanding of how the world works is aided in part

31

Artificial Intelligence

by an internet search. Finally, the agent may have access to a valid heuristic function that estimates
the distance between the current and target states. The cost is the overall route cost of the path that
the agent actually takes.

This cost is often compared to the route cost of the path the agent would take if it knew the search
space ahead of timethat is, the real shortest path. This is known as the competitive ratio in the
jargon of online algorithms we want it to be as little as feasible. Although this seems to be a fair
requirement, it is simple to see that in certain circumstances, the best feasible competitive ratio is
infinite. For instance, if certain actions are irreversiblethat is, they lead to a state from which no
action goes back to the previous statethe online search may inadvertently reach a dead-end state
from which no target state is achievable. Perhaps the phrase accidentally is unconvincingafter all,
an algorithm might not choose the dead-end route as it investigates. To be more specific, we assert
that no algorithm can avoid dead ends in all state spaces.

As a result, it will fail in one of them. This is an adversarial argumentimagine an opponent
adversarial creating the state space as the agent explores it and placing the objectives and dead
ends wherever it sees fit. Robot exploration is hampered by dead endsstaircases, ramps, cliffs, one-
way streets, and other types of natural terrain provide potential for irreversible acts. To achieve
progress, we simply assume that the state space is safely explorablethat is, that some target state
may be reached from any accessible state. Mazes and 8-puzzles are examples of state spaces with
reversible actions that may be seen as undirected graphs and are plainly safe to explore. Even in
potentially dangerous circumstances, no limited competitive ratio can be guaranteed if there exist
unbounded cost routes. As a result, rather than merely the depth of the shallowest objective, it is
customary to characterize the performance of online search algorithms in terms of the size of the
complete state space.

Internet Search Engines

After each action, an online agent gets a percept informing it of its current condition; with this
knowledge, it may improve its map of the environment. To determine where to travel next, the
current map is utilized. Because of this interdependence of preparation and execution, online
search algorithms vary significantly from earlier offline search algorithms. Because node
expansion includes simulated rather than actual operations, offline algorithms such as A may grow
a node in one area of the space and then instantly expand a node in another part of the space. An
online algorithm, on the other hand, can only find successors for nodes that it physically owns. It
seems that expanding nodes in a local sequence is preferable than travelling all the way across the
tree to extend the next node. Depth-first search has this feature since the next node expanded is a
child of the previous node expanded.

The problem arises when the agent has attempted all of the actions in a state. In an offline depth-
first search, the state is simply removed from the queue; in an online search, the agent must
physically retrace. This implies returning to the state from which the agent most recently entered
the current state in depth-first search. To do this, the algorithm maintains a database that records
the preceding states to which the agent has not yet returned. If the agent has exhausted all states to
which it may return, its search is over. It is very obvious that, in the worst-case scenario, the agent
will traverse every link in the state space precisely twice. This is best for exploration however, if
the agent goes on a lengthy excursion when there is a goal just near to the beginning state, the
agent's competitive ratio may be arbitrarily low. This issue is solved by an online variation of
iterative deepening in a uniform tree environment, the competitive ratio of such an agent is a tiny

32

Artificial Intelligence

constant. Only operates in state spaces where actions are reversible due to its backtracking
mechanism. Although there are somewhat more complicated algorithms that operate in generic
state spaces, none of them have a limited competitive ratio.

Learning via Online Research

The initial ignorance of internet search agents affords several learning chances. To begin, the
agents simply record their experiences to develop a map of the environmentmore specifically, the
consequence of each action in each condition. Second, by utilizing local updating rules, as in lrta,
the local search agents get more precise estimates of the cost of each state. In Chapter 21, we
demonstrate that if the agent explores the state space correctly, these updates ultimately converge
to precise values for every state. Once precise values are known, optimum choices may simply be
made by going to the lowest-cost successorpure hill climbing becomes an optimal approach. If you
followed our advice and observed the behaviour of online-dfs-agent in the environment shown in

CONCLUSION

New states are created by mutation and crossover, which merges pairings of population states.
Agents in nondeterministic contexts may use AND-OR search to build contingent plans that
achieve the objective regardless of whatever outcomes occur during execution. When the
environment is only partly visible, the agent's belief state reflects the set of potential possibilities.
To address sensor-less issues, standard search algorithms may be applied directly to belief-state
space, and belief-state AND-OR search can answer generic partly observable problems.
Incremental algorithms that develop solutions inside a belief state state by state are often more
efficient. When the agent is unaware of the conditions and behaviours of its surroundings,
exploration issues occur. Online search agents may create a map and, if one exists, discover a goal
in safe explorable areas. Updating heuristic estimates based on experience is an efficient way to
avoid local minima.

REFERENCES:

[1] B. Wang, X. Wang, F. Lan, and Q. Pan, “A hybrid local-search algorithm for robust job-
shop scheduling under scenarios,” Appl. Soft Comput. J., 2018, doi:
10.1016/j.asoc.2017.10.020.

[2] T. Song, S. Liu, X. Tang, X. Peng, and M. Chen, “An iterated local search algorithm for the
University Course Timetabling Problem,” Appl. Soft Comput. J., 2018, doi:
10.1016/j.asoc.2018.04.034.

[3] A. György and L. Kocsis, “Efficient multi-start strategies for local search algorithms,” J.

Artif. Intell. Res., 2011, doi: 10.1613/jair.3313.

[4] S. Umetani, “Exploiting variable associations to configure efficient local search algorithms
in large-scale binary integer programs,” Eur. J. Oper. Res., 2017, doi:
10.1016/j.ejor.2017.05.025.

[5] A. Al-Adwan, A. Sharieh, and B. A. Mahafzah, “Parallel heuristic local search algorithm
on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures,” Appl. Intell.,
2019, doi: 10.1007/s10489-018-1283-2.

33

Artificial Intelligence

[6] O. Bräysy and M. Gendreau, “Vehicle routing problem with time windows, Part I: Route
construction and local search algorithms,” Transp. Sci., 2005, doi: 10.1287/trsc.1030.0056.

[7] D. Palhazi Cuervo, P. Goos, K. Sörensen, and E. Arráiz, “An iterated local search algorithm
for the vehicle routing problem with backhauls,” Eur. J. Oper. Res., 2014, doi:
10.1016/j.ejor.2014.02.011.

[8] T. Imamichi, M. Yagiura, and H. Nagamochi, “An iterated local search algorithm based on
nonlinear programming for the irregular strip packing problem,” Discret. Optim., 2009, doi:
10.1016/j.disopt.2009.04.002.

[9] T. Öncan, “MILP formulations and an Iterated Local Search Algorithm with Tabu
Thresholding for the Order Batching Problem,” Eur. J. Oper. Res., 2015, doi:
10.1016/j.ejor.2014.11.025.

[10] J. Brandão, “A deterministic iterated local search algorithm for the vehicle routing problem
with backhauls,” TOP, 2016, doi: 10.1007/s11750-015-0404-x.

34

Artificial Intelligence

CHAPTER 5

ADVERSARIAL SEARCH: STRATEGIES FOR OUTWITTING

OPPONENTS IN GAMES AND BEYOND

Priyank Singhal, Associate Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- priyanksinghal1@gmail.com

ABSTRACT:

Recent improvements in information and communication technology are causing the volume of
data contained in databases to rise at an exponential rate. This sum is expected to double every 20
years. This rise is considerably more pronounced in certain applications. Databases containing
DNA sequences, for example, double in size every ten months. This expansion is happening in
fields other than bioinformatics, including as financial transactions, government data,
environmental monitoring, satellite and medical pictures, security data, and online. There is a
definite need for advanced computational intelligence tools as major businesses appreciate the
great worth of data held in their databases and the relevance of data collecting to assist decision-
making.

KEYWORDS:

Evalutation, Function, Games, Search, State.

INTRODUCTION

In Chapter 2, we learned about multiagent ecosystems, where each agent must consider the
activities of other agents and how they influence its own well-being. As discussed in Chapter 4,
the unpredictability of these other agents might bring variables into the agent's problem-solving
process. This chapter discusses competitive situations in which the agents' GAME objectives are
at odds, resulting in adversarial search problemsoften referred to as games. Mathematical game
theory, a branch of economics, considers any multiagent environment to be a game if the impact
of each agent on the others is significant, regardless of whether the agents are cooperative or
competitive. In AI, the most common games are of a more specialized typedeterMinistic, turn-
taking, two-player, zero-sum games of perfect information.

This refers to deterMinistic, fully observable situations in which two agents operate alternately
and the utility values at the conclusion of the game are always equal and opposing. For example,
if one player wins a chess game, the other player must lose. The conflict between the utility
functions of the actors is what makes the situation hostile. For as long as civilization has been,
games have engaged people' cerebral facultiessometimes to an alarMing degree. The abstract
nature of games makes them an intriguing topic for AI researchers to explore. A game's state is
simple to depict, and agents are generally limited to a narrow set of actions with predefined results.
Physical games, such as croquet and ice hockey, contain significantly more intricate descriptions,
a much wider variety of potential actions, and very unclear rules defining action legality [1]–[3].
With the exception of robot soccer, these physical activities have not piqued the AI community's
attention. Games, in contrast to the majority of the toy issues discussed in Chapter 3, are
entertaining because they are impossible to answer.

35

Artificial Intelligence

Chess, for example, has an average branching factor of around 35, and games sometimes run to 50
moves by each side, therefore the search tree has roughly 35100 or 10154 nodes despite the search
graph having only about 1040 unique nodes. As a result, games, like the real world, need the
capacity to make some choice even when calculating the ideal option is impossible. Games also
severely punish inefficiency. Whereas a half-efficient implementation of A search would simply
take twice as long to complete, a chess software that is half as efficient in exploiting its available
time will almost certainly be beaten to the ground, everything else being equal. As a result, game-
playing research has inspired a variety of intriguing concepts for making the most use of time. We
begin by defining the optimum move and developing an algorithm to discover it.

We Pnext look at approaches for selecting a smart move when time is of the essence. Pruning
enables us to exclude parts of the search tree that are irrelevant to the final decision, while heuristic
evaluation functions allow us to estimate the real utility of a state without doing a full search.
Section 5.5 addresses games with an element of chance, such as backgammon; we also discuss
bridge, which has components of imperfect information since not all cards are accessible to each
player. Finally, we exaMine how cutting-edge game-playing algorithms do versus human
opponents, as well as potential growth options. We begin with games with two players, whom we
refer to as MAX and MIN for obvious reasons. MAX takes the opening move, and then they take
turns until the game is ended. At the conclusion of the game, the victorious player is awarded
points, while the loser is penalized.

The Algorithm Minimax

From the present state, the MiniMax method computes the MiniMax choice. It immediately
implements the defining equations by doing a simple recursive calculation of the MiniMax values
of each successor state. The recursion descends to the tree's leaves, and then the MiniMax values
are backed up through the tree as the recursion unwinds. In the algorithm first recurses down to
the three bottom left nodes and applies the unction to them to deterMine their values of 3, 12, and
8, respectively. Then it picks the smallest of these values, 3, and delivers it as node B's backed up
value. A similar procedure yields backup values of 2 for C and 2 for D. Finally, we take the
Maximum of 3, 2, and 2 to obtain the root node's backed-up value of 3. The MiniMax method
traverses the game tree in depth-first order. The temporal complexity of the MiniMax method is O
(b m) if the Maximum depth of the tree is m and there are b valid movements at each node. The
space complexity of an algorithm that creates all actions at once is O (bm), whereas the space
complexity of an algorithm that generates actions one at a time is O (m). The time cost is obviously
unrealistic for real-world games, but this method serves as the foundation for mathematical study
of games and more practical algorithms [4]–[6].

Pruning (Alpha-Beta)

The issue with MiniMax search is that the number of game states it must consider grows
exponentially with tree depth. We can't completely remove the exponent, but we can effectively
decrease it in half. The idea is that the proper MiniMax choice may be computed without inspecting
every node in the game tree. That is, we may use the pruning concept from Chapter 3 to exclude
substantial sections of the tree from consideration. The approach we're looking at is known as
alpha-beta pruning. When applied on a typical MiniMax tree, it yields the same move as MiniMax,
but prunes off branches that have no impact on the final choice. Consider the two-ply game tree
from once again. Let's go through the optimum choice calculation again, this time paying close
attention to what we know at each stage of the process. Figure 5.5 depicts the procedures. As a

36

Artificial Intelligence

result, we may deterMine the MiniMax choice without ever assessing two of the leaf nodes.
Another way to look at it is as a simplification of the MINIMAX formula. Let x and y be the values
of the two unevaluated successors of node C in Figure 5.5. The value of the root node is thus
supplied by:

Minimax (root) = Max (Min(3,12,8), Min (2, x, y), Min (14, 5, 2))

= Maximum (3, Minimum (2, x, y), 2)

= Max(3, z, 2), with z = Min(2, x, y) 2

= 3.

In other words, the value of the root, and hence the MiniMax choice, are independent of the
trimmed leaf values x and y. Alpha-beta pruning may be used on trees of any depth, and it is often
feasible to trim whole subtrees instead of simply leaves. Consider a node as a generic principle.

Adding dynamic move-ordering strategies, such as testing first the moves that have previously
been shown to be the best, takes us very near to the theoretical limit. The past might refer to the
previous move frequently with the same risks, or it could refer to earlier investigation of the present
action. Iterative deepening search is one method for gaining knowledge from the present step. To
begin, search one ply deep and note the optimal route of movements. Then search one ply further,
but keep the recorded route in Mind while moving. As we observed in Chapter 3, iterative
deepening on an exponential game tree adds just a small percentage to overall search time, which
may be more than compensated for by improved move sequencing. The greatest moves are, and
trying them first is known as the killer move heuristic. We discussed in Chapter 3 how repeated
states in the search tree might result in an exponential rise in search cost. Many games have
repeating states due of transpositions, which are multiple permutations of the move sequence that
end up in the same position [7], [8].

For example, if White has one move, a1, that Black can respond with b1, and an unre lated move,
a2, on the opposite side of the board that Black may answer with b2, the sequences (a1, b1, a2, b2)
and (a2, b2, a1, b1) both end up in the same position. It's important saving the evaluation of the
resultant location in a hash table the first time it's encountered so we don't have to recompute it on
future occurrences. A transposition table is a hash table containing previously viewed places; it is
virtually equivalent. In chess, using a transposition table may have a significant impact, perhaps
tripling the accessible search depth. On the other hand, if we are assessing a million nodes every
second, it becomes impractical to store all of them in the transposition table at some point. To
choose which nodes to maintain and which to trash, many methodologies have been used.

Inaccurate Real-Time Decisions

The MiniMax method creates the complete game search space, but the alpha-beta technique
enables us to trim significant portions of it. However, for at least a chunk of the search space,
alpha-beta must still search all the way to terMinal states. Because movements must be completed
in a fair length of timetypically a few Minutes at mostthis depth is generally not possible. In his
work ProgramMing a Computer for Playing Chess, Claude Shannon advocated that programs
should stop the search early and apply a heuristic evaluation function to stages in the search,
essentially converting nonterMinal nodes into terminal leaves. In other words, the recommendation
is to change MiniMax or alpha-beta in two ways replace the utility function with a heuristic

37

Artificial Intelligence

evaluation function eval, which assesses the usefulness of the position, and cutoff test replace the
terMinal test with a cutoff test that selects when to apply eval. This gives us the heuristic MiniMax
for state s and Maximum depth d as follows:

= H-Minimax (s, d)

Eval(s) if Cutoff-Test(s, d)

if Player(s) = MAX, Maxa Actions(s) H-Minimax(Result (s, a), d + 1)

H-Minimax (Result(S, A), D + 1) Mina Actions (S) If Player(S) = Min.

Functions of Evaluation

Just as the heuristic functions of Chapter 3 produce an estimate of the distance to the objective, an
evaluation function returns an estimate of the anticipated utility of the game from a given location.
When Shannon presented the estimator, it was not a novel concept. Chess players and other game
enthusiasts)have devised methods for deterMining the worth of a position for ages since humans
are even more constrained in the amount of search they can conduct than computer algorithms. It
should be obvious that the quality of a game-playing program's assessment function has a
significant impact on its performance. An incorrect evaluation function will lead an agent to
positions that are ultimately lost. How can we create effective assessment functions? First, the
evaluation function should organize the terMinal states in the same manner as the actual utility
function does states that are wins must score higher than draws, which must score higher than
losses. Otherwise, even if an agent can see all the way to the finish of the game, it may make a
mistake while utilizing the evaluation function. Second, the calculation must be quick! Third, for
nonterMinal situations, the evaluation function should be substantially associated with the real
probability of winning.

One can question the expression chances of winning. After all, chess is not a game of chance: we
know the present situation with certainty, and no dice are involved. However, if the search must
be terMinated at nonterMinal stages, the algorithm must be unclear about the end outcomes of
those states.

This sort of uncertainty is caused by computational constraints rather than informational
constraints. Given the restricted amount of processing permitted for a given state, the evaluation
function can only make an educated estimate regarding the eventual conclusion. Let us flesh out
this concept. Most evaluation functions operate by computing different state aspects, such as the
number of white pawns, black pawns, white queens, black queens, and so on in chess. When the
characteristics are combined, they establish distinct categories or equivalence classes of states:
states in each category have the same values for all of the attributes. One category, for example,
comprises all two-pawn versus. one-pawn endgames.

In general, each given category will have some states that lead to victories, some that lead to draws,
and some that lead to losses. The evaluation function does not know which states are which, but it
may provide a single number indicating the fraction of states with each result. For example, assume
our experience indicates that 72% of two-pawn vs. one-pawn states result in a victory (utility +1),
20% result in a loss (0), and 8% result in a tie (1/2). Then a suitable assessment for states in the
category anticipated is the anticipated value: (0.72 +1) + (0.20 0) + (0.08 1/2) = 0.76. In theory,
the anticipated value for each category may be computed, resulting in an evaluation function that

38

Artificial Intelligence

works for every condition. As with terMinal states, the evaluation function does not have to
produce real anticipated values as long as the states are ordered in the same sequence. In reality,
this kind of analysis needs much too many categories and hence far too much expertise to predict
all of the winning possibilities.

Most evaluation functions, on the other hand, calculate independent numerical contributions from
each characteristic and then combine them to determine the entire value. In beginning chess
literature, for example, each pawn is worth one point, a knight or bishop is worth three points, a
rook is for five points, and the queen is worth nine points. Other characteristics like as good pawn
structure and king safety may be valued half a pawn, for example. These characteristic values are
then simply combined together to produce the position's assessment. A secure advantage equal to
a pawn offers a good chance of winning, while a secure advantage equal to three pawns should
yield an almost definite victory.

Stopping the Search

The next step is to change alpha-beta-search such that it calls the heuristic eval function when the
search should be terMinated. We substitute the following line for the two lines that reference
terminal-test:

If Cutoff-Test (state, depth) returns true, then return Eval (state).

We also need to set up some accounting so that the current depth is increased with each recursive
iteration. Setting a defined depth limit such that Cutoff-Test (state, depth) returns true for all depths
greater than a given depth d is the simplest way to control the amount of search. It must also return
true for all terMinal states, like Terminal-Test did. The depth d is deterMined such that a move is
picked within the time allotted. Iterative deepening is a more robust strategy. When time runs out,
the software returns the move chosen by the most thorough finished search. As an added plus,
iterative deepening aids in move ordering. Because of the approximate nature of the evaluation
function, these basic procedures might result in inaccuracies. Consider the basic chess evaluation
function based on material advantage once again. Assume the program searches to the depth limit,
arriving at the situation, where Black is ahead by a knight and two pawns. It would report this as
the heuristic value of the state, indicating that Black is likely to win. White's following move,
however, takes Black's queen without recompense.

As a result, White has really gained the situation, although this can only be realized by looking
forward one more ply. Clearly, a more complex cutoff test is required. The quiescence evaluation
function should be used only on positions that are quiescentthat is, unlikely to see significant
fluctuations in value in the near future. Positions in chess where favourable captures might be
accomplished, for example, are not quiescent for an evaluation function that just counts material.
Nonquiescent positions may be stretched until they approach quiescent positions. This additional
search is known as a quiescence search, and it is frequently limited to considering just particular
sorts of movements, such as capture moves, that would swiftly resolve the ambiguities in the
situation. It is more difficult to eradicate the horizon effect. It occurs when the program is
confronted with an opponent's move that does significant harm and is eventually inescapable, but
may be avoided momentarily by delaying techniques. However, Black has a series of plays that
pushes the bishop capture over the horizon.

39

Artificial Intelligence

Assume Black searches to depth 8 ply. The majority of Black's plays will result in the ultimate
capture of the bishop and will therefore be categorized as bad actions. However, Black will think
of checking the white king with the pawn at e4. As a result, the king will capture the pawn. Black
will now contemplate checking again with the pawn at f5, which will result in another pawn
capture. That takes up 4 ply, and the remaining 4 ply is insufficient to capture the bishop. Black
believes that the line of play has spared the bishop at the cost of two pawns, but in fact it has just
pushed the inevitable capture of the bishop beyond Black's horizon. The singular extension, a move
that is singular extension clearly better than all other movements in a given position, is one
approach for mitigating the horizon effect. This unique motion is remembered if it is detected
anywhere in the tree during a search. When the search hits the typical depth limit, the algorithm
exaMines the unique extension to deterMine whether it is a legal move; if it is, the algorithm
enables the move to be evaluated. This deepens the tree, but since there will be few solitary
extensions, it adds few overall nodes to the tree [9], [10].

DISCUSSION

Pruning in the Forward Direction

So far, we've discussed stopping search at a given level and doing alpha-beta pruning, which has
no influence on the outcome at least in terms of the heuristic forward pruning assessment values.
Forward pruning is also possible, which means that certain movements at a particular node are
trimmed instantly without further deliberation. Clearly, most people analyze just a few moves from
each position while playing chess. Beam search is one way to forward pruning rather of examining
all potential movements, examine just a beam of the n best moves according to the evaluation
function on each ply. Unfortunately, this method is risky since there is no assurance that the
optimal move will not be trimmed. The Probcut algorithm is a forward-pruning version of alpha-
beta search that employs statistics gathered from past experience to reduce the likelihood that the
best move would be pruned. Any node that is provably outside the current window is pruned via
alpha-beta search. Probcut will additionally cut nodes that are most likely beyond the window. It
computes this probability by doing a shallow search to deterMine a node's backed-up value v and
then estimating how probable it is that a score of v at depth d in the tree would be outside. Buro
used this strategy on his Othello software, logistello, and discovered that a version of his program
using probcut outperformed the conventional version 64% of the time, even when given twice as
much time.

Combining all of the approaches outlined here leads in a software capable of playing chess.
Assume we've created a chess evaluation function, a good cutoff test with a quiescence search, and
a huge transposition table. Assume that after months of painstaking bit-bashing, we can create and
assess about a million nodes per second on the newest PC, enabling us to explore over 200 million
nodes every move under typical time constraints. The typical branching factor in chess is roughly
35, and 355 is about 50 million, so if we utilized MiniMax search, we could only look forward
about five plies. Though not inept, such a computer is readily deceived by an ordinary human chess
player, who can sometimes plan six or eight plies ahead. We get to roughly 10 plies using alpha-
beta search, which results in an expert level of play. To achieve grandmaster level, we'd need a
finely calibrated evaluation function as well as a big library of ideal opening and endgame
movements.

40

Artificial Intelligence

Lookup Vs. Search

It seems excessive for a chess algorithm to begin a game by evaluating a tree of a billion game
states before deciding to move its piece to e4. For over a century, books outlining strong opening
and endgame play in chess have been published. It's hardly strange, however, that many game-
playing applications employ table lookup rather than searching for game start and finish times.
The computer relies heavily on human skills to fill the slots. Human specialists' finest advise on
how to play each opening is copied from books and placed into tables for the computer's usage.
Computers, on the other hand, may collect information from a database of previously played games
to deterMine which opening sequences are most likely to result in a victory. There are limited
options in the early moves, thus there is a lot of expert analysis and historical games to draw on.
We usually find up in a seldom encountered position after 10 moves, and the software must switch
from database lookup to search. Near the conclusion of the game, there are fewer viable positions
and hence more opportunities for search.

However, the machine possesses the skill in this case: computer analysis of endgames considerably
beyond what humans can do. A human can tell you the general strategy for playing a king-and-
rook-versus-king (KRK) endgame: pressing the enemy king toward one side of the board, using
your king to prevent the opponent from escaping the pressure. Other endings, such as king, bishop,
and knight versus king (KBNK), are more difficult to learn and do not have a concise strategy
explanation. POLICY, on the other hand, is a computer that can entirely solve the endgame by
providing a policy, which is a map ping from every conceivable state to the optimal move in that
position. Instead of recalculating it, we can just search up the optimum move. What size will the
KBNK lookup table have? It turns out that there are 462 different ways to arrange two kings on
the board without their being nearby. Following the placement of the kings, there are 62
unoccupied squares for the bishop, 61 for the knight, and two potential players to move next, for
a total of 462 62 61 2=3, 494, 568 possible situations.

Some of them are checkmates record them in a table as such. Then do a retrograde MiniMax
search, in which you reverse the chess rules and search for unmoves rather than moves. Any move
by White that, regardless of Black's response, results in a position indicated as a victory must
likewise be a win. Continue searching until all 3,494,568 situations have been resolved as a win,
loss, or draw, and you have a foolproof lookup database for all KBNK endgames. Stiller uncovered
one scenario in which a forced mate existed but took 262 moves, which caused great anxiety since
chess rules require a capture or pawn move to occur within 50 moves. Later work by Marc
Bourzutschky and Yakov Konoval solved all pawnless six-piece and several seven-piece
endgames; there is a KQNKRBN endgame that needs 517 moves with best play until a capture,
which leads to mate. If we could expand the chess endgame tables from 6 to 32 pieces, White
would know whether he would win, lose, or draw on the first move. This has not occurred in chess
so far, although it has occurred in checkers, as mentioned in the historical notes section.

Stocking Games

Many unforeseeable external occurrences might place us in unanticipated circumstances in real
life. Many games reflect this unpredictability by including a random element, such as tossing.
These are known as stochastic games. Backgammon is a common game that blends chance and
skill. To decide the permissible movements, dice are rolled at the start of each player's turn. White
has a 6-5 and four alternative moves in the backgammon situation.

41

Artificial Intelligence

Nodes of Chances

Although White is aware of his or her own legal moves, White is unaware of how Black will roll
and so is unaware of Black's lawful moves. That implies White cannot build a normal game tree
as in chess or tic-tac-toe. Backgammon game trees must have chance nodes in addition to MAX
and MIN nodes. The branches that go from each chance node represent the various dice rolls; each
branch is labelled with the throw and its probability. There are 36 equally probable ways to roll
two dice, but since a 6-5 is the same as a 5-6, there are only 21 different rolls. Because each of the
six doubles (1-1 through 6-6) has a probability of 1/36, we say P(1-1)=1/36. The remaining 15
different rolls each have a 1/18 chance.

The next stage is to learn how to make sound judgments. Obviously, we want to choose the move
that will lead to the best position. Positions, on the other hand, do not have precise expected value
MiniMax values. Instead, we can only compute a position's anticipated value the average of all
potential outcomes of the chance nodes. This leads us to expand the deterMinistic MiniMax value
to an expecti MiniMax value for games with chance nodes. TerMinal nodes, Max and Min nodes
function just as before. We calculate the anticipated value for chance nodes, which is the total of
the value across all outcomes, weighted by the likelihood of each chance action:

= Expect minimax (S)

Terminal-Test (S) If Utility (S)

If Player (S) = Max, Maxa Expectiminimax (Result (S, A))

If Player (S) = Min, Min An Expectiminimax (Result (S, A))

Kriegspiel may seem to be terrifyingly hard, yet people do it very well, and computer programs
are catching up. It is useful to remember the concept of a belief state, as established. The set of all
logically feasible board states given the whole history of percepts up to this point. Because Black's
pieces haven't moved yet, White's believing state is initially a sin gleton. Following a move by
White and a response by Black, White's belief state comprises 20 places since Black has 20
responses to any White move. Keeping track of the belief state as the game develops is a state
estimation issue, and the update step. If we consider the opponent as the source of nondeterMinism,
we can map Kriegspiel state estimation directly onto the partially observable, nondeterMinistic
framework that is, the results of White's move are composed of the outcome of White's own move
and the unpredictable outcome given by Black's reply. Given a current belief state, White may ask,
Can I win the game?The concept of a strategy is altered for a partially observable game; instead
of specifying a move to make for each possible move the opponent might make, we need a move
for every possible percept sequence that might be received.

A winning strategy, or guaranteed check mate, in Kriegspiel is one that leads to an actual
checkmate for every feasible board state in the current belief state, independent of how the
opponent moves. The opponent's belief state is unimportant under this definitionthe strategy must
succeed even if the opponent sees all the pieces. This significantly simplifies the calculation.
Because Black possesses only one piece in this scenario, a belief state for White may be
represented on a single board by marking each conceivable location of the Black king. The
incremental belief-state technique mentioned in that section often identifies midgame checkmates
up to depth 9probably much beyond human players' skills. In addition to guaranteed checkmates,
Kriegspiel allows for a completely novel idea that makes no sense in fully observable games:

42

Artificial Intelligence

probabilistic checkmate. Such checkmates are nevertheless necessary to work in every board state
in the belief state; they are probabilistic in terms of randomization of the winning player's moves.
Consider the difficulty of locating a solitary black king using just the white king. Even if the black
king attempts to escape it, the white king will ultimately run into him, since Black cannot maintain
predicting the proper evasive moves eternally.

In probability theory language, detection happens with probability 1. In this way, the KBNK
endgameking, bishop, and knight versus kingis won; White confronts Black with an endless
random chain of alternatives, one of which Black will guess wrong and betray his position,
resulting in checkmate. The KBBK endgame, on the other hand, has a chance of one. White can
only win by leaving one of his bishops vulnerable for a single move. The game is drawn if Black
happens to be in the appropriate spot and captures the bishop a move that would lose if the bishops
are protected. White may choose to make the dangerous move at any arbitrary time in the midst of
a very lengthy sequence, decreasing to an arbitrarily tiny constant, but not to zero. Except in the
endgame, it is very unusual to find a sure or probabilistic checkmate inside any respectable depth.
In the present belief state, a checkmate strategy may work for certain board conditions but not for
others. If Black's pieces chance to be in the appropriate spots, such a plan may work, resulting in
an accidental checkmateaccidental in the sense that White could not know that Accidental
Checkmate it would be checkmate.

Most checkmates in human games are of this accidental kind. This thought easily leads to the issue
of how probable a particular strategy is to win, which leads to the question of how likely each
board state in the present belief state is the real board state. The initial thought could be that all
board situations in the present belief state are equally likelybut this can't be correct. Consider
White's believing state after Black's opening move of the game. By definition, Black must have
made an ideal move, hence all board situations arising from poor actions should be given a chance
of zero.

This reasoning is also flawed, since each player's purpose is not just to move pieces to the correct
squares, but also to reduce the opponent's knowledge of their placement. Playing any known
optimal tactic exposes knowledge to the opponent. As a result, optimum play in partly viewable
games requires a willingness to act somewhat arbitrarily. This is why restaurant cleanliness
inspectors do random inspections. This involves choosing plays that may seem intrinsically
weakbut gain power through their unpredictability, since the opponent is unlikely to have planned
any defence against them.

Based on these considerations, it appears that the probabilities associated with the board states in
the current belief state can only be calculated given an optimal randomized strategy; however,
computing that strategy appears to necessitate knowledge of the probabilities of the various states
the board may be in. This quandary may be answered by using the game theoretic concept of an
equilibrium solution, which we will explore more. An equilibrium defines the best randomized
approach for each participant. Computing equilib ria, on the other hand, is excessively costly, even
for Minor games, and is out of the question for Kriegspiel. The development of effective
algorithms for broad Kriegspiel play is now an open research area. The majority of systems execute
bounded-depth lookahead in their own belief state space while disregarding the opponent's belief
state. The evaluation functions are similar to those used for the observable game, but they now
contain a component for the size of the belief state.

43

Artificial Intelligence

Alternative Strategy

Because computing optimum judgments in games is in most circumstances difficult, all algorithms
must make assumptions and approximations. The traditional strategy, which is based on Mini Max,
evaluation functions, and alpha-beta, is just one method. The conventional strategy probably
doMinates other ways in tournament play since it has been worked on for so long. Some argue that
this has separated game playing from the main stream of AI research: the traditional technique no
longer allows for much fresh insight into broader concerns of decision making. This section
exaMines the options. First, exaMine the heuristic MiniMax. It chooses an optimum move in a
given search tree if the leaf node assessments are precise. In fact, assessments are frequently rough
estimations of the worth of a position and might be deemed to have considerable mistakes.
However, the evaluation function is merely an approximation. Assume that each node's assessment
has an error that is independent of the other nodes and is randomly distributed with a mean of zero
and a standard deviation of. The left-hand branch is really superior 71% of the time when = 5, and
58% of the time when = 2.

The rationale is that the right-hand branch includes four nodes that are near to 99; if a mistake in
evaluating any of the four causes the right-hand branch to go below 99, then the left-hand branch
is preferable. In fact, the situation is more worse since the inaccuracy in the evaluation function is
not independent. If we get one node incorrect, the odds are that other nodes in the tree will be
erroneous as well. The fact that node 99 has siblings labelled 1000 implies that it may have a
greater real value. We can use an evaluation function that returns a probability distribution over
all possible values, but combining these distributions properly will be difficult because we won't
have a good model of the very strong dependencies that exist between the values of sibling nodes.
An algorithm designer's goal is to provide a calculation that runs rapidly and produces a favourable
move. The alpha-beta approach is intended to compute boundaries on the values of all permissible
movements in addition to selecting a suitable move. Consider a situation in which there is only
one lawful move. This additional knowledge is unneeded.

Alpha-beta search will continue to construct and assess a vast search tree, inforMing us that the
sole move is the best move and giving a value to it. But, since we have to make the move regardless,
understanding the worth of the move is pointless. Similarly, if there is one clearly excellent move
and multiple moves that are lawful but result in a rapid loss, we don't want alpha-beta to spend
time calculating an exact value for the lone good move. It's better to go rapidly and preserve the
time for later. This leads to the concept of node expansion utility. A good search algorithm should
choose node expansions with high utility, i.e. those that are likely to lead to the discovery of a
much superior move. If no node expansions exist whose usefulness exceeds their cost in terms of
time, the algorithm should cease searching and make a move. Not only does this work for obvious
favourites, but it also works for symmetrical movements, when no amount of searching will reveal
that one move is superior to another.

Metareasoning

This kind of reasoning about what computations to do is known as metareasoning. It applies to any
kind of thinking, not only game playing. All calculations are performed in the service of making
better judgments, all have costs, and all have some chance of producing a certain increase in
decision quality. Alpha-beta includes the most basic kind of metareasoning, namely a theorem
stating that some branches of the tree may be disregarded without incurring loss. It is feasible to
do far better. In Chapter 16, we will exaMine how these concepts might be refined and made more

44

Artificial Intelligence

concrete. Finally, consider the nature of search itself. Algorithms for heuristic search and game
play produce sequences of tangible states by beginning with the initial state and then applying an
evaluation function. This is clearly not how people play games. In chess, one often has a specific
objective in Mind, such as trapping the opponent's queen, and may utilize this aim to deliberately
construct plausible strategies to achieve it. Bridge Baron may be a start in the right way, but there
is still no adequate knowledge of how to merge the two types of algorithms into a strong and
efficient system. A completely integrated system would be an important accomplishment not just
for game-playing research, but also for AI research in general, since it would serve as a strong
foundation for a general intelligent agent.

CONCLUSION

We looked at a number of games to figure out what optimum play is and how to play effectively
in practice. The following are the most significant ideas: A game may be characterized by the
beginning state , the permissible actions in each state, the outcome of each action, a terMinal test
which indicates when the game is ended, and a utility function that applies to terMinal states. The
MiniMax method may pick optimum moves in two-player zero-sum games with perfect
knowledge by enumerating the game tree depth-first. The alpha-beta search method computes the
same optimum move as MiniMax, but it is substantially more efficient since it eliMinates provably
irrelevant subtrees. Because it is not always possible to evaluate the whole game tree even with
alpha-beta, we must stop the search at some point and use a heuristic evaluation function to assess
the utility of a state. Many game systems precompute tables of excellent opening and endgame
moves so that they may look up a move rather than search for it. A MiniMax algorithm
modification that evaluates a chance node by calculating the average utility of all its offspring,
weighted by the probability of each child, can handle games of chance. Optimal play in imperfect
information games, such as Kriegspiel and bridge, requires reasoning about each player's present
and future belief states. By averaging the value of an action across each potential configuration of
missing information, a simple approximation may be produced. In games like chess, checkers, and
Othello, programs have beaten elite human players. Humans have an advantage in various games
with imperfect information, such as poker, bridge, and Kriegspiel, as well as games with very high
branching factors and no solid heuristic knowledge, such as Go.

REFERENCES:

[1] I. Zuckerman, B. Wilson, and D. S. Nau, “Avoiding game-tree pathology in 2-player
adversarial search,” Comput. Intell., 2018, doi: 10.1111/coin.12162.

[2] J. Zhou, L. Gao, X. Yao, C. Zhang, F. T. S. Chan, and Y. Lin, “An adaptive dual-population
evolutionary paradigm with adversarial search: Case study on many-objective service
consolidation,” Appl. Soft Comput. J., 2020, doi: 10.1016/j.asoc.2020.106160.

[3] C. Gao, Y. Chen, S. Liu, Z. Tan, and S. Yan, “AdversarialNAS: Adversarial neural
architecture search for GANs,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2020. doi: 10.1109/CVPR42600.2020.00572.

[4] M. Stanescu, N. A. Barriga, and M. Buro, “Hierarchical adversarial search applied to real-
time strategy games,” in Proceedings of the 10th AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, AIIDE 2014, 2014. doi: 10.1609/aiide.v10i1.12714.

45

Artificial Intelligence

[5] H. D. Menéndez, S. Bhattacharya, D. Clark, and E. T. Barr, “The arms race: Adversarial
search defeats entropy used to detect malware,” Expert Syst. Appl., 2019, doi:
10.1016/j.eswa.2018.10.011.

[6] N. A. Barriga, M. Stanescu, and M. Buro, “Game tree search based on nondeterministic
action scripts in real-time strategy games,” IEEE Trans. Games, 2018, doi:
10.1109/TCIAIG.2017.2717902.

[7] K. R. Chowdhary, Fundamentals of artificial intelligence. 2020. doi: 10.1007/978-81-322-
3972-7.

[8] N. Dong, M. Xu, X. Liang, Y. Jiang, W. Dai, and E. Xing, “Neural Architecture Search for
Adversarial Medical Image Segmentation,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2019. doi: 10.1007/978-3-030-32226-7_92.

[9] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box safety testing of
deep neural networks,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018. doi:
10.1007/978-3-319-89960-2_22.

[10] N. A. Barriga, M. Stanescu, and M. Buro, “Puppet search: Enhancing scripted behavior by
look-ahead search with applications to real-time strategy games,” in Proceedings of the 11th

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE

2015, 2015. doi: 10.1609/aiide.v11i1.12779.

46

Artificial Intelligence

CHAPTER 6

CONSTRAINT SATISFACTION PROBLEMS: RESOLVING

COMPLEX CHALLENGES WITH CONSTRAINTS

Rajendra P. Pandey, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- panday_004@yahoo.co.uk

ABSTRACT:

A constraint satisfaction problem (CSP) demands that a value be provided to each variable in the
problem from a specified limited domain such that all constraints linking the variables are met.
CSPs may be used to solve many combinatorial issues in operational research, such as scheduling
and timetabling. When handling such challenges, artificial intelligence (AI) researchers often use
a constraint fulfillment technique as their preferred strategy. However, among operational
researchers, constraint satisfaction techniques are not commonly recognized. The purpose of this
study is to expose the operational researcher to constraint satisfaction. We begin by defining CSPs
and explaining the fundamental approaches for resolving them.

We next demonstrate how a constraint satisfaction strategy is used to tackle different combinatorial
optimization issues. Constraint satisfaction methods are compared to well-known operational
research (OR) techniques such as integer programming, branch and bound, and simulated
annealing based on computational experience in the literature.

KEYWORDS:

Constraint, Consistency, Search, Soving, Variable.

INTRODUCTION

The Constraint Satisfaction Problem (CSP) is a key topic in artificial intelligence that deals with
describing and solving issues that are constrained by a set of rules. CSPs are used in a variety of
real-world contexts, ranging from scheduling and planning to resource allocation and optimization.
This page covers all aspects of Constraint Satisfaction Problems, including its description,
components, techniques, and practical applications. A Constraint Satisfaction Problem entails
finding values for a collection of variables subject to a set of constraints that satisfy all of the
requirements. We have the following in a CSP:

Variables (X): A collection of variables that need values to be assigned. Each variable indicates
a potential choice.

Domains (D): Each variable has a domain that determines the potential values for it. The domain
denotes the range of possibilities for each decision variable.

Constraints (C): Constraints describe the connections between variables and limit the possible
value combinations. Unary, binary, and higher-order constraints are all possible.

47

Artificial Intelligence

Constraint Satisfaction Problem Components

The variables in a CSP reflect the unknowns that must be determined in order to solve the issue.
In a scheduling problem, for example, the variables may be time slots for various activities, but in
a map colouring issue, the variables could be the colours given to different areas on a map. The
domains define the potential values for each variable. For example, if we had a CSP for task
scheduling, the domain for each task variable would comprise all potential time slots when the job
may be done. Constraints describe the connections and limitations that exist between variables.
They indicate the rules that must be followed in order for a legitimate solution to be found. In a
task scheduling issue, for example, constraints might state that some activities cannot be run
concurrently or that certain tasks must be finished before others [1]–[3].

Constraint Satisfaction Problem Solving Algorithms

1. Search using Backtracking: Backtracking search is a popular CSP solution technique. It
entails picking a variable, giving it a value, and then propagating the restrictions to lower
the scope of other variables. If there is a conflict a variable cannot be given a value without
breaking constraints, the algorithm returns to the most recent variable assignment and
makes an alternative decision. Backtracking continues until a viable solution is discovered
or all feasible combinations are investigated.

2. Forward Verification: Forward checking is a backtracking search technique that avoids
any conflicts early in the search. It prunes the variable domains after each assignment to
prevent assigning values that violate the remaining restrictions.

3. Propagation of Constraints: The phrase constraint propagation refers to strategies that
minimize the search space by propagating restrictions and changing domains based on
logical deductions. Arc-consistency techniques, for example, guarantee that all constraints
are met throughout the search process.

4. Algorithms Based on Genetic Information: Natural selection principles are used by
genetic algorithms to repeatedly develop a population of alternative solutions. They're ideal
for CSPs with huge solution spaces and complicated restrictions.

5. Annealing Simulation: Simulated annealing is a probabilistic approach inspired by the
metallurgical annealing process. It begins with a random beginning assignment and
progresses iteratively towards better solutions, allowing for occasional worse steps to
escape local optima.

CSPs are commonly used in task scheduling, resource allocation, and activity planning with time
and resource restrictions. CSPs, for example, may assist in finding ideal shifts that meet working
hours and employee preferences in staff scheduling. A CSP with the objective of assigning colours
to areas on a map such that no neighbouring regions have the same colour is the classic map
colouring issue. Sudoku puzzles may be written as CSPs, with the purpose of filling in the vacant
cells with numbers ranging from 1 to 9, with the restriction that each row, column, and 3x3 subgrid
include all the numbers precisely once. CSPs may be used to optimize delivery truck routes and
schedules in vehicle routing issues, taking into consideration elements such as distances, time
frames, and vehicle capacity. CSPs are used to solve resource allocation issues such as assigning
students to courses, arranging classrooms and equipment, and optimizing industrial production
schedules. A strong and adaptable notion in artificial intelligence, the Constraint Satisfaction
Problem provides a formal framework for defining and solving problems with restrictions.
Depending on the issue complexity and the nature of the constraints, many methods and strategies

48

Artificial Intelligence

are available to address CSPs. CSPs are used in a variety of real-world circumstances, assisting
with effective decision-making, scheduling, and resource management. Constraint Satisfaction
Problems' application breadth is projected to expand as AI and optimization methods progress,
delivering important solutions to more complicated real-world situations [3]–[5].

In constraint satisfaction problems (CSPs), node consistency refers to the local consistency of
individual variables in the problem area. It guarantees that the values in each variable's domain are
compatible with the unary constraints assigned to that variable. Each variable in a CSP has a
domain that determines the various values it may take. Unary constraints are those that involve
just one variable. For example, if we have a variable that represents the temperature of a room, the
unary constraint may indicate that the temperature may only be between 20°C and 30°C. Node
consistency is accomplished by guaranteeing that all values in a variable's domain fulfill its unary
constraints. This signifies that no value in the domain violates the constraints defined by the
variable's unary constraints. If any value in a variable's domain violates its unary constraint, that
value is deleted from the domain in order for the variable node to be consistent. Node consistency
is a basic kind of constraint propagation that may be used to solve a CSP as an early step.

The search space is pruned by ensuring node consistency, lowering the amount of potential value
combinations that must be investigated throughout the search process. This may considerably
increase the efficiency of CSP-solving algorithms by speeding up the search for a valid solution.
Node consistency is a required but not usually sufficient condition for solving a CSP. Even if all
variables are node consistent, further constraint propagation and search techniques may be
necessary in certain circumstances to discover a comprehensive and legitimate solution to the
issue. To summarize, node consistency is a basic notion in constraint fulfillment issues that assures
the values in each variable's domain are consistent with the unary constraints connected with that
variable. It is a necessary step in narrowing the search space and increasing the efficiency of CSP-
solving algorithms [6]–[8].

Arc Stability

In constraint satisfaction problems (CSPs), arc consistency is a more sophisticated kind of
constraint propagation. It extends the consistency check to binary constraints involving two
variables, building on the idea of node consistency. Arc consistency assures that there is at least
one value for each variable that meets the constraint for every pair of variables linked by a binary
constraint. Binary constraints in a CSP are limits that involve precisely two variables. In a
scheduling issue, for example, a binary constraint can state that Task A must be finished before
Task B can begin. This sort of constraint is written as (A, B), indicating that variables A and B are
related. The method iterates over all of the binary constraints to ensure that each variable's domain
fulfills the constraints with its neighbouring variables. This is accomplished by deleting any
conflicting values from each variable's domain. If there is no compatible value for the other
variable in the binary constraint, the value is regarded inconsistent.

Arc consistency is critical in CSPs for lowering search space and enhancing the performance of
constraint-solving algorithms. The procedure prunes the domain of variables by ensuring arc
consistency, deleting values that are incompatible with the requirements. This narrowing of the
search space often results in a quicker convergence towards a good answer. It should be noted,
however, that ensuring arc consistency may be computationally costly, particularly in large CSPs
with numerous variables and constraints. In practice, several methods and heuristics are often
utilized to strike a compromise between consistency and computing cost. Arc consistency is a

49

Artificial Intelligence

strong constraint satisfaction approach that is often used with other constraint propagation and
search techniques to rapidly solve complicated real-world situations. The CSP-solving process
may be considerably enhanced by ensuring both node and arc consistency, resulting in more
practical and scalable solutions [9], [10].

DISCUSSION

Path Coherence

Path consistency is a more powerful kind of constraint propagation that is utilized in constraint
satisfaction problems (CSPs). It broadens the idea of arc consistency by taking into account longer
sequences of binary constraints known as routes between variables. route consistency ensures that
all values in variable domains fulfill a set of criteria along every valid route between two variables.
A route in a CSP is made up of a series of binary constraints that link numerous variables in a
chain. In a map colouring issue, for example, if three areas A, B, and C are linked in a sequence
(A, B), (B, C), route consistency requires that the colours given to A, B, and C fulfill the constraints
between all three regions. The approach conducts iterative constraint propagation to establish route
consistency, rigorously testing and enforcing consistency along all pathways between variables.
Any value in a variable's domain that violates the constraints along any route is deleted from the
domain, making the CSP path consistent.

Path consistency is a strong approach that lowers the search space of CSPs even more, resulting in
quicker convergence and greater efficiency. Enforcing route consistency, on the other hand, may
be more computationally costly than arc consistency, particularly in CSPs with longer pathways
and sophisticated restrictions. Depending on the complexity of the issue and the intended trade-off
between efficiency and computational cost, multiple degrees of consistency, such as node
consistency, arc consistency, and route consistency, are utilized in practice. Some CSP-solving
algorithms use many consistency checks to reach the proper balance and a workable solution. Path
consistency, in conjunction with other constraint propagation approaches, is critical in solving
CSPs and finding legitimate solutions to real-world issues. The approach narrows the search space
and concentrates on possible solutions by guaranteeing that all pathways between variables match
the restrictions, making CSP-solving more effective and relevant in a variety of fields.

K-Consistency

The idea of K-consistency in constraint satisfaction problems (CSPs) is an extension of the concept
of consistency. It denotes a kind of consistency check that takes into account constraints of length
up to K, where K is a positive integer. K-consistency guarantees that all requirements of up to K
variables are met at the same time. The most prevalent types of K-consistency are:

Node Consistency (0-consistency): Node consistency is the most basic kind of consistency, in
which each variable is made consistent with its unary constraints, that is, constraints that involve
just one variable.

Arc Consistency (1-consistency): Arc consistency is the process of testing binary constraints
(constraints involving two variables) to guarantee that each value in one variable's domain fulfills
the constraint with the equivalent value in the other variable's domain.

Path Consistency (2-consistency): Path consistency in the CSP entails checking ternary
constraints (three-variable constraints) and ensuring that all values in the domains of three

50

Artificial Intelligence

variables connected in a chain satisfy the constraints along the path K-consistency entails testing
length requirements up to K variables. It assures that there is at least one value in each variable's
domain that meets the requirements along the sequence for any sequence of K variables linked by
constraints.

Because it allows for multiple degrees of constraint propagation and pruning of the search space,
the idea of K-consistency is significant in constraint satisfaction issues. The consistency check
grows more powerful as K rises, but it also becomes computationally more costly. The proper
amount of K-consistency is determined by the problem's complexity and the efficiency of the CSP-
solving method. CSP-solving algorithms often incorporate multiple kinds of consistency checks
in reality to create a compromise between computational expense and solution quality. Overall, K-
consistency is a useful tool in constraint fulfillment issues because it allows for the systematic
enforcement of constraints, which leads to quicker convergence towards legitimate solutions and
more efficient problem-solving in a variety of areas.

Global constraints are a subset of constraints that are utilized in constraint satisfaction problems
(CSPs) to capture complicated connections and patterns between numerous variables. Global
constraints, as opposed to unary limitations involving a single variable and binary constraints
involving two variables, contain three or more variables and express more intricate constraints that
cannot be simply stated using basic unary or binary connections. Global constraints are critical in
modelling and solving real-world issues because they enable CSPs to effectively collect and use
domain-specific information and problem structures. By propagating constraints across numerous
variables at the same time, they may drastically decrease the search space and enhance the
performance of CSP-solving algorithms. The All Different constraint mandates that all variables
in a set have separate values. This restriction is often employed in puzzles such as Sudoku, where
all cells in a row, column, and block must have unique values. The total constraint states that the
total of the values given to a collection of variables must equal a certain target value. This
restriction is used to a variety of optimization issues, including resource allocation and scheduling.

The Regular constraint imposes a regular expression pattern on a succession of variables. It is
effective in situations requiring pattern matching and sequencing. The Element constraint links an
index variable with an array and ensures that the index variable's value picks the relevant element
from the array. The Count constraint counts the occurrences of a certain value in a group of
variables and requires that they meet a specified target count. The inclusion of global constraints
makes sophisticated CSP modelling easier, making them more expressive and concise. Many CSP-
solving algorithms are designed to exploit global limitations and efficiently transmit their effects
over the whole CSP. Global constraints are critical in tackling a wide range of real-world issues,
including scheduling, planning, resource allocation, and optimization. They enable CSPs to
effectively express and solve issues involving complex interactions and dependencies between
variables, resulting in realistic and scalable solutions across a wide range of application areas.

Algorithms for Local Search

Local search algorithms are a kind of optimization method used to handle issues that require
finding a suitable solution inside a broad search space. Local search algorithms, as opposed to
systematic search algorithms, make incremental adjustments to an initial answer, iteratively
working towards better solutions via local exploration. These techniques are particularly effective
for big and complicated issues where a comprehensive search would be computationally
impractical. The primary principle underlying local search algorithms is to start with a simple

51

Artificial Intelligence

answer and repeatedly enhance it by making little adjustments. The algorithm examines
neighbouring solutions and chooses the best one based on a predefined objective function or
evaluation criteria at each iteration. The procedure is repeated until a stopping requirement is
reached, such as completing a specific number of iterations or discovering a solution that meets a
given threshold.

Hill Climbing is a basic local search technique that begins with an initial solution and repeatedly
advances to a neighbouring solution with a higher evaluation. It comes to an end when no better
neighbour can be found. However, hill climbing may get caught in local optima, preventing it from
reaching the global optimum. Simulated annealing is a probabilistic variation of hill climbing that
allows for occasional movements to inferior solutions in order to escape local optima. The
likelihood of going to a worse solution reduces with time, simulating the metallurgical annealing
process. Tabu Search uses memory to avoid revisiting previously examined solutions, which keeps
the algorithm from being trapped in loops. It employs a tabu list to keep track of prohibited
movements, allowing for more varied exploration.

Genetic algorithms look for optimum solutions using natural selection and evolution concepts. The
algorithm maintains a population of candidate solutions and evolves the population using selection,
crossover, and mutation processes. The foraging behaviour of ants inspired ant colony
optimization. The algorithm guides the search using pheromone trails, and the ants explore the
solution space by following the pathways with stronger pheromone trails. The travelling salesman
issue, work scheduling, vehicle routing, and resource allocation are all examples of when local
search techniques are applied. They are especially successful when the search space is large and
the goal function is not convex, enabling them to effectively address non-linear and discontinuous
situations. Local search algorithms, on the other hand, have certain limits. They are sensitive to
the original solution and may get caught in local optima, preventing them from finding the globally
optimum solution. Diversification and random restarts are often used to explore new regions of
the search space and boost the odds of discovering a better answer. Overall, local search algorithms
are useful tools in optimization and combinatorial issues because they provide efficient and
realistic answers to real-world situations.

The Issue Structure

The organization and arrangement of components that comprise a certain computing job or
difficulty is referred to as problem structure. Understanding the structure of an issue is critical for
choosing relevant algorithms and techniques to discover solutions effectively in the context of
problem-solving and artificial intelligence. The structure of issues may vary greatly, and it has a
large impact on the complexity and difficulty of addressing them. The following components are
often seen in issue structures:

State Space: A problem's state space represents all conceivable configurations or states. Each state
in the state space corresponds to a certain arrangement or configuration of the variables and
parameters in the problem. The difficulty of exploring and seeking for answers is determined by
the size and complexity of the state space. The initial state is the beginning point from which the
problem-solving process is initiated. It reflects the problem's basic setup before any actions or
processes are performed.

Actions or Operators: The many motions or transformations that may be used to migrate from
one state to another are referred to as actions or operators. These actions specify the many methods

52

Artificial Intelligence

to modify the configuration of the challenge and explore the state space. The goal state is the
intended or target configuration that the problem-solving process seeks to achieve. It describes the
condition that signals a successful issue solution. The transition model defines how the state of the
issue changes when specified actions are taken. In terms of state transitions, it specifies the rules
or consequences of each action. The cost or objective function analyzes the quality or
attractiveness of a certain condition or solution. It assesses the optimality of a solution or quantifies
how near a state is to the ideal state.

Problem Structures

Problem structures may be divided into many types depending on their characteristics:

Search Problems: The purpose of a search problem is to discover a series of activities that leads
from a starting state to a target state. Pathfinding in a labyrinth is one example, as is puzzle solving.

Problems of Optimization: The purpose of optimization problems is to identify the best possible
answer from a collection of plausible solutions. The measure of optimality is defined by the
objective function, and the purpose is to identify the solution that reduces or maximizes this
objective.

Constraint Satisfaction Problems (CSPs): The goal of CSPs is to identify variable values that
meet a set of constraints. Variables, domains, and restrictions are all part of the structure of CSPs.
Decision difficulties need assessing whether a solution exists that meets particular criteria.
Typically, the result is a simple yes or no response. Planning challenges include determining a
series of activities or processes to attain a goal from a given beginning state while taking
restrictions and intermediate stages into account. Understanding the structure of issues is critical
for picking effective algorithms and strategies for efficiently solving them. Different sorts of
challenges need different techniques and tactics, and evaluating the problem structure helps in
efficiently guiding the problem-solving process.

CONCLUSION

Constraint satisfaction problems (CSPs) define a state using a collection of variable/value pairs
and the criteria for a solution using a set of variables constraints. Many significant real-world
issues may be defined as CSPs. The constraints are used by a variety of inference methods to
determine which variable/value combinations are consistent and which are not. Node, arc, path,
and k-consistency are examples of these. Backtracking search, a kind of depth-first search, is often
utilized for CSP resolution. Inference and search may coexist. In a backtracking search, the
minimum-remaining-values and degree heuristics are domain-independent approaches for
determining which variable to pick next. The least-restriction-value heuristic helps in determining
which value to attempt initially for a particular variable. Backtracking happens when no lawful
assignment for a variable can be discovered. Conflict-directed backjumping returns to the root of
the issue. With considerable success, local search utilizing the min-conflicts heuristic has been
applied to constraint fulfillment issues. The structure of a constraint graph has a substantial
influence on the difficulty of solving a CSP. Problems with a tree structure can be solved in linear
time. If a small cutset can be located, cutset conditioning may reduce a general CSP to a tree-
structured one. Tree decomposition approaches convert the CSP into a tree of subproblems and
are efficient if the constraint graph's tree width is modest.

53

Artificial Intelligence

REFERENCES:

[1] M. Bodirsky, V. Dalmau, B. Martin, A. Mottet, and M. Pinsker, “Distance constraint
satisfaction problems,” Inf. Comput., 2016, doi: 10.1016/j.ic.2015.11.010.

[2] T. Feder and P. Hell, “Full constraint satisfaction problems,” SIAM J. Comput., 2006, doi:
10.1137/S0097539703427197.

[3] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed constraint
satisfaction problem: Formalization and algorithms,” IEEE Trans. Knowl. Data Eng., 1998,
doi: 10.1109/69.729707.

[4] Y. Fan, J. Shen, and K. Xu, “A general model and thresholds for random constraint
satisfaction problems,” Artif. Intell., 2012, doi: 10.1016/j.artint.2012.08.003.

[5] I. P. Gent, P. Nightingale, A. Rowley, and K. Stergiou, “Solving quantified constraint
satisfaction problems,” Artif. Intell., 2008, doi: 10.1016/j.artint.2007.11.003.

[6] M. C. Cooper and G. Escamocher, “Characterising the complexity of constraint satisfaction
problems defined by 2-constraint forbidden patterns,” Discret. Appl. Math., 2015, doi:
10.1016/j.dam.2014.10.035.

[7] M. Bodirsky, B. Martin, M. Pinsker, and A. Pongracz, “Constraint satisfaction problems for
reducts of homogeneous graphs,” SIAM J. Comput., 2019, doi: 10.1137/16M1082974.

[8] H. Mostafa, L. K. Müller, and G. Indiveri, “An event-based architecture for solving
constraint satisfaction problems,” Nat. Commun., 2015, doi: 10.1038/ncomms9941.

[9] H. Rashidi and E. P. K. Tsang, “Novel constraints satisfaction models for optimization
problems in container terminals,” Applied Mathematical Modelling. 2013. doi:
10.1016/j.apm.2012.07.042.

[10] M. Cristani and R. Hirsch, “The complexity of constraint satisfaction problems for small
relation algebras,” Artif. Intell., 2004, doi: 10.1016/j.artint.2004.02.003.

54

Artificial Intelligence

CHAPTER 7

LOGICAL AGENTS: REASONING AND

DECISION-MAKING WITH LOGIC

Rupal Gupta, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- r4rupal@yahoo.com

ABSTRACT:

Knowledge-based agents are introduced in this chapter. The principles we will be
discussingknowledge representation and reasoning processes that bring information to life are
important to the whole subject of artificial intelligence. Humans seem to know things and reason.
Knowledge and reasoning are particularly vital for artificial agents since they allow effective
behaviours that would otherwise be difficult to attain. We've seen how knowing the results of
actions helps problem-solving agents function effectively in complicated situations. A reactive
agent could only go from Arad to Bucharest by chance. However, problem-solving bots'
knowledge is quite specialized and rigid. A chess software can calculate its king's lawful
movements, but it has no way of knowing that no piece may be on two separate squares at the
same time. Knowledge-based agents may benefit from knowledge stated in broad strokes,
integrating and recombining data for a variety of reasons. This procedure is often rather far from
the demands of the present, like when a mathematician proves a theorem or an astronomer
estimates the earth's life expectancy. A physician, for example, diagnoses a patient that is, infers a
medical condition that is not readily observable before recommending a therapy. Some of the
information that the physician employs is in the form of rules gained from textbooks and
professors, while others are in the form of patterns of association that the physician may not be
able to explain consciously. It counts as knowledge if it is within the physician's brain.

KEYWORDS:

Agent, Logical, Propositional, Resoning, Rules.

INTRODUCTION

Humans seem to know things, and what they know appears to help them accomplish things. These
are not meaningless remarks. They make substantial statements about how humans develop
intelligencenot via solely reflex mechanisms, but through reasoning processes that work on
internal representations of information. This approach to intelligence is represented in knowledge-
based agents in artificial intelligence. The problem-solving agents of Chapters 3 and 4 are aware
of things, but only in a very narrow, rigid way. For example, the transition model for the 8-
puzzleknowledge of what the actions dois concealed inside the function's domain-specific code. It
can be used to anticipate the outcomes of actions, but it cannot be used to derive that two tiles
cannot occupy the same space or that states with odd parity cannot be reached from ones with even
parity. Problem-solving agents' atomic representations are likewise quite limited. In a partly
observable environment, an agent's sole option for describing what it knows about the current state
is to enumerate all conceivable concrete states, which is an impossible task in vast environments.
The notion of encoding states as assignments of values to variables was introduced in Chapter 6

55

Artificial Intelligence

this is a step in the right direction, allowing certain components of the agent to function domain-
independently and allowing for more efficient algorithms [1]–[3].

In this and the following chapters, we carry this step to its logical conclusionwe establish logic as
a broad class of representations to enable knowledge-based agents. These agents may mix and
recombine information for a variety of reasons. This procedure is often fairly far from the demands
of the time, such as when a mathematician proves a theorem or an astronomer estimates the earth's
life expectancy. information-based agents can accept new tasks in the form of stated objectives;
they can swiftly attain competence by being informed or acquiring new information about the
environment; and they can react to changes in the environment by updating the appropriate
knowledge. We start with the overall agent design. offers a new setting, the wumpus world, and
demonstrates the functioning of a knowledge-based agent without delving into technical depth.
Finally, we combine the concept of knowledge-based agents with the technology of propositional
logic to build some simple agents for the wumpus world. While less expressive than first-order
logic, propositional logic illustrates all the basic concepts of logic it also comes with well-
developed inference technologies, which we describe [4]–[6].

Agents With Knowledge Bases

Knowledge base agents are a sort of artificial intelligence (AI) agent that makes educated
judgments and performs different activities by using a knowledge base. These agents express
knowledge in some way, such as logical assertions, rules, or probabilistic models, by employing a
representation language. The knowledge base is a collection of information that the agent may
access to answer questions, solve issues, and make choices. A knowledge base agent generally has
the following components:

1. Knowledge Base: The knowledge base stores the agent's world knowledge in an organized
fashion. This knowledge contains facts, rules, restrictions, and connections related to the
problem domain of the agent.

2. Inference Engine: The inference engine is the reasoning component of the agent that is in
charge of processing the information in the knowledge base. It uses numerous algorithms
and approaches to create logical conclusions and inferences based on the information
provided.

3. Knowledge Acquisition Module: As the agent interacts with the environment or gets new
information, the knowledge acquisition module is responsible for gaining new knowledge
and updating the knowledge base.

4. Query Interface: The query interface enables external entities to communicate with the
knowledge base agent by asking inquiries or requesting information.

5. Decision-Making Mechanism: In many circumstances, knowledge base agents are
outfitted with decision-making mechanisms that utilize the knowledge base's information
to make decisions and conduct actions depending on the agent's objectives and aims [7],
[8].

Knowledge base agents are categorized into many sorts depending on how they convey knowledge
and reason:

1. Logical Agents: Logical agents use logical assertions to describe knowledge, such as
propositional logic or first-order logic. They generate logical inferences from given
information using inference principles such as modus ponens or resolution.

56

Artificial Intelligence

2. Rule-Based Agents: Rule-based agents use a set of production rules to represent
knowledge. These rules are often written in a if-then structure and are used to derive
conclusions via pattern matching and rule firing.

3. Probabilistic Agents: Probabilistic agents use probability distributions to describe
uncertainty in the knowledge base. They utilize probabilistic reasoning, such as Bayesian
networks or Markov decision processes, to deal with uncertainty and make probabilistic
conclusions.

4. Semantic Web Agents: Semantic web agents express knowledge in a standardized and
machine-understandable way using ontologies and semantic web technologies. To identify
relevant information, these robots may reason using semantic linkages.

Expert systems, natural language processing, intelligent tutoring systems, and decision support
systems all make use of knowledge base agents. These agents can make intelligent judgments,
answer difficult inquiries, and do activities that demand reasoning and problem-solving skills by
using their knowledge base.

The Realm of Wumpus

The Wumpus World is a classic AI issue that is often used as a benchmark for testing and assessing
intelligent agent systems. The Wumpus World was created by Gregory Yob in 1975 as part of his
AI game Hunt the Wumpus. It is designed to simulate a grid-based environment inhabited by a
Wumpus a mythical monster and a few other elements, with the agent's goal being to navigate and
explore the environment while avoiding hazards and finding the gold. The Wumpus World is
displayed as a grid of cells, and each cell may include a variety of elements:

1. The agent is the intelligent being that the AI algorithm controls. The agent's mission is to
investigate the surroundings, avoid hazards, and locate the gold.

2. The Wumpus is a hazardous monster that lives in one of the environment's cells. If the
agent reaches the Wumpus's cell, it gets devoured and the game is over.

3. The environment may have one or more pits. If the agent falls into a cell containing a pit,
the game is over.

4. The gold is put in one of the cells, and the agent's goal is to locate and retrieve the gold.
5. A breeze is a perception that the agent has when it is near a pit-containing cell. The

existence of a wind suggests the presence of a pit nearby.
6. Stench is a perception that the agent has when it is near the cell that contains the Wumpus.

The existence of a stink suggests that the Wumpus is close.

Agent Actions

 In the Wumpus World, the agent may do the following:

1. Move: The agent may move to a nearby cell in the grid up, down, left, or right.
2. Turn: The agent may alter its orientation by turning left or right.
3. Fire an Arrow: The agent has the ability to fire an arrow in the direction it is facing. The

Wumpus is killed if the arrow touches him.
4. Grab Gold: If the agent is on the cell with the gold, it can take it.
5. Climb Out: If the agent is on the first cell and has the gold, it can climb out of the cave

and win the game.

57

Artificial Intelligence

The agent's goal is to explore the surroundings carefully, avoid dangers, and discover the gold.
The agent should make judgments regarding its activities based on its vision, thinking, and
planning skills, ensuring that it gets the gold without being murdered by the Wumpus or falling
into a pit. The Wumpus World is a difficult challenge for intelligent agents because it incorporates
uncertainty due to perceptual constraints and the unknown placement of dangers and needs
decision-making under uncertainty. Logic-based reasoning, probabilistic reasoning, and search
algorithms are just a few of the AI approaches that may be used to create intelligent beings capable
of navigating and prospering in the Wumpus World.

Syntex and logic

In the study of formal languages and formal systems, such as computer programming languages,
formal logic, and linguistics, logic and syntax are two important notions. They are essential in
determining the structure, rules, and meaning of languages and systems.

Logic: The study of reasoning and the principles of good inference and argumentation is known
as logic. It examines the links between assertions and the rules that regulate the validity of
arguments in a systematic manner. In logic, symbols and symbols are used to represent assertions,
and rules of inference are defined to derive new statements from existing ones. The purpose of
logic is to provide a reasonable and consistent framework for reasoning and to differentiate
between valid and incorrect arguments. Formal logic is used in computer science and mathematics
to develop and evaluate programming languages, verify software correctness, and reason about
algorithm characteristics.

Syntax: The rules and structure that govern the production of legitimate sentences, statements, or
expressions in a language are referred to as syntax. It specifies how symbols, keywords, and other
components should be arranged in order to produce meaningful and well-formed constructions in
the language.

Syntax in programming languages governs the right organization of programming constructs to
produce valid and executable code. In a programming language, for example, syntax governs how
variables are declared, functions are defined, and control flow structures such as loops and
conditional statements are specified. A statement or phrase is regarded syntactically wrong or a
syntax mistake if it does not follow the rules of syntax.

Syntax is required for correct program interpretation and execution, as well as for properly
communicating concepts in human languages. It contributes to the language's constructs being
well-defined and clear, making the language simpler to grasp and process for both people and
machines. In summary, logic is concerned with the rules of reasoning and inference, with a
particular emphasis on the links between claims and arguments. Syntax, on the other hand,
concentrates on language norms and structure, ensuring that language constructions are well-
formed and follow the stated rules. Both logic and syntax are essential in the study of formal
languages, programming languages, and formal systems because they allow for accurate
communication and reasoning within these areas.

Semantics, Propositional Logic

Propositional logic is a branch of formal logic that deals with propositions and their logical
connections. It is sometimes known as sentential logic or propositional calculus. Propositions in
propositional logic are declarative assertions that may be true or untrue but not both. These

58

Artificial Intelligence

propositions are represented by symbols or variables, and the connections between them are
expressed using logical connectives. The fundamental elements of propositional logic are as
follows:

1. Propositions are atomic assertions that may either be true or untrue. Letters such as p, q, r,
and so on are used to express propositions.

2. Logical connectives are symbols that enable us to join propositions to create more
complicated assertions. The following are the primary logical connectives in propositional
logic:

i. Negation : Represents not, and it denies a proposition's truth value. For example, p stands
for not p.

ii. Conjunction (AND): Denotes and. It is true only when both assertions linked by it are
true. p q, for example, signifies p and q.

iii. Disjunction (OR): This symbol represents or. It is true when at least one of the related
propositions is true. For example, p q denotes p or q.

iv. Implication: Represents if...then. It is false when both the antecedent and the consequent
are true. For instance, p q signifies if p, then q.

v. Biconditional: Denotes if and only if. It is true when both assertions have the same truth
value. p q, for example, signifies p if and only if q.

Truth tables are used to assess the truth value of compound assertions based on the truth values of
their constituent propositions and the logical connectives used. Propositional logic is the base of
formal logic research and serves as the foundation for more advanced logical systems such as first-
order logic and predicate logic. Semantics is the study of the meaning and interpretation of formal
languages and logical systems in logic. Semantics is concerned with the assignment of truth values
to propositions and the assessment of truth values for compound propositions based on the truth
values of their component propositions in the framework of propositional logic. Truth assignments
or truth values determine the semantics of propositional logic. A truth assignment gives each
atomic statement in a given logical expression a truth value. The truth value of the full statement
may be found using truth assignments by evaluating the expression according to the principles of
logical connectives.

Given the assertions p = It is raining and q = The ground is wet, as well as the compound
proposition p q, a truth assignment that assigns p = true and q = true would render the whole phrase
p q true, since the antecedent (p) and consequent (q) are both true. In propositional logic, semantics
helps us to reason about the logical implications and connections between propositions, assisting
us in understanding the truth conditions of logical assertions and evaluating their validity in diverse
scenarios. Proprostinal logic is a basic knowledge foundation. In propositional logic, a basic
knowledge base consists of a set of atomic assertions and a collection of logical statements that
represent connections between these propositions. The knowledge base stores information, and the
logical statements specify the knowledge and rules that the agent may utilize for reasoning and
forming conclusions. Consider the following basic knowledge base with three atomic propositions:

1. It is sunny.
2. It is raining.
3. The grass is sopping wet.

Let us now create some logical statements that describe the links between these propositions:

59

Artificial Intelligence

1. First Statement

a. Meaning: If it's sunny, then the grass is wet.
b. Interpretation: The grass gets moist whenever it is sunny (p is true).

2. Statement number two: q r

a. Translation: If it is raining, then the grass is not wet.
b. Interpretation: When it rains (q is true), the grass does not become wet.

3. Third Statement: (p q) r

a. Meaning: If it is sunny and raining, then the grass is not wet.
b. Interpretation: The grass is not moist when it is both sunny and rainy (p q is true).

The agent may draw logical conclusions based on the provided information using this rudimentary
knowledge base. As an example:

1. Based on Statement 1, the agent may infer that the grass is moist if it knows it is sunny (p
is true).

2. Based on Statement 2, if the agent knows it is raining (q is true), it may deduce that the
grass is not wet (r is true).

3. Based on Statement 3, if the agent knows that it is both sunny and rainy p q is tru), it may
deduce that the grass is not wet r is true.

The knowledge base's logical statements enable the agent to reason about the links between
propositions and make logical inferences based on the information provided. The knowledge base
serves as the agent's decision-making foundation, allowing it to make educated decisions and reply
to questions in the domain represented by the propositions [9], [10].

DISCUSSION

Effective Proposal Model validation

Effective propositional model checking is a method for validating the correctness of complicated
systems represented by propositional logic formulations. Model checking is a kind of formal
verification that determines if a given system fits a set of desirable qualities stated in a logical
formula. The system is described using propositional logic in propositional model checking, and
the required attributes are specified as propositional formulae. Several strategies and optimizations
are used to tackle the exponential complexity that develops when dealing with huge state spaces
and complicated attributes in order to perform successful propositional model verification. The
following are some essential ways for successful propositional model checking:

1. Binary Decision Diagrams (BDDs): BDDs are data structures that are used to efficiently
express and modify Boolean formulae. They aid in the reduction of the complexity of
propositional formulations and allow for quick operations such as conjunction, disjunction,
and negation. Instead of enumerating and manipulating individual states, a symbolic
representation is employed to compactly represent the complete state space. This decreases
the model checker's memory needs and enables it to function effectively with huge systems.

2. Caching and Memoization: Model checkers employ caching and memoization methods
to minimize unnecessary calculations. Once a calculation for a certain state or formula is
completed, the result is saved in a cache, and if the same computation is encountered again,
it may be retrieved from the cache rather than recomputed.

60

Artificial Intelligence

3. Partial Order Reduction: Partial Order Reduction is a method that is very effective for
concurrent systems. It lowers the state space by investigating just a subset of feasible
concurrent event interleavings, eliminating the investigation of comparable interleavings.

4. Property-Directed Reachability (PDR): PDR is a strong model checking technique that
conducts reachability analysis based on attributes of interest. It can handle safety properties
effectively and immediately find counterexamples when a property is broken. Incremental
checking enables the model checker to reuse previously calculated findings for related
properties rather to validating the complete system from begin for each property. This
method shortens the total verification time.

5. Abstraction and refinement: Abstraction methods are used to develop simpler, more
abstract models that keep the qualities of interest while dealing with huge state spaces. If a
property on the abstract model cannot be validated, a refinement procedure is used to build
a more detailed model for further investigation.

6. Propositional Model: Propositional model checking has been used effectively in a variety
of disciplines, including hardware and software verification, concurrent systems, and
model-based testing. Model checkers can handle complicated systems and characteristics
effectively and give vital insights into the correctness and safety of crucial systems by using
these optimization strategies.

Theorem demonstrating that works

Effective theorem proving is an important field of study in artificial intelligence, logic, and formal
verification. It entails creating algorithms, strategies, and tools to automatically prove theorems or
validate claims in diverse formal systems. Theorem proving is required for validating logical
arguments, confirming the attributes of computer programs and systems, and undertaking rigorous
mathematical reasoning. Several tactics and approaches are used to produce successful theorem
proving:

1. Automated Theorem Provers: These are computer programs that can seek for proofs of
specified assertions or theorems on their own. These provers look for valid proofs in a
systematic and efficient way using diverse techniques such as resolution, tableaux, and
model checking.

2. Symbolic Representation: Typically, the theorem prover works using symbolic
representations of logical formulations or mathematical expressions. Symbolic
representations enable the prover to modify formulae symbolically and use inference rules
to derive new facts.

3. Heuristics and Search Strategies: Theorem provers utilize heuristics and search
strategies to orient the search towards plausible proof routes in order to traverse through
the huge search space of possible proofs. Effective heuristics aid in the selection of
promising branches, resulting in quicker and more efficient theorem proving. Theorem
provers often use automated abstraction and simplification approaches to minimize the
complexity of formulae or expressions, making them more susceptible to proving.
Abstraction approaches simplify models or representations while retaining important
characteristics.

4. Model Generation and Counterexample Search: Theorem provers may produce models
or counterexamples when a proposition is erroneous or unprovable in addition to proving
theorems. This helps in detecting flaws in specifications or identifying instances in which
particular attributes do not apply.

61

Artificial Intelligence

5. Combining Automated and Interactive Proving: Combining automated and interactive
theorem proving enables for human interaction to steer the search or apply domain-specific
knowledge for more complicated issues in certain situations.

6. Backtracking and incremental approaches to theorem proving: Incremental theorem
proving methods leverage previously obtained lemmas or proofs to speed up future proofs.
Backtracking is used to examine other pathways or reverse specific steps after a proof effort
fails.

Effective theorem proving has several applications, including formal hardware and software
system verification, formal mathematics, artificial intelligence, and knowledge representation. To
improve the capabilities and scalability of automated reasoning systems, the development of
improved theorem provers and efficient algorithms remains an important topic of study.

Definite Clauses and Horn Clauses

Horn clauses and definite clauses are two sorts of logical assertions that are important in logic
programming and automated reasoning. In many knowledge representation and reasoning systems,
both sorts of clauses are employed. Horn clauses are logical statements that have a head and a
body. They are named for logician Alfred Horn, who pioneered their study in the 1950s. A Horn
clause is often written in the following format:

Css copy The Code

H ₁← B ∧ B� ∧ ... ∧ B�

where:

H is the arrow's head, or the single positive literal on the left side .

B1, B2,..., Bn are the literals or the body on the right side of the arrow.

There can only be one positive literal in the head of a Horn clause all but one of the literals in the
head must be negated. If there is no positive literal in the head the head is empty, the Horn clause
is referred to as a goal or a query. Horn clauses are often used in logic programming languages
like as Prologue to define rules and facts. Prologue performs backward chaining and derives
inferences based on a given collection of Horn clauses using a resolution-based inference
technique.

Definite Clauses

 Definite clauses are a subset of Horn clauses with extra constraints. In the head of a definite clause,
there is only one positive literal, and all literals in the body are negated. They are written as follows:

cssCopy the code

H ₁← ¬B ∧ ¬B� ∧ ... ∧ ¬B�

where:

The sole positive literal in the head is H.

The negated literals in the body are B1, B2,..., Bn.

62

Artificial Intelligence

Definite clauses are very significant in logic programming because they are used to describe rules
and facts that may be handled effectively utilizing the resolution principle. Definite clauses are the
basic building elements for establishing program rules in logic programming languages such as
Prologue. These definite clauses are used by Prolog's inference engine to execute efficient
backward chaining and search for answers to queries or objectives. Horn clauses and definite
clauses are both important in logic programming and automated reasoning. They are valuable tools
in domains such as artificial intelligence, expert systems, and knowledge representation because
they give a simple and expressive approach to describe information and rules. In automated
reasoning systems and logic programming languages, forward and backward chaining are two
typical inference processes used to generate conclusions from a knowledge base or collection of
logical assertions.

Forward Chaining

Forward chaining, also known as data-driven reasoning or bottom-up reasoning, is the process of
inferring new knowledge from established facts and rules. It begins with the facts and applies rules
repeatedly to derive new conclusions until no further inferences can be formed. The following are
the stages involved in forward chaining:

1. Data: The procedure starts with the known facts or data in the knowledge base.
2. Matching: The system tries to match the available rules with the knowledge base facts. If

the antecedent of a rule fits the present facts, the rule is evaluated for execution.
3. Rule Execution: If the antecedent of a rule fits the facts, the consequent of the rule is added

to the knowledge base as a new fact.
4. Iterative Process: The process is repeated iteratively, with rules being applied and new

derived facts being added to the knowledge base until no more rules can be applied.

Forward chaining is very beneficial when the purpose is to acquire information and draw
conclusions from supplied data. It's common in expert systems, data mining, and decision support
systems.

Backward Chaining

Backward chaining is a technique that begins with a specified objective and works backward to
uncover the facts or rules that support the goal. It is also known as goal-driven reasoning or top-
down reasoning. It starts with the aim and works backwards via the rules to establish what facts
are required to achieve the goal. Backward chaining involves the following steps:

1. Goal Selection: The procedure begins with a specific goal or inquiry that must be met.
2. Matching: The system seeks to match the aim with the rules' consequents. If the objective

meets the consequent of a rule, the system recursively uses backward chaining to fulfill the
rule's antecedent as additional sub-goals.

3. Iterative Process: The process is repeated iteratively, moving backward to complete the
sub-goals until all sub-goals are met or no more backward pathways can be taken.

Backward chaining is very effective for showing the validity of a hypothesis or addressing specific.
Forward chaining begins with known facts and applies rules to infer new conclusions, while
backward chaining begins with a goal and recursively searches for the facts and rules that support
the objective. Forward chaining is driven by data, while backward chaining is motivated by goals.
Forward chaining may be used to acquire information and draw inferences from supplied data,

63

Artificial Intelligence

while backward chaining can be used to answer questions and prove hypotheses. Both strategies
may be employed in hybrid systems that alternate or mix forward and backward chaining to
produce more efficient reasoning in complicated settings.

Propositional Logic-Based Agent

An intelligent being that employs propositional logic as its basic knowledge representation and
reasoning process is known as an agent based on propositional logic. Based on the available
information, such an agent encodes its knowledge using logical propositions and applies logical
inference rules to make judgments, draw inferences, and react to questions. Propositional logic
agents often comprise the following components. The agent's knowledge base is made up of a
collection of logical premises also known as atomic propositions that reflect the agent's beliefs,
observations, and accessible information about the world. Every proposition may be true or untrue.
The agent employs logical inference rules to generate new propositions from the knowledge base.
These rules include simple logical connectives (AND, OR, NOT) as well as more complicated
principles like implication and equivalence.

An inference mechanism is used by the agent to do logical reasoning and derive inferences from
its knowledge base. Techniques such as truth tables, logical resolution, and semantic tableaux may
be used. Based on the inference mechanism's results, the agent may make choices or take actions
to fulfill its objectives or answer to questions. The decision-making process include weighing the
pros and drawbacks of various options depending on the agent's information. The agent may be
able to learn from fresh observations or experiences and update its knowledge base as a result.
This may include introducing new propositions, amending current ones, or changing the logical
norms. A basic expert system is an example of a propositional logic-based agent. An expert system
is an artificial intelligence system that replicates the decision-making skills of a human expert in a
certain topic. The knowledge base in this situation comprises the expert's expertise, which is
expressed using logical propositions. Based on the available information, the inference mechanism
applies logical rules to reason about the issue domain and give guidance or suggestions.

The use of propositional logic enables a simple and formal depiction of the agent's knowledge and
reasoning process. However, propositional logic's expressiveness is restricted in comparison to
more sophisticated logics such as predicate logic, which can handle quantification and relational
reasoning. As a consequence, agents based on propositional logic may be limited in their ability to
handle complicated and confusing circumstances. More complex logical systems, such as first-
order logic or higher-order logics, may be employed for more sophisticated agent-based systems
to solve these constraints. The frame problem is a difficult topic in both artificial intelligence and
philosophy of mind. It refers to the problem that intelligent agents confront in identifying which
features of a changing reality must be updated in response to a given action while maintaining
unchanging knowledge that is still relevant.

The issue originates from the fact that, in real-world settings, not all environmental changes are
important to the agent's aims, and many things stay unaffected despite the agent's activities. To
reduce needless computational cost, the agent must be able to determine which bits of information
are pertinent to update and which should be maintained without reconsideration. The frame issue
was developed originally in the area of automated reasoning and planning. It rose to prominence
in the late 1960s and early 1970s when academics started to investigate the application of artificial
intelligence to planning and decision-making difficulties. The robot block world scenario is a
typical illustration of the frame problem. Consider a robot in a room with a set of blocks whose

64

Artificial Intelligence

mission it is to stack the blocks in a certain arrangement. The robot must move the blocks, conduct
activities, and constantly update its internal understanding of the environment. However, defining
which components of the environment must be reevaluated for example, the new placements of
blocks following a move and which may be left alone for example, the unchanging positions of
other blocks becomes difficult.

CONCLUSION

Without appropriate strategies for dealing with this, the agent may spend an inordinate amount of
time and resources continuously reevaluating unaltered data. Addressing the frame issue is critical
for developing intelligent agents capable of reasoning, planning, and acting in changing settings.
Various answers and approaches to the frame issue have been presented by scholars over the years,
including the use of default reasoning, explicit representation of change and persistence, and
domain-specific information about what is expected to change and what stays constant. While
there is no single definitive solution to the frame problem, ongoing research in the field of artificial
intelligence is exploring more effective and efficient ways to address this important challenge and
improve the capabilities of intelligent agents in dealing with changing environments.

REFERENCES:

[1] L. Agents, “7 Logical agents,” English, 2010.

[2] J. van Benthem and F. Liu, “Diversity of Logical Agents in Games,” Philos. Sci., 2004, doi:
10.4000/philosophiascientiae.571.

[3] J. Schrader, G. Pillar, and H. Kreft, “Leaf-IT: An Android application for measuring leaf
area,” Ecol. Evol., 2017, doi: 10.1002/ece3.3485.

[4] L. Cavagna and W. J. Taylor, “The emerging role of biotechnological drugs in the treatment
of gout,” BioMed Research International. 2014. doi: 10.1155/2014/264859.

[5] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres, “Practical verification
of decision-making in agent-based autonomous systems,” Autom. Softw. Eng., 2016, doi:
10.1007/s10515-014-0168-9.

[6] J. L. Pollock, “The logical foundations of goal-regression planning in autonomous agents,”
Artif. Intell., 1998, doi: 10.1016/S0004-3702(98)00100-3.

[7] M. D’Agostino, “An informational view of classical logic,” Theor. Comput. Sci., 2015, doi:
10.1016/j.tcs.2015.06.057.

[8] D. Setia Umbara, L. Sulistyowati, T. Insan Noor, and I. Setiawan, “Ideal Agricultural Agent
as a Logical Solution and Investment,” World J. Agric. Res., 2019, doi: 10.12691/wjar-7-1-
5.

[9] A. Richardson and T. Uebel, “The Epistemic Agent in Logical Positivism,” … Aristot. Soc.

Suppl. …, 2005.

[10] M. Jourdan, S. Blandin, L. Wynter, and P. Deshpande, “A probabilistic model of the bitcoin
blockchain,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2019. doi: 10.1109/CVPRW.2019.00337.

65

Artificial Intelligence

 CHAPTER 8

FIRST-ORDER LOGIC: UNVEILING THE POWER OF

QUANTIFICATION AND PREDICATES

Vineet Saxena, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- tmmit_cool@yahoo.co.in

ABSTRACT:

We demonstrated how a knowledge-based agent might represent its environment and choose what
actions to take. We chose propositional logic as our representation language since it was enough
for demonstrating the fundamental ideas of logic and knowledge-based agents. Unfortunately,
propositional logic is much too limited a language to express knowledge about complicated
situations succinctly. In this chapter, we look at first-order logic, which is expressive enough to
capture most of our everyday knowledge. It also subsumes or serves as the basis for many other
representation languages and has been intensely researched for decades. We begin with a broad
overview of representation languages, then go on to the syntax and semantics of first-order logic,
and last demonstrate how to apply first-order logic for simple representations.

KEYWORDS:

Domain, First, Logic, Languages, Natural.

INTRODUCTION

Natural languages are very expressive. We were able to write practically the whole book in normal
language, with just a few slips into other languages including logic, mathematics, and diagram
language. In linguistics and philosophy of language, there is a long tradition of seeing natural
language as a declarative knowledge representation language. If we could discover the laws of
natural language, we would be able to utilize it in representation and reasoning systems and profit
from the billions of pages published in natural language. Natural language nowadays is seen as a
means for communication rather than pure representation. When a speaker points to something
and exclaims, Look!The listener learns, for example, that Superman has finally appeared over the
rooftops. However, we would not claim that the statement Look! expresses this reality. Rather, the
meaning of the phrase is determined by both the sentence and the environment in which it was
delivered. Obviously, one could not save a line like Look! in a knowledge base and expect to
recover its meaning without also saving a representation of the context which begs the issue of
how the context may be represented. Natural languages, like representation languages, suffer from
ambiguity [1]–[3].

Language Representation

Representation languages are organized and clear methods for representing knowledge,
information, and data. These languages serve as a medium of communication between people and
machines, allowing information to be expressed, stored, and processed in a manner appropriate for
certain domains and activities. There are several representation languages, each adapted to
particular goals and areas. Some examples of popular representation languages are:

66

Artificial Intelligence

1. Natural Language: The language used by people for communication is known as natural
language. It's expressive and adaptable, enabling us to communicate a broad variety of
thoughts and notions. However, because of its ambiguity and context-dependence, natural
language processing is difficult for robots.

2. Mathematical: Mathematical notation is a method of representing mathematical ideas and
connections. It consists of symbols, equations, functions, and formulae that convey
mathematical concepts in a clear and exact manner.

3. Logical Languages: Logical languages, such as propositional logic, predicate logic, and
first-order logic, are used to formalize and rigorously reason about relationships, assertions,
and propositions. These programming languages are essential in formal logic, automated
reasoning, and artificial intelligence.

4. Programming Languages: Programming languages are used to create instructions or
algorithms that computers can comprehend and execute. They allow for the development
of software and computer programs that execute certain tasks.

5. Markup Languages: HTML (Hypertext Markup Language) and XML (eXtensible
Markup Language) are markup languages that are used to organise and annotate data in a
machine-readable manner. Markup languages are widely used to describe online content,
data transfer, and documents.

6. Ontology Languages: Ontology languages, such as OWL (Web Ontology Language) and
RDF (Resource Description Framework), are used to define classes, attributes, and
connections between ideas in order to describe and model knowledge in a domain.

7. Data Representation Languages: JSON (JavaScript Object Notation) and YAML
(YAML Ain't Markup Language) are data representation languages that are used to
describe data in a lightweight, human-readable, and machine-parsable manner.

8. Graphical Notation: Graphical notation uses visual components such as diagrams, charts,
graphs, and flowcharts to describe information. These representations are often employed
in intuitively conveying complicated connections and systems.

Each representation language has strengths and drawbacks, and the language chosen is determined
by the domain's unique needs, the complexity of the information to be represented, and the
intended audience people or computers. The effective and correct usage of representation
languages is critical for accurate and efficient communication, data interchange, knowledge
representation, and reasoning in a variety of domains such as artificial intelligence, databases,
information retrieval, and knowledge engineering [4], [5].

Hypothesis of Sapir-Whorf

The Sapir-Whorf hypothesis is a controversial and prominent theory in linguistics and cognitive
science. It is also known as linguistic relativity or Whorfianism. It suggests that the language we
say impacts and forms our perceptions and thoughts about the world. The theory is named after
the linguists Edward Sapir and Benjamin Lee Whorf, who contributed to its development
separately in the early twentieth century. The Sapir-Whorf theory is divided into two parts:

1. Strong Version: This version contends that the structure of a language controls or totally
moulds its speakers' cognitive processes and worldview. In other words, people of various
languages view reality differently, and the structure of their language limits their thinking
and cognitive skills. Language is seen as the major determinant of thinking in this
viewpoint.

67

Artificial Intelligence

2. Weak Version: This version claims that language influences but does not completely
affect cognition and perception. It implies that although language may impact some
elements of cognition and perception, other variables such as culture and individual
experience also play important roles in influencing how people see and think about the
world.

The Sapir-Whorf hypothesis has been the topic of much investigation and discussion over the
years. Some studies have found evidence to support some features of linguistic relativity, such as
how various languages impact how speakers perceive colours, spatial relationships, and conceptual
categories. Some languages, for example, may have more precise colour terminology, causing
speakers to be more sensitive to differences in colour hues. Other research, however, have
questioned the strong form of linguistic determinism, suggesting that culture, experience, and non-
linguistic elements also impact cognition and perception. Many scholars today adopt a more
balanced view, admitting that language may impact cognition to some degree but that it is not the
only predictor of thinking. In conclusion, the Sapir-Whorf hypothesis proposes a complicated link
between language and cognition, with language influencing how people see and think about the
environment. The amount and form of this effect, however, are still being researched and debated
in the domains of linguistics, psychology, and cognitive science [6]–[8].

Bringing together the finest of formal and natural languages

Combining the best of formal and natural languages is a method of using the strengths of both
kinds of languages to enhance communication, knowledge representation, and reasoning in a
variety of disciplines. Formal languages are exact and clear, making them ideal for rigorous
reasoning and computation. Natural languages, on the other hand, such as English, are flexible and
expressive, allowing for rich communication and simple comprehension by people. We may get
various advantages by combining the qualities of both kinds of languages:

1. Clarity and accuracy: When describing complicated concepts and connections, formal
languages bring clarity and accuracy. We may eliminate ambiguity and guarantee that
assertions are well-defined and clear by adding formal constructs into natural languages.
Natural languages are expressive, allowing for more nuanced and contextualized
communication. We can capture subtle subtleties and express complicated concepts more
effectively by enhancing formal languages with natural language elements.

2. Human-Readable Representations: Formal languages often include symbolic notations
that may be difficult for non-experts to comprehend. We may make representations more
accessible to a larger audience, including non-technical users, by using natural language
components.

3. Formal Languages: Formal languages are efficient for computing and reasoning, but they
may need specialized knowledge to fully comprehend. We can increase communication
between domain specialists and non-experts by mixing with natural languages, making it
simpler to explain complicated ideas.

4. Natural Language Interfaces: By creating natural language interfaces for formal systems,
we can allow users to engage with complicated systems and models using familiar language
rather than learning specialized formal notations.

5. Human-Machine Cooperation: By combining formal and natural languages, human-
machine cooperation may be facilitated. Automated systems can effectively interpret

68

Artificial Intelligence

formal representations, but people may offer context and subject expertise through natural
language inputs.

6. Simplicity and Clarity in Instructions: Combining formal syntax with plain language
explanations in disciplines such as programming may make instructions and code more
clear and easier to understand for developers.

Several academic groups are investigating effective methods to mix formal and natural languages.
Natural language processing (NLP) approaches, for example, try to bridge the gap between human
language and formal representations in tasks such as question answering, text comprehension, and
language translation. Furthermore, regulated natural languages and domain-specific languages try
to build formalized subsets of natural languages that achieve a compromise between natural
language expressiveness and formal language accuracy. nWe can construct more powerful and
accessible tools for knowledge representation, reasoning, and human-computer interaction in a
variety of domains, including artificial intelligence, software development, and knowledge
management, by discovering methods to use the capabilities of both kinds of languages [9], [10].

DISCUSSION

The First-Order Logic Language

First-order logic (FOL), also known as predicate logic or first-order predicate calculus, is a formal
language used to express claims about objects, their attributes, and connections between them in
mathematics, philosophy, computer science, and artificial intelligence. It is a robust and
extensively used logic framework that enables exact and clear representation of information and
reasoning. The first-order logic language is made up of numerous parts:

1. Variables: Variables are placeholders that represent particular items in the discourse
domain. They are often represented by lowercase letters such as x, y, or z, and may take on
values from the realm of discourse.

2. Constants: In the realm of discourse, constants are particular things represented by capital
letters such as A, B, C, and so on.

3. Predicates: Predicates are relations or characteristics that are used to describe the qualities
of domain objects. Predicates are indicated by capital letters followed by a number of
arguments enclosed in parenthesis, such as P(x), Q(x, y), or R(x, y, z).

4. Quantifiers: The universal quantifier and the existential quantifier are used in first-order
logic. The universal quantifier indicates that a statement holds for all objects in the domain,
while the existential quantifier indicates that the assertion holds for at least one object.

5. Connectives: Logical connectives in first-order logic include conjunction for and,
disjunction for or, negation for not, implication for if then, and biconditional for if and
only if. These connectives are used to construct complicated assertions from simpler ones.

We may create logical assertions in first-order logic using these components. As an example:

1. For all objects x, P(x) is true, where P(x) is a predicate describing a property of x.
2. There exists an object y such that Q(y) is true, where Q(y) is another predicate describing

a property of y.
3. For all objects x, there exists an object y such that R(x, y) is true, where R(x, y) represents

a relationship between x and y.

69

Artificial Intelligence

First-order logic's expressive capability enables us to describe a broad range of claims and reason
about complicated links and structures in a variety of fields. It is used to build formal mathematics,
database systems, automated reasoning, and knowledge representation in artificial intelligence.

First-Order Logic Models

Models are mathematical constructs used in first-order logic (FOL) to understand the logical
language and attribute meaning to its symbols and expressions. A model in FOL establishes the
truth values of formulae and gives a means of assessing the correctness of logical arguments or
deductions. In logical language, the domain of discourse is a non-empty set that represents the
collection of things or persons under investigation. It specifies the set of items to which variables
and constants relate. In FOL, constants are items from the domain of discourse, while functions
are mappings that associate domain elements with other elements. The model defines how
constants and functions are interpreted or translated to particular domain components. In FOL,
predicates are used to express connections between objects or qualities of domain components.
The model determines the meaning of predicates and specifies which domain tuples fulfill each
predicate. The model allocates specified domain items to variables in a formula. This assignment
enables us to assess the formula's truth value using the provided interpretations of constants,
functions, and predicates. The model calculates the truth value of formulae in FOL using
interpretations and variable assignments. Based on the model's interpretations, formulas may be
assessed as true or untrue. Consider the following basic FOL formula:

∀x (P(x) → Q(x))

P(x) and Q(x) are predicates, where x indicates universal quantification over all items in the
discourse domain.

A model for this formula would include the following information:

1. The topic of discussion, such as the set of all integers.
2. P(x) and Q(x) interpretations that specify which numbers fulfill each predicate.
3. The variable x is assigned an integer value.

The formula is assessed to establish its truth value based on the model's interpretations and variable
assignment. Models are essential in FOL because they allow for reasoning and deduction inside
the logical framework. Valid arguments are ones in which if all of the premises are true in every
feasible model, then the conclusion must likewise be true. This is a basic concept in logic, and
models give a mathematical basis for understanding the semantics of first-order logic and its
inference rules.

Symbols and their meanings

Symbols and interpretations are critical components in describing and interpreting the semantics
of logical propositions in the setting of first-order logic (FOL).

Symbols in First-Order Logic: Symbols are the fundamental building elements of the logical
language of FOL. Among them are the following:

1. Variables are placeholders that represent particular items in the discourse domain. They
may be represented by lowercase characters such as x, y, or z, and can take on domain
values.

70

Artificial Intelligence

2. Constants: In the realm of discourse, constants are particular things represented by capital
letters such as A, B, C, and so on. Constants, unlike variables, have fixed meanings and do
not alter their referent inside a logical statement.

3. Predicates are relations or characteristics that are used to describe the qualities of domain
objects. Predicates are indicated by capital letters followed by a number of arguments
enclosed in parenthesis, such as P(x), Q(x, y), or R(x, y, z).

4. Functions are mappings that connect domain items to other domain elements. Lowercase
letters are followed by a number of parameters in parentheses, such as f(x), g(x, y), or h(x,
y, z). Functions are used to specify operations on domain objects.

5. Logical connectives, such as conjunction for and, disjunction for or, negation for not,
implication for if then, and biconditional for if and only if, are used to construct
complicated assertions from simpler ones.

6. The universal quantifier and the existential quantifier are used in first-order logic. The
universal quantifier indicates that a statement holds for all objects in the domain, while the
existential quantifier indicates that the assertion holds for at least one object.

First-Order Logic Interpretations: In first-order logic, interpretations are essential for providing
meaning to symbols. Within a certain context, an interpretation defines the meaning or referents
of the symbols in the logical language. In logical language, the domain of discourse is a non-
empty set that represents the collection of things or persons under investigation. It establishes the
set of items to which variables, constants, and predicates relate. The interpretation allocates
particular items from the domain of discourse to the logical language's constants and functions.
For example, if A is a constant, its interpretation might be a particular domain object. The
interpretation indicates which tuples of domain components fulfill each predicate. If P(x) is a
predicate, for example, its interpretation may be a collection of ordered pairs (x, y) such that the
assertion P(x) is true for the corresponding values of x and y. When evaluating a formula, an
interpretation assigns certain domain items to the formula's variables. This assignment enables us
to assess the formula's truth value using the interpretations of constants, functions, and predicates.
We may assess the truth value of logical assertions in first-order logic, determine the validity of
arguments, and reason about the connections between objects and characteristics in the domain of
discourse by mixing symbols and interpretations.

First-order logic is used

First-order logic (FOL) is a sophisticated formal language for describing knowledge, deducing
connections, and reasoning about the attributes of things. It is frequently utilized in a variety of
subjects, including mathematics, computer science, artificial intelligence, philosophy, and
linguistics, among others. Here are some examples of frequent first-order logic applications. First-
order logic serves as the foundation for automated reasoning systems such as theorem provers and
model checkers. FOL is used to describe logical rules and facts, while inference rules are used to
derive new information or prove theorems.

FOL is used in expert systems and knowledge bases to represent knowledge. FOL is used in an
expert system to encode domain-specific rules and facts, allowing the system to make judgments
and offer suggestions based on the available information. Relational database query languages
such as SQL are built on first-order logic. Users may define queries and criteria for data retrieval
and modification. In natural language processing (NLP), FOL is used to parse and comprehend
phrases in a systematic way. It aids in semantic analysis, data extraction, and question-answering

71

Artificial Intelligence

systems. Formal proofs and assertions are formalized using FOL to ensure accuracy and rigour. It
facilitates the automation of mathematical reasoning, resulting in verifiable proofs and lower
mistake rates.

FOL is required for knowledge representation, planning, and reasoning tasks in AI. FOL is used
by AI systems to describe the state of the world, specify actions and objectives, and reason about
how to accomplish those goals. Ontology languages based on FOL, such as OWL (Web Ontology
Language), are used to create structured vocabularies that express knowledge in a machine-
readable fashion. This is critical in the evolution of the Semantic Web. In formal verification, first-
order logic is used to represent hardware and software systems and validate their correctness
against specified attributes. is commonly used in expert systems, where it formalizes the expertise
and knowledge of human experts. This information allows the system to reason and solve
complicated issues. FOL is used in machine translation to translate sentences in one language into
equivalent sentences in another language while keeping meaning and structure. These examples
highlight the adaptability and applicability of first-order logic in a variety of disciplines, enabling
us to capture complicated connections, reason about them, and build intelligent systems that
process information in a systematic and correct manner.

Engineering knowledge in the use of first order logic

In the context of first-order logic (FOL), knowledge engineering is the systematic process of
gathering, formalizing, representing, and organizing knowledge in a domain using first-order logic.
It is a necessary stage in the development of knowledge-based systems, expert systems, and other
artificial intelligence applications based on logical reasoning and knowledge representation. The
following are the important stages in knowledge engineering using first-order logic. Knowledge
engineers collaborate with domain experts to learn about the issue domain. This entails acquiring
important information, rules, limitations, and facts for the application. Formalization is the process
of transforming learned information into a structured and clear format suited for FOL
representation. This entails employing symbols and predicates to convert plain language assertions
and ideas into logical expressions. The structured information is arranged and kept in a knowledge
base. The knowledge base comprises logical assertions in FOL that describe domain-specific
information, such as facts, rules, and constraints.

An ontology is a formal statement of the domain's ideas and connections. In FOL, the ontology
provides the definitions of the knowledge base's predicates, functions, and constants. Knowledge
engineers create the inference rules that will be utilized for reasoning with the knowledge base.
These rules include conventional logical rules like modus ponens and modus tollens, as well as
application-specific rules. The knowledge-based system may do reasoning and inference using the
knowledge base and established inference rules to draw conclusions, make choices, and answer
questions based on the available information. The knowledge-based system is verified and tested
to verify that it functions properly and produces accurate results. This entails assessing the system's
performance against a set of test scenarios and comparing the findings to the anticipated results.
Knowledge engineering is often iterative. Based on input from domain experts or system users,
engineers may modify and enhance the knowledge base and inference algorithms. The use of first-
order logic in knowledge engineering allows for the exact and formal description of domain-
specific information. It allows the creation of intelligent systems capable of logical reasoning,
making informed judgments, and providing important insights and suggestions in difficult fields.
Knowledge engineers may construct strong and successful knowledge-based solutions for a variety

72

Artificial Intelligence

of areas, including medical, finance, manufacturing, and natural language processing, by
employing FOL as the basis for knowledge representation and reasoning.

The realm of electrical circuits

Knowledge engineering utilizing first-order logic is critical in developing, analyzing, and
simulating complicated electronic circuits in the area of electronic circuits. Electronic circuits are
made up of linked components including resistors, capacitors, transistors, and integrated circuits
that perform a variety of purposes like amplification, signal processing, and data storage. The
following components of knowledge engineering are involved in the domain of electrical circuits.
Using first-order logic, knowledge engineers codify the qualities and behaviour of electrical
components. This involves identifying each component's properties, such as its voltage-current
relationship, impedance, and frequency response.

FOL is used by knowledge engineers to depict the connection and placement of components in a
circuit. This includes describing the relationships between components, signal flow pathways, and
connection types. The principles for circuit analysis and simulation are defined using first-order
logic. Engineers with knowledge may write logical rules to calculate voltage and current values at
different places in a circuit, simulate transient and steady-state behaviour, and examine frequency
response. FOL may be used to develop diagnostic criteria for locating faults or malfunctions in
electronic circuits. These guidelines may aid in the diagnosis and identification of faulty
components or connections in a circuit. Using first-order logic, knowledge engineers may establish
design rules and restrictions. These standards guarantee that the circuit follows particular design
principles, safety specifications, and performance parameters. FOL-based expert systems may help
in automated circuit design by generating circuit topologies, component choices, and parameter
values based on user input. In signal processing circuits, FOL may be used to formalize the
definition of filters, amplifiers, and other signal processing functions.

FOL may help optimize circuit designs by using logical reasoning to explore numerous
configurations and discover optimum solutions based on specified criteria, such as lowering power
consumption or maximizing bandwidth.Using first-order logic, knowledge engineers may verify
and test electrical circuits against design criteria, assuring accurate behaviour and performance.
FOL may be used in electrical circuit designs to incorporate safety limitations and reliability
concerns, guaranteeing that the circuits work safely and efficiently under a variety of scenarios.
Engineers may use knowledge engineering and first-order logic to model and reason about
complicated electrical circuits in a precise and thorough way. Engineers can improve the design
process, optimize performance, diagnose faults, and create more reliable and efficient electronic
circuits for various applications such as consumer electronics, telecommunications, automotive
systems, and aerospace technologies by using FOL as the formal language for representing and
reasoning with electronic circuit knowledge.

CONCLUSION

This chapter presented first-order logic, a significantly more powerful representation language
than propositional logic. The following are the key points: Knowledge representation languages
should be declarative, compositional, expressive, context independent, and unambiguous.
Ontological and epistemological commitments vary amongst logics. While propositional logic just

73

Artificial Intelligence

commits to the presence of facts, first-order logic commits to the reality of objects and relations,
gaining expressive power in the process. First-order logic syntax builds on propositional logic
syntax. It adds words to represent things, as well as universal and existential quantifiers to build
claims about all or some of the quantified variables' potential values. A hypothetical universe, or
model, for first-order logic consists of a collection of objects and an inter pretation that maps
constant symbols to objects, predicate symbols to relationships between objects, and function
symbols to operations on objects. When the connection indicated by the predicate holds between
the objects identified by the terms, an atomic statement is true. The truth of quantified statements
is defined by extended interpretations, which relate quantifier variables to model objects. Creating
a knowledge base in first-order logic involves a thorough examination of the domain, selection of
a vocabulary, and encoding of the axioms necessary to support the intended conclusions.

REFERENCES:

[1] O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and S. Shoham, “Reducing liveness
to safety in first-order logic,” Proc. ACM Program. Lang., 2018, doi: 10.1145/3158114.

[2] F. Lin, “A formalization of programs in first-order logic with a discrete linear order,” Artif.

Intell., 2016, doi: 10.1016/j.artint.2016.01.014.

[3] C. Ghidini and L. Serafini, “Distributed First Order Logic,” Artif. Intell., 2017, doi:
10.1016/j.artint.2017.08.008.

[4] D. Thau and B. Ludäscher, “Reasoning about taxonomies in first-order logic,” Ecol.

Inform., 2007, doi: 10.1016/j.ecoinf.2007.07.005.

[5] I. Hodkinson, F. Wolter, and M. Zakharyaschev, “Decidable fragments of first-order
temporal logics,” Ann. Pure Appl. Log., 2000, doi: 10.1016/S0168-0072(00)00018-X.

[6] S. Xie, J. Zhang, and J. Zhu, “Categorical perception of color is significant both in the right
visual field and the left: Evidence from Naxi speakers and Mandarin speakers,” Acta

Psychol. Sin., 2019, doi: 10.3724/SP.J.1041.2019.01229.

[7] G. van Troyer, “Linguistic Determinism and Mutability: The Sapir-Whorf
"Hypothesis" and Intercultural Communication,” JALT J., 1994.

[8] A. Pavlenko, “Whorf’s Lost Argument: Multilingual Awareness,” Lang. Learn., 2016, doi:
10.1111/lang.12185.

[9] P. Kay and W. Kempton, “What Is the Sapir-Whorf Hypothesis?,” Am. Anthropol., 1984,
doi: 10.1525/aa.1984.86.1.02a00050.

[10] T. Regier and Y. Xu, “The Sapir-Whorf hypothesis and inference under uncertainty,” Wiley

Interdisciplinary Reviews: Cognitive Science. 2017. doi: 10.1002/wcs.1440.

74

Artificial Intelligence

CHAPTER 9

INFERENCE IN FIRST-ORDER LOGIC: DERIVING NEW

KNOWLEDGE THROUGH LOGICAL REASONING

Amit Kumar Bishnoi, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- amit.vishnoi08@gmail.com

ABSTRACT:

We saw how to obtain sound and full inference in propositional logic. In this chapter, we generalize
previous findings to produce algorithms that can solve every answerable first-order logic issue.
provides quantifier inference principles and demonstrates how to reduce first-order inference to
propositional inference, although at a potentially high cost. discusses the concept of unification
and demonstrates how it may be used to build inference rules that operate directly with first-order
sentences. Then, we'll go through three key families of first-order inference techniques. Backward
chaining and logic programming systems encompass forward chaining and its applications to
deductive databases and production systems. Although forward and backward chaining may be
highly efficient, they are only relevant to knowledge bases that can be described as sets of Horn
clauses. Resolution-based theorem proving is required for general first-order sentences, as
indicated.

KEYWORDS:

Chaining, First, Propositional, Resolution, Rules.

INTRODUCTION

Propositional logic and first-order logic are two distinct formal systems for reasoning and
inference, each with its own set of features and capabilities. Let's see how they compare in terms
of inference. Propositional logic only works with basic statements and cannot convey
quantification over variables or relationships between things. It is limited to representing basic
truth values and logical connectives such as AND, OR, and NOT. Unlike propositional logic, first-
order logic is more expressive. It may express quantification over variables universal and
existential quantifiers as well as object connections through predicates and functions. As a result,
it is appropriate for describing complicated assertions and real-world connections [1]–[3].

There are no variables or quantifications in propositional logic. It is concerned with distinct
propositions that are either true or wrong. First-order logic makes use of variables and
quantification, allowing for reasoning about general propositions that apply to all or some objects
in a domain. Inference in propositional logic is based on truth tables and logical equivalences. It
derives new statements from supplied propositions using basic truth-preserving procedures.
Inference in first-order logic is more complicated, using a variety of reasoning strategies such as
unification, resolution, and deduction rules. It can handle quantifiers and object connections,
making it more capable of reasoning about generic assertions [4]–[6].

Propositional logic is often employed in basic decision-making tasks, electrical circuits, and formal
systems where truth values and logical relations are important. In artificial intelligence, knowledge

75

Artificial Intelligence

representation, expert systems, formal mathematics, natural language processing, and reasoning
about complicated real-world domains, first-order logic is commonly utilized. When compared to
first-order logic, propositional logic is simpler and has reduced complexity. It only works with true
and false values, making it simpler to calculate and reason with. Because variables, quantifiers,
and connections between objects are present, first-order logic is more sophisticated. It requires
more complex reasoning techniques, yet it enables a more expressive and complete representation
of information.

To summarize, propositional logic is a restricted formal system appropriate for basic truth-value
reasoning, but first-order logic is a more powerful and expressive system that allows for
quantification and reasoning about object connections. The decision between the two is determined
by the domain's complexity and the amount of expressiveness necessary for a specific application
[7]–[9].

Propositionalization

Propositionalization is the process of converting first-order logic (FOL) statements or relational
data into propositional form in artificial intelligence and machine learning. In other words, it is the
conversion of first-order logic statements with variables and quantification into basic propositional
assertions with constants and truth values (true or false). Propositionalization is often used to
prepare data for machine learning algorithms that can only work with propositional data. The
following are the major phases in propositionalization:

1. Flattening Predicates: Predicates in first-order logic include variables and quantification.
By replacing particular constants for the variables, propositionalization flattens these
predicates. Propositionalization, for example, substitutes a predicate P(x) with P(A), P(B),
and P(C) if the variable x may take the values A, B, and C.

2. Quantifiers for Grounding: In FOL, quantifiers (universal and existential) introduce
variable bindings. These quantifiers are "grounded" in propositionalization by substituting
variables with particular constants. Conjunctive statements replace universal
quantification, whereas disjunctive statements replace existential quantification.

3. Creating Propositional Features: Propositional features are created using
propositionalized data. Each characteristic is associated with a propositional statement that
has a truth value (true or false). For example, if a propositionalized predicate P(x) is divided
into P(A), P(B), and P(C), the features will reflect whether P(A), P(B), and P(C) are true
or false for each data instance.

4. Handling Relationships: In FOL, object relationships are represented by predicates with
many variables. These interactions are decomposed into distinct binary relationships
between particular constants in propositionalization.

5. Feature Representation: The produced propositional features are used to provide input
data for machine learning algorithms that need propositional data. On propositionalized
data, these algorithms may perform classification, regression, clustering, and other tasks.

When dealing with structured data in the form of relations and first-order logic expressions,
propositionalization is beneficial, and the objective is to use machine learning algorithms that only
function with propositional data.

By converting FOL expressions into propositional features, one may use a broader set of machine
learning algorithms that do not directly deal with the complexities of FOL reasoning and

76

Artificial Intelligence

quantification. However, since each constant instantiation introduces a new feature,
propositionalization may result in an explosion in the number of features. As a consequence, the
data's dimensionality may expand dramatically, possibly leading to computational efficiency
concerns and overfitting in certain circumstances. When applying propositionalization in machine
learning applications, careful evaluation of the trade-offs between expressiveness and
computational cost is required [10], [11].

DISCUSSION

A Rule of First-Order Inference

The Universal Instantiation (UI) rule is a typical first-order inference rule. We may infer particular
examples of globally quantified assertions using the Universal Instantiation rule. The Universal
Instantiation rule is expressed in symbolic notation as:

∀x P(x)

P(c)

Where:

x P(x) is a universally quantified statement that asserts that predicate P is true for all objects x in
the discourse domain.

P(c) is the instantiated statement that states that predicate P is true for a given constant c in the
domain of discourse.

To put it another way, the Universal Instantiation rule asserts that if a proposition P(x) is true for
all objects x, it is also true for any individual object c in the domain.

Consider the following universally quantified assertion in first-order logic:

∀x (x > 0)

This assertion says that x is bigger than 0 for all objects x in the domain of real numbers.

We may instantiate the statement to a particular object using the Universal Instantiation rule, say
c = 5:

(x > 0) (where x is replaced by 5)

5 > 0

Because 5 is larger than 0, the instantiated assertion, 5 > 0, is true. We cannot, however, use this
rule to deduce a statement like "0 > 0" since the quantified statement only applies to items bigger
than 0.

One of the fundamental inference rules in first-order logic is the Universal Instantiation rule, which
allows us to derive specific instances of universally quantified statements, allowing for more
precise reasoning about individual objects within a domain based on general statements about all
objects in the domain.

77

Artificial Intelligence

Unification

Unification is a key procedure in first-order logic (FOL) and artificial intelligence that is used to
locate a common substitute that equalizes or makes two logical statements consistent. It is essential
in many activities, including automated reasoning, theorem proving, logic programming, and
natural language processing. The unification process seeks a replacement that makes two
expressions equal, where the substitution assigns values to variables in the expressions constants,
variables, or complicated terms. The unification algorithm proceeds as follows:

Comparison of Terms: The unification process begins with a comparison of the top-level symbols
of the two phrases. If they are the same, the unification algorithm will unify their arguments.

Variable Binding: If a variable exists in both expressions, the unification procedure ties the
variable to a value in the substitute constant or term. In the expressions, the same variable might
be tied to several values, resulting in numerous alternative unifiers.

Recursive Unification: The unification algorithm performs the unification process to the
expressions' parameters recursively. It will continue until all sub-expressions have been
harmonized. If a conflict emerges during the unification process a variable is bound to distinct
values in the expression), the unification fails and the expressions cannot be united.

Consider the following phrases for unification:

Formula 1: P (f(x), y) Experiment 2: P(f (a), g(z))

The algorithm for unification works as follows:

"P" is the top-level symbol. They agree, therefore we combine the arguments:

Combine f(x) with f(a): In the substitution, variable x is tied to constant a.

Unify y with g(z): In the substitution, variable y is connected to term g(z).

The last alternative is

 x/a

y/g(z)

P(f(x), y) unifies with P(f(a), g(z)) using the substitutions x/a and y/g(z).

Many applications of first-order logic rely on unification, such as pattern matching, resolution in
theorem proving, logic programming using unification-based languages like Prologue, and
semantic parsing in natural language processing. It enables logical systems to solve difficulties
involving variable bindings and instantiation, making it an essential component of automated
reasoning and inference procedures.

Forward Chains

Forward chaining is a frequent inference approach used to deduce inferences from known facts
and rules in artificial intelligence and knowledge-based systems. It is a bottom-up strategy that
begins with the supplied data and applies rules repeatedly to infer additional information until no
further inferences can be formed. Forward chaining is often referred to as data-driven reasoning
or goal-driven reasoning. The following stages outline the forward chaining process:

78

Artificial Intelligence

1. Data Initiation: The procedure starts with a collection of known facts or data. These facts
serve as the foundation for inference.

2. Rule Application: To generate new information, the system applies rules to known facts.
Rules are often expressed as logical statements, such as if-then expressions. As an example:

 If (Condition), then (Result)

3. Condition Matching: The system determines if the requirements of each rule correspond
to the current collection of known facts. When the requirements are satisfied, the rule is
triggered or fired. The system infers the consequences new facts stated in the rule and adds
them to the collection of known facts when a rule is activated.

4. Iterative Process: The process of applying rules and inferring consequences is repeated
repeatedly. New facts acquired from one rule might set off other rules, resulting in new
conclusions. This method is repeated until no new facts can be deduced or until a specified
objective is met. Forward chaining ends when either no more new facts can be inferred or
a specified objective or set of goals is met.

Forward chaining is very beneficial when the starting knowledge is provided and the system has
to progressively generate fresh information or conclusions. It's used a lot in expert systems,
knowledge-based systems, and rule-based reasoning applications. The system can effectively
explore the space of plausible inferences and dynamically adapt to new data and knowledge by
applying forward chaining, making it a valuable tool for automated reasoning and decision-making
tasks.

Reverse Chaining

In artificial intelligence and knowledge-based systems, backward chaining is an inference
approach used to draw conclusions based on a specified objective or inquiry. It is a top-down
method that begins with the objective and works backward to discover the facts or rules required
to achieve that aim. Backward chaining is often referred to as goal-driven reasoning or query-
driven reasoning. Backward chaining may be broken down into the following steps:

1. Objective Specification: The process starts with a particular objective or inquiry that the
system wishes to fulfill or demonstrate. This aim is presented as a statement or a question
for which the system must find support.

2. Application of Rules: The system looks for rules that have the aim as a result. These rules
are known as backward rules and are often in the form of if-then rules, except that the if
section represents the consequences and the then part reflects the conditions.

3. Condition Evaluation: For each backward rule, the system assesses the rule's conditions
to see if they are met or may be satisfied based on known facts and previous rules. If the
prerequisites of a backward rule are not met, the system considers the consequences of that
rule to be new sub-goals and recursively performs the backward chaining process to
identify rules that may fulfill these sub-goals. This approach is repeated until all sub-goals
are met or no more backward rules can be identified.

4. Fact Retrieval: To meet the criteria of the backward rules, the system may need to obtain
more facts from the knowledge base throughout the procedure.

79

Artificial Intelligence

Backward Chaining

Backward chaining ends when the original aim is proved true or when it is judged that the goal
cannot be met based on the facts and rules available. Backward chaining is very beneficial for
determining the sequence of reasoning processes necessary to reach a certain objective. It is often
used in expert systems, diagnostic systems, and theorem proving.

Backward chaining, as opposed to forward chaining, which starts with existing facts and draws
new conclusions, begins with a goal and works backward to uncover the required facts and rules
to achieve that objective.

Backward chaining is therefore an efficient method for answering inquiries and solving issues
when the objective is known but the reasoning steps to achieve that goal are unknown.

Resolution

In automated theorem proving and first-order logic, resolution is a basic inference method used to
generate new logical assertions from a group of clauses. It is a refutation-based inference approach
used to demonstrate the unsatisfiability of a logical proposition, such as disproving a hypothesis
or discovering inconsistencies in a knowledge base.

The rule of resolution is founded on the notion of evidence by contradiction. It creates a new phrase
by merging two sentences that include complimentary literals (a literal and its negation).

The resolution procedure is repeated until either a contradiction (an empty phrase) is obtained or
no more resolutions are possible. The resolution rule is formalized as follows:

Given two sentences C1 and C2, each having complimentary literals, there exists a literal L such
that L is in C1 and its negation is in C2.

Resolution generates a new clause C by deleting the complementing literals L and L and joining
the remaining literals in C1 and C2.

The resolution procedure may be expressed as follows:

C1: L1 ∨ ... L (Clause 1) C2: L.... (Clause 2) Ln

C: L1 ∨ ... Ln (Resolute)

where C is the resolved clause formed by C1 and C2.

The resolution process is continued by applying the resolution rule repeatedly to the newly
produced clauses and the original clauses in the knowledge base until either a contradiction empty
clause is obtained or no further resolutions are achievable.

Resolution is a full inference rule, which means that if a contradiction exists in the knowledge
base, it will be discovered by the resolution process. It is an important component of automated
theorem provers and is utilized in a variety of logical reasoning tasks, including as propositional
logic, first-order logic, and other logics using resolution-based proof systems. Logical systems
may use resolution to seek for proofs and refute hypotheses in a systematic and automated way.

80

Artificial Intelligence

Resolution Methods

Various resolution procedures are used in automated theorem proving and logical reasoning to
guide the implementation of the resolution rule effectively and quickly. These tactics aid in the
methodical and goal-oriented discovery of proofs or refutation of claims. Some popular resolution
techniques are as follows:

1. Unit Resolution: Unit resolution is a straightforward and efficient resolution approach that
concentrates on resolving clauses that include unit literals literals that occur just once in a
phrase. It entails taking two sentences, one with a unit literal and the other with its negation,
then using the resolution rule to create a new clause. This method is especially beneficial
when working with big knowledge bases since it narrows the search field by concentrating
on unit literals.

2. Input Ordering: The order in which clauses are picked for resolution may have a
substantial influence on the resolution process's efficiency. various input orderings may
result in various resolution routes and, as a result, different outputs. Breadth-first, depth-
first, and best-first are some popular input orderings.

3. Clause Selection Heuristics: Clause selection heuristics are used to prioritize certain
clauses for resolution over others. Heuristics try to identify sentences that are more likely
to result in helpful resolvents, which may aid in the search for a proof or refutation. The
Age heuristic preferring earlier clauses, the Activity heuristic based on the number of times
a sentence was used in prior resolutions, and the Weight heuristic based on the size or
complexity of a phrase are all examples of clause selection heuristics.

4. Elimination of Subsumption: Subsumption is a strategy for removing superfluous clauses
from a knowledge base. If all of the literals in clause C2 occur in clause C1, the clause C1
is said to subsume clause C2. The resolution method may prevent repetitive labour and
minimize the search area by deleting subsumed clauses.

5. Linear Resolution: Linear resolution is a basic resolution rule improvement that focuses
on lowering the number of resolvents created during the resolution process. It prevents the
development of duplicate clauses by ensuring that a new clause is not utilized in subsequent
resolutions. Factorization is a resolution-based method that combines comparable clauses
to eliminate repetition in the resolvents. To simplify the resolution process, redundant
literals in clauses are detected and removed.

6. Restricted Resolution: Restricted resolution limits the resolution process by limiting the
number of literals in resolvents or the depth of resolution stages. In big and complicated
knowledge bases, this helps to prevent combinatorial explosions. The resolution technique
used is determined by the nature of the issue, the features of the knowledge base, and the
aims of the automated reasoning system. Different resolution procedures are often
integrated and matched to the needs of the reasoning job, increasing the efficiency and
efficacy of the automated theorem proving process.

CONCLUSION

We gave a study of logical inference in first-order logic, as well as many algorithms for doing so.
The first technique propositionalizes the inference issue using inference rules universal
instantiation and existential instantiation.

Unless the domain is tiny, this strategy is often sluggish. In first-order proofs, using unification to
discover acceptable substitutes for variables avoids the instantiation phase, making the procedure

81

Artificial Intelligence

more efficient in many circumstances. Generalized Modus Ponens is a lifted version of Modus
Ponens that employs unification to offer a natural and strong inference rule.

This rule is applied to sets of definite clauses by the forward and backward chaining algorithms.
Although the entailment issue is semidecidable, Generalized Modus Ponens is complete for
definite sentences. Entailment is definable in Datalog knowledge bases composed of function-free
definite clauses. In deductive databases, forward chaining is used in conjunction with relational
database processes. It is also used in production systems to make efficient updates on huge rule
sets. For Datalog, forward chaining is complete and executes in polynomial time. In logic
programming systems that leverage sophisticated compiler technology to enable extremely rapid
inference, backward chaining is employed. Backward chaining is plagued by redundant inferences
and endless loops, which may be mitigated through memoization. In contrast to first-order logic,
Prologue employs a closed universe with the unique names assumption and negation as failure.
These modifications make Prologue a more practical programming language, but also distance it
from pure logic.

Using knowledge bases in conjunctive normal form, the generalized resolution inference rule gives
a full proof system for first order logic. There are many ways for lowering a resolution system's
search space without sacrificing completeness. One of the most essential challenges is dealing with
equality; we demonstrated how to utilize demodulation and paramodulation. Efficient resolution-
based theorem provers have been used to demonstrate intriguing mathematical theorems as well
as to test and synthesize software and hardware.

REFERENCES:

[1] N. Matloff et al., “From Algorithms to Z-Scores�: Probabilistic and Statistical Modeling
in Computer Science,” Design, 2013.

[2] Stuart J. Russell, “Artificial intelligence: a modern approach,” Choice Rev. Online, 1995,
doi: 10.5860/choice.33-1577.

[3] A. Lyaletski, “Evidence Algorithm and Inference Search in First-Order Logics,” J. Autom.

Reason., 2015, doi: 10.1007/s10817-015-9346-0.

[4] D. Vasisht, A. Jain, C.-Y. Hsu, Z. Kabelac, and D. Katabi, “Duet,” Proc. ACM Interactive,

Mobile, Wearable Ubiquitous Technol., 2018, doi: 10.1145/3214287.

[5] H. Gust and H. Gust, “Learning Symbolic Inferences with Neural Networks,” Cogn. Sci.,
2004.

[6] D. Vasisht, A. Jain, C.-Y. Hsu, Z. Kabelac, and D. Katabi, “Duet: Estimating User Position
and Identity in Smart Homes Using Intermittent and Incomplete RF-Data,” Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol, 2018.

[7] K. Kaneiwa, “Order-sorted logic programming with predicate hierarchy,” Artif. Intell.,
2004, doi: 10.1016/j.artint.2004.05.001.

[8] F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma, “A survey of lifted inference
approaches for probabilistic logic programming under the distribution semantics,” Int. J.

Approx. Reason., 2017, doi: 10.1016/j.ijar.2016.10.002.

82

Artificial Intelligence

[9] W. Y. Wang, K. Mazaitis, and W. W. Cohen, “Programming with personalized PageRank:
A locally groundable first-order probabilistic logic,” in International Conference on

Information and Knowledge Management, Proceedings, 2013. doi:
10.1145/2505515.2505573.

[10] T. Demeester, T. Rocktäschel, and S. Riedel, “Regularizing relation representations by first-
order implications,” in Proceedings of the 5th Workshop on Automated Knowledge Base

Construction, AKBC 2016 at the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, NAACL-HLT

2016, 2016. doi: 10.18653/v1/w16-1314.

[11] P. Ristoski and H. Paulheim, “A comparison of propositionalization strategies for creating
features from linked open data,” in CEUR Workshop Proceedings, 2014.

83

Artificial Intelligence

CHAPTER 10

CLASSICAL PLANNING: CREATING EFFICIENT PLANS

THROUGH LOGICAL REPRESENTATION

Navneet Vishnoi-I, Assistant Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- vishnoi_navneet@yahoo.co.in

ABSTRACT:

We defined AI as the study of rational behaviour, which suggests that planning and designing a
strategy to attain one's objectives is an important aspect of AI. So far, we've seen two planning
agents: the search-based problem-solving agent and the hybrid logical agent. In this chapter, we
develop a representation for planning issues that scales up to difficulties that previous techniques
could not handle. provides an expressive but tightly limited vocabulary for describing planning
challenges. How forward and backward search algorithms may benefit from this representation,
particularly via correct heuristics developed automatically from the representation's structure. This
is similar to how effective domain-independent heuristics for constraint fulfillment issues were
developed. demonstrates how a data structure known as the planning graph may speed up the
search for a plan. We next outline a few more techniques to planning before concluding with a
comparison of the different approaches. This chapter discusses settings with single agents that are
completely observable, deterministic, and static. Partially observable, stochastic, dynamic
situations with numerous actors are covered.

KEYWORDS:

Action, Heuristics, Planning, Search, State.

INTRODUCTION

Classical planning is a branch of artificial intelligence and automated planning that focuses on
problem resolution in situations where the environment may be described as a collection of states,
actions, and objectives. It seeks to identify a set of behaviours, known as a plan, that will change
a starting state into the desired target state. A state is a snapshot of the world at a certain moment
in time. It contains all pertinent information about the current scenario, such as object locations,
characteristics, and any other important qualities. An action is an atomic operation that may be
used to alter the state of the world. Each action contains preconditions that must be met in order
for the action to be applicable in the present state. When an action is carried out, a new state is
created. The objective is the desirable condition that the planner wishes to accomplish. It is defined
by stating a set of requirements that the end state must meet [1]–[3].

The classical planning issue entails determining a series of activities that, beginning with an initial
state, leads to a state in which all of the objective criteria are satisfied. Search algorithms are
generally used in the planning process to examine various action sequences in order to identify an
optimum or workable plan. Formal languages such as STRIPS (Stanford Research Institute
Problem Solver) or PDDL (Planning Domain Definition Language) are often used to express
traditional planning issues. These languages enable the expression of state, activities, and
objectives in a structured and machine-readable manner. Classical planning is widely utilized in

84

Artificial Intelligence

robotics, autonomous systems, logistics, and other fields where determining an effective sequence
of operations to accomplish a goal is critical. However, classical planning has limits, particularly
when dealing with large-scale and complicated real-world situations, leading to the development
of more advanced planning approaches and algorithms outside of the classical paradigm [4]–[6].

States indicate the current configuration of cargo and aircraft. Each state contains the locations of
goods and aircraft, as well as which cargo gets loaded into which plane and the plane's current
position. Actions are the atomic actions that can be carried out to alter the state of the world.
Loading goods aboard an aircraft, flying a plane from one site to another, and offloading cargo
from a plane are all possible activities in this scenario. The aim is to deliver all of the stuff to its
destinations. This implies that each cargo item must arrive at its destination, and all aircraft must
be empty. Assume we have the following cargo items, aircraft, and their starting points:

Cargo: C1 (at Airport A) and C2 (at Airport B).

Planes: P1 (can carry one cargo item at Airport A), P2 (can carry two cargo items at Airport B).

Airports: C1's destination is Airport B, whereas C2's destination is Airport A.

Initial Condition

CssCopy the code

Planes: P1 (at A, empty), P2 (at B, empty) Cargo: C1 (at A), C2 (at B)

Goal Condition:

CssCopy the code

Planes: P1 (at A, empty), P2 (at A, empty) Cargo: C1 (at B), C2 (at A)

Actions

Load (Cargo, aircraft, Airport): This function loads cargo onto an aircraft at a given airport.

Fly (aircraft, Airport1, Airport2): This command takes an aircraft from Airport1 to Airport2.

Unload(Cargo, Plane, Airport): This operation unloads cargo from a plane at a given airport.

Plan

Here is one potential strategy for achieving the desired state

 (C1, P1, A) Load.

 (P1, A, B) Fly.

 (C1, P1, B) unload.

 (C2, P2, B) Load.

 (P2, B, A) Fly.

 (C2, P2, A) unload.

85

Artificial Intelligence

By following this strategy step by step, all cargo items will be transported to their appropriate
destinations:

Final result

CssCopy the code

Planes: P1 (at B, empty), P2 (at A, empty) Cargo: C1 (at B), C2 (at A)

Keep in mind that when dealing with bigger cargo sets, several flights, more airports, and other
restrictions such as fuel limits, cargo capacity, and time constraints, traditional planning issues
may become more difficult. Solving such challenges efficiently often necessitates the use of
efficient planning algorithms and strategies.

Consider the spare tire issue

The spare tire issue is a classic planning problem that is often used to demonstrate fundamental
planning principles. We have a vehicle with a flat tire and a spare tire in the trunk in this
circumstance. The objective is to get the automobile going again by replacing the flat tire with the
spare tire. Problem components include States indicate the current configuration of the automobile
and tires. The states in this issue may be characterized depending on the automobile's location,
whether the flat tire is on the car or in the trunk, and whether the spare tire is on the car or in the
trunk. Actions are the atomic actions that can be carried out to alter the state of the world. Moving
the automobile, pulling the spare tire from the trunk, placing the spare tire on the car, removing
the flat tire, and putting the flat tire in the trunk are all possible actions in this circumstance. The
aim is to have both the spare tire and the flat tire on the automobile. Assume we start with the
following starting state:

Initial Condition

Copy the code from makefile.

Flat_Tire: On_Car Spare_Tire: In_Trunk Car: At_Location(L)

Goal Condition:

Copy the code from makefile.

Flat_Tire: In_Trunk Spare_Tire: On_Car Car: At_Location(L)

Actions

Move(automobile, Location1, Location2): This method transports the automobile from Location1
to Location2.

Remove (Tire, automobile): Removes a tire from the automobile (flat or spare).

Put (Tire, automobile): Attaches a tire (flat or spare) to the automobile.

Take (Tire, Trunk): Takes a tire from the trunk (flat or spare).

Put (Tire, Trunk): Inserts a tire into the trunk (flat or spare).

Plan: Here is one potential strategy for achieving the desired state:

86

Artificial Intelligence

Take (Trunk, Spare_Tire).

Remove(Car, Flat_Tire).

Put(Trunk, Flat_Tire).

Put(Spare_Tire, Vehicle).

By following this approach step by step, the flat tire will be replaced with the spare tire:

Final Result

Copy the code from makefile.

Flat_Tire: In_Trunk Spare_Tire: On_Car Car: At_Location(L)

In this basic case, the spare tire issue is easy to address, and the strategy is uncomplicated.
However, when planning issues get more complicated with more variables, restrictions, and
actions, determining optimum or efficient plans may need the use of more sophisticated planning
algorithms. Classical planning approaches may be used to handle increasingly complex issues,
such as those encountered in logistics, robotics, and other fields.

The complexities of traditional planning

The difficulty of classical planning issues depends on the size of the planning domain, the number
of state variables, the number of actions, and the complexity of the objective conditions. Finding
an ideal or even workable approach gets increasingly difficult as the problem's size and complexity
grow. The classical planning issue is known to be PSPACE-complete, which indicates that
discovering a plan is computationally difficult and belongs to the PSPACE complexity class.
PSPACE is a class of choice problems that can be addressed by a deterministic Turing computer
with a polynomial amount of memory space. The following elements have the greatest effect on
the difficulty of classical planning.

1. The amount of alternative states in the planning domain may have a significant influence
on complexity. The search for a plan gets more computationally difficult as the state space
expands.

2. The amount of actions available and the various permutations of action sequences may
have a substantial impact on planning complexity.

3. The complexity of action preconditions conditions that must be met for an action to be
applied and effects changes to the state caused by an action may affect the efficiency of the
search process.

4. The complexity of the target conditions influences the difficulty of planning. The search
for a plan gets more difficult when the objective is described using a large number of
criteria or when the conditions are deeply nested.

5. The efficiency and efficacy of the search algorithms used to investigate the space of
potential plans is equally important. Different search algorithms, such as depth-first search,
breadth-first search, heuristic search (e.g., A*), and more sophisticated approaches, such
as partial-order planning, may have varying effects on the planning process [7], [8].

Classical planning issues may become very complicated in real-world applications, particularly
when dealing with large-scale and real-time domains. As a consequence, scholars have devised a
variety of strategies and heuristics to deal with planning complexity, such as:

87

Artificial Intelligence

1. Domain knowledge and problem decomposition to narrow the search space.
2. Heuristics to help guide the search process and uncover potential pathways.
3. To address with temporal and concurrent limitations, partial-order planning and plan-space

planning are used.
4. Representing the planning domain and exploiting issue structure using task-specific

formalisms and languages (e.g., PDDL).

Despite these advances, finding optimum solutions to large and complicated classical planning
issues remains computationally challenging, prompting research into more advanced planning
paradigms and methodologies such as probabilistic planning, hierarchical planning, and learning-
based approaches [9], [10].

DISCUSSION

Algorithms for planning

In classical planning, planning algorithms are techniques for determining a series of activities (a
plan) that may change a starting condition into a desired target state. These algorithms search the
state space for a valid or optimum plan based on the given actions, states, and objectives of the
task. Here are some examples of typical planning algorithms:

1. Depth-First Search (DFS): Before retracing, DFS searches a branch of the search tree as
deeply as feasible. It thoroughly investigates one branch before proceeding to the next. In
certain circumstances, DFS may not be ideal and may get trapped in an endless loop.

2. Breadth-First Search (BFS): BFS traverses the search tree level by level, extending all
nodes at each level before proceeding to the next. BFS will always discover the best
solution for problems with uniform edge costs, although it may be memory-intensive for
large state spaces.

3. Uniform-Cost Search (UCS): UCS investigates the search space by extending nodes with
the lowest cumulative cost from the starting point. It ensures the best solution for issues
with non-negative action costs.

4. A* Search: A* is an informed search algorithm that takes into account both the cost of
getting to a node and the expected cost of getting from the node to the objective. The
heuristic directs the search to promising areas in the state space, increasing the solution's
efficiency and optimality.

5. Best-First Search: A broad search method that chooses the most promising node based on
a heuristic evaluation function. It guides the search using the heuristic without taking into
account the real cost of reaching that node.

6. Iterative Deepening A* (IDA*): IDA* is a memory-efficient variation of A* that executes
a series of depth-limited searches, raising the depth limit incrementally until a solution is
discovered. It is complete and optimum for situations with non-negative action costs and
heuristics that are acceptable.

7. Dijkstra's Method: While largely employed in graph search to discover the shortest route,
Dijkstra's method may also be used to identify an optimum plan in planning issues with
non-negative action costs.

8. Graphplan: Graphplanis a traditional planning technique that generates a planning graph
to describe the state space of a problem. It then use graph-based approaches to efficiently
determine an ideal strategy.

88

Artificial Intelligence

9. Satplan: To find a plan, Satplan employs Boolean satisfiability (SAT) solvers. The
planning issue is converted into a propositional logic formula, and SAT solvers are used to
identify whether and where a solution exists.

10. FF (Fast-Forward): FF is a well-known planning system that efficiently finds plans for
huge planning issues by combining heuristic search with a relaxed planning graph.

These are only a few instances of classical planning algorithms; there are several versions and
improved strategies that have been created over the years. The algorithm to apply is determined
by the features of the planning issue, available resources, and desired optimality and efficiency
trade-offs.

Forward state-space search and backward relevant-states search are two methodologies in classical
planning that are used to discover a sequence of activities from a starting state to a target state.
These techniques vary in terms of exploration direction and search space management. The
planning method in the forward state-space search, also known as progression planning, begins
from the starting state and explores the state space by performing actions to produce new states.
The aim is to discover a set of behaviours that will take you from your current condition to your
desired one. The following stages are used in forward state-space search. Begin with the most
basic condition. Use the available actions to create successor states. Keep performing operations
on succeeding states, producing new states and constructing a search tree or graph. Continue to
broaden the search until the desired state is attained or no more progress can be made. Depth-First
Search (DFS), Breadth-First Search (BFS), Uniform-Cost Search (UCS), and A* search with a
proper heuristic are all common forward state-space search methods.

The planning method in the backward relevant-states search, also known as regression planning,
begins at the target state and goes backward towards the original state. Instead than exploring the
state space from the beginning state onward, it attempts to discover relevant states that may lead
to the desired state. The following stages are used in the backward relevant-states search. To
effectively locate plans, backward relevant-states search is often used in conjunction with other
approaches such as heuristic forward search. The decision between forward state-space search and
backward relevant-states search is influenced by the nature of the planning issue, the availability
of domain information, and the planning algorithm's efficiency. In fact, a mix of these methods
and additional planning strategies is often used to efficiently manage complicated planning
challenges.

Heuristics used in planning

Heuristics are important in traditional planning algorithms because they guide the search to
promising areas of the state space and improve the efficiency of discovering a plan. Heuristics are
approximated metrics that indicate how near a state is to the desired state. These estimations assist
the planning algorithm in prioritizing which states to investigate first and which actions to take,
resulting in speedier plan development. Here are some popular planning heuristics:

1. Relaxed issue Heuristics: A reduced version of the original planning issue is formed by
eliminating some of the restrictions and preconditions from the actions in relaxed problem
heuristics. Solving this relaxed issue yields a lower-bound estimate of the cost of achieving
the objective in the real problem. The following are the most prevalent relaxed issue
heuristics:

89

Artificial Intelligence

2. Max-Causal Graph (MCG) Heuristic: It evaluates each action separately and estimates
the cost of achieving its preconditions. The heuristic value is the highest of these costs.

3. Level-Sum Heuristic: It estimates the total number of activities necessary by calculating
the number of actions required to accomplish each precondition in the target state.

4. Additive Heuristics: It computes the heuristic value by weighing each objective
precondition separately and totaling the costs associated with achieving them.

5. PDB Heuristics: PDB heuristics hold precomputed values for subproblems and use them
to estimate the cost of accomplishing the objective from the current state. Based on patterns
in the state variables, the heuristic values are recorded in a database.

6. Relaxation Heuristics: Relaxation heuristics make the target conditions more relaxed by
discarding parts of the constraints. They provide a lower-bound estimate of the number of
activities required to achieve the loosened objective. It finds the most important activities
or causal linkages in the plan and calculates the plan's cost based on these crucial actions.

7. Landmark Heuristics: Landmark heuristics identify states or activities required for goal
achievement and use them to estimate the distance to the objective.

8. Abstraction Heuristics: Abstraction heuristics reduce the complexity of the planning
issue by abstracting particular features of the state space, resulting in a more efficient
search. The Max-Heuristic takes into account the maximum cost necessary to satisfy every
particular target condition, resulting in an overestimation of the entire plan cost.

9. Zero Heuristic: It always returns a heuristic value of zero, causing the search to perform
similarly to Breadth-First Search.

The heuristic used is determined by the particular planning challenge and the domain knowledge
available. A good heuristic should be acceptable (it should never overstate the real cost of
achieving the objective) and consistent it should satisfy the triangle inequality. Acceptable
heuristics may lead to optimum answers, but consistent heuristics can boost the efficiency of
informed search algorithms such as A*. Selecting and constructing appropriate heuristics is a hot
topic in classical planning research, and it has resulted in major advances in planning performance
for complicated issues.

Heuristics used in planning

Heuristics are important in classical planning because they lead the search algorithm to locate
solutions as effectively as possible. The following are some frequent planning heuristics. eased
Planning Heuristics: Some restrictions or preconditions are eased in relaxed planning, making the
issue simpler to solve. In the relaxed problem, the cost of reaching the objective acts as an accepted
heuristic for the real issue. The following are examples of common relaxed planning heuristics: It
is presumed that all actions have no prerequisites. It limits the amount of steps necessary to
accomplish the objective. Actions may run independently of their preconditions. It may exaggerate
the cost, but it is simpler to calculate. It is considered that actions have just one precondition and
impact. It is more powerful than delete relaxation, but it is more computationally costly. PDB
heuristics save precomputed values for subproblems and use them to estimate the cost of reaching
the objective from the current state. Based on patterns in the state variables, the heuristic values
are recorded in a database. Landmark heuristics identify states or activities required for goal
achievement and use them to estimate the distance to the objective. It finds the most important
activities or causal linkages in the plan and calculates the plan's cost based on these crucial actions.
Abstraction heuristics reduce the complexity of the planning issue by abstracting particular
features of the state space, resulting in a more efficient search.

90

Artificial Intelligence

The Max-Heuristic takes into account the maximum cost necessary to satisfy every particular
target condition, resulting in an overestimation of the entire plan cost. It always returns a heuristic
value of zero, causing the search to perform similarly to Breadth-First Search. The Level Sum
Heuristic estimates the total number of activities necessary by calculating the number of actions
required to accomplish each precondition in the target state. It computes the heuristic value by
examining each objective precondition separately and totaling the costs associated with achieving
them. Heuristics are essential for informed search algorithms like A* since they guide which routes
to examine first. It is crucial to note, however, that discovering good heuristics may be difficult
since they must be acceptable never overestimating the real cost to achieve the objective and
consistent meeting the triangle inequality. An acceptable heuristic ensures an optimum result,
while a consistent heuristic enhances the search algorithm's efficiency. When picking acceptable
heuristics for planning issues, balancing accuracy and computing efficiency is often a trade-off.

Graphplan Is An Algorithm.

Graphplan is a traditional planning method introduced in 1995 by Avrim Blum and Merrick Furst.
For specific kinds of planning issues, it is an efficient and sound method that can discover a plan
or identify the impossibility of finding a plan. Graphplan works on a planning graph, which is a
representation of the planning issue that enables it to successfully handle more complicated and
bigger state spaces. Graphplan's main concept is to generate a planning graph that illustrates the
links between actions and states in the planning issue. The planning graph is made up of alternating
layers of state and action nodes, beginning with the initial state and progressing to the next state
layer through actions. The state layer comprises all potential states that may be reached by utilizing
accessible actions from the preceding layer. The Graphplan algorithm is divided into two stages:

1. Phase of Graph Construction

a. Create the first state layer by expanding the starting state.
b. Create the first action layer by expanding the first state layer with accessible actions.
c. Alternate between increasing state layers and action layers until the desired state is attained

or a fixed-point is reached no more progress is possible.
d. The graph building phase ends when either the objective is accomplished or the graph

becomes cyclic, indicating that there is no solution to the issue.
2. Phase of Solution Extraction

a. If the target state in the planning graph is achieved, a solution may be retrieved by
backtracking from the goal state to the beginning state.

b. The planning issue is regarded intractable if the graph is cyclic and no solution is identified.
c. The fundamental benefit of graphplan is that it eliminates wasteful exploration of the full

state space, making it useful for many planning issues. It works especially well for issues
with a high number of actions and states.

d. Graphplan, on the other hand, has some limits. thus may be sensitive to the order in which
activities are added to the planning graph, and thus may fail to solve some kinds of planning
problems, particularly those with partial-order or time restrictions.

Graphplan, despite its limitations, has been a significant algorithm in the subject of classical
planning, inspiring additional study into more sophisticated planning approaches and algorithms.
Researchers are always looking for methods to improve the efficiency and scalability of planning
algorithms in order to handle bigger and more complex planning challenges.

91

Artificial Intelligence

Graphplanhas Come To An End

When one of the following criteria is satisfied, the Graphplan algorithm is terminated. If the goal
state is reached in one of the state levels of the planning graph, the Graphplan algorithm
successfully finishes.

In this situation, the planning issue is deemed solved since a plan can be retrieved by backward
chaining from the objective state to the beginning state. Graphplan may approach a fixed-point
when no more progress in growing the planning graph can be accomplished. As a result, the
network becomes cyclic, and the algorithm is unable to discover a solution. When a fixed-point is
reached, the Graphplan algorithm stops without finding a solution, indicating that the planning
issue is unsolvable. The Graphplan algorithm builds the planning graph repeatedly, switching
between increasing state layers and action layers until one of the termination criteria is reached.

Each cycle adds new states and activities to the planning graph, possibly exposing new pathways
to the target state. However, if no new states or actions are introduced in an iteration, the algorithm
terminates since it has exhausted all possible solutions.

It is crucial to highlight that, although Graphplan is reliable it always finishes and returns the right
solution, it may not be sufficient for all planning situations. In other words, even if a solution
exists, Graphplan may be unable to address some kinds of planning issues. Problems having
partial-order or temporal limitations, for example, may not be entirely solved with Graphplan
alone. As a consequence, modifications to Graphplan and other planning algorithms have been
created to meet various kinds of planning challenges while improving efficiency and completeness.
To handle more complicated planning situations and enhance the odds of finding a solution, these
modifications may include heuristics, partial-order planning, or other strategies.

Boolean satisfiability as classical planning

Classical planning may be expressed as a Boolean satisfiability (SAT) problem, with the objective
of determining a satisfied variable assignment that constitutes a valid plan. This encoding enables
us to handle planning issues using sophisticated SAT solvers. The planning issue is represented
using propositional logic in this encoding, and each state and action is translated to Boolean
variables. The following are some of the most important elements of this encoding:

1. State Variables: At each time step, each state variable indicates the truth value of a certain
state proposition. For example, if we had three time steps T1, T2, and T3 and three state
propositions P1, P2, and P3, the state variables would be P1_T1, P1_T2, and P3_T3.

2. Action Variables: Each action variable reflects whether a specified action is carried out at
a given time step. If we had three time steps T1, T2, and T3 and three actions A1, A2, and
A3, the action variables would be A1_T1, A1_T2, A1_T3, A2_T1, A2_T2, A2_T3,
A3_T1, A3_T2, and A3_T3.

3. State Transition Constraints: We express the state transition constraints as Boolean
formulae to assure the plan's accuracy. These restrictions reflect the ways in which actions
alter the truth values of state variables across time. For example, if action A1 sets P1 to
true and action A2 sets P2 to true, we would encode these effects as logical implications:
(A1_T1 P1_T2) and (A2_T1 P2_T2).

92

Artificial Intelligence

4. Action Preconditions: Action preconditions are logical restrictions that define when an
action may be carried out. For example, if action A1 needs P1 to be true in the present state,
we'd encode it as (P1_T1 A1_T1).

5. Target Satisfaction: We encode the desired state propositions that must be true in a certain
time step to reflect the target state. For example, if we want to attain P1 at time T3, we'd
encode it as P1_T3.

We may employ efficient SAT solvers to obtain satisfied assignments to the Boolean variables that
correspond to valid plans by encoding classical planning as a Boolean satisfiability issue. Because
SAT solvers can effectively handle huge propositional formulae, this encoding is useful for solving
planning problems with a large number of states, actions, and constraints.

However, since this encoding is not as intuitive or human-readable as other planning formalisms
such as STRIPS or PDDL, it is largely employed for research reasons and to exploit the capability
of SAT solvers for certain planning situations.

Situation calculus as first-order logical deduction

Another formalism for representing and reasoning about planning issues is planning as first-order
logical deduction, notably utilizing the Situation Calculus. The Situation Calculus is a prominent
paradigm for utilizing first-order logic to reason about actions, conditions, and plans. The planning
domain is defined in a logical language in this formalism, with the following fundamental
components:

1. Actions are expressed as logical predicates that define their prerequisites and
consequences. Preconditions for an action Move (x, y) can include At (x) the item x is in
its present position and Connected (x, y) the locations x and y are connected. The
consequence of this action may be At(y) the item x is now at position y after performing
the operation.

2. Fluents are predicates that describe world attributes that may vary over time. At(x) may,
for example, be a fluent indicating the object x being in a certain position.

3. Situation Calculus teaches the notion of circumstances, which represent moments in time
and the series of events that led to them. The scenario is represented by a single constant
(e.g., S0, S1, S2,...) that denotes distinct stages of the planning process.

4. These are first-order logic formulations that define how fluents transition from one
circumstance to another dependent on the consequences of actions. They establish the
connection between the present situation S and the forthcoming situation S'.

5. Domain knowledge encompasses the initial state of the environment as well as any prior
information about the domain, such as the set of available actions, the initial positions of
objects, and the relationships between places.

6. A planning issue is structured as a logical deduction exercise using the aforementioned
components. The purpose is to identify a series of activities that, when carried out in the
original scenario, results in a state in which the target criteria are met.

Strips-like planning (STRIPS stands for Stanford Research Institute Problem Solver), a backward-
chaining algorithm that looks for a series of actions to attain the objective from the beginning state,
may be used to solve the planning issue. To identify viable plans, the method use a mix of logical
deduction and theorem proving.

93

Artificial Intelligence

The Situation Calculus is ideal for complicated planning domains because it offers a formal and
expressive framework for reasoning about actions, states, and plans. However, like with other
formalisms, the difficulty of planning in this framework may expand dramatically with the size of
the state space and the number of available actions, making effective planning algorithms an
important topic of study.

Planning is defined as the refining of partly organized plans.

A planning paradigm that provides for more flexible and efficient representation and search in
domains with temporal and concurrency limitations is planning as refinement of partly ordered
plans.

Plans are expressed as partly ordered sets of activities rather than linear sequences of actions in
this method, enabling for actions to be done simultaneously or in any order as long as they do not
conflict with each other. The following are the basic principles in planning as a refinement of
partly ordered plans:

1. Partially Ordered Plans: A partially ordered plan is made up of a series of activities and
the links between them in time. Instead than providing a rigid linear sequence of events,
this format permits actions to be performed in parallel or in any order. Constraints or
dependencies indicate the temporal links between activities.

2. Refinement: During the planning process, the partly ordered plan is progressively refined
in order to overcome time restrictions and establish a legitimate and executable plan. This
is done progressively by adding new restrictions and actions dependencies. Temporal and
concurrency constraints specify time-related dependencies between actions, such as action
A must happen before action B or action C must happen at the same time as action D.
Concurrency constraints allow actions to be executed concurrently if they do not interfere
with one another.

3. Constraint Solving: The planning algorithm employs constraint-solving methods to
identify correct assignments of temporal constraints and concurrency constraints in order
to modify the partly ordered plan. This entails creating a consistent timetable for the
activities that meets all of the required criteria.

4. Optimization: The planning algorithm may seek an ideal plan depending on particular
criteria, such as plan length, resource use, or maximizing an objective function.
Optimization may be accomplished by experimenting with various combinations of actions
and temporal assignments.

Planning as iterative refining of partly ordered plans is especially beneficial in areas where
activities have variable durations, resources must be shared, or tasks may overlap in time. It enables
more flexible and expressive plan representations, resulting in more efficient solutions to
complicated planning issues.

This paradigm is often utilized in real-world applications such as scheduling, resource allocation,
and logistics, where temporal and concurrent restrictions are ubiquitous and must be successfully
controlled in order to obtain optimum plans. To quickly explore the search space of valid plans
and identify optimum solutions, planning algorithms for partly ordered plans largely depend on
constraint-solving methods and heuristics.

94

Artificial Intelligence

An examination of the planning strategy

The planning approach is a basic and effective strategy for problem resolution in a variety of fields.
Its efficacy stems from its capacity to discover activity sequences that effectively and ideally lead
to desired outcomes. Let us examine the planning strategy to understand its advantages and
disadvantages:

Strengths

1. Flexibility: The planning technique may be used to solve a broad range of issues in a
variety of areas, such as robotics, logistics, scheduling, game playing, and more. Its
adaptability allows it to be used in a wide range of real-world circumstances.

2. Optimality: When the planning issue is well-defined in terms of costs and objectives, the
planning technique may uncover optimum solutions that reduce or maximize certain
criteria such as plan length, resource utilization, or objective functions.

3. Planning Languages and Algorithms: Planning languages and formalisms, such as
PDDL (Planning Domain Definition Language), enable the succinct and expressive
modelling of complicated issues. This allows for the creation of high-level plans as well as
the encoding of domain-specific information. Planning algorithms can deal with partly
observable settings in which the planner does not have comprehensive knowledge about
the present state. Such problems are addressed by techniques such as belief-state planning
and partly observable Markov decision processes (POMDPs).

4. Heuristic Search: Many planning algorithms make use of heuristic search methods such
as A* and its variations, which employ educated guidance to effectively explore the search
space and concentrate on promising pathways, decreasing the number of searched states
dramatically.

Limitations

1. State Space Explosion: When dealing with big and complicated planning issues, the state
space may increase exponentially, rendering the task computationally intractable for
exhaustive search techniques. This is referred to as the curse of dimensionality.

2. Limitations in Expressiveness: While planning languages are expressive, they may not
capture all features of some real-world issues, resulting in difficulty in correctly describing
the planning problem.

3. Domain Knowledge and Modelling: Successful planning often requires a thorough grasp
of the issue domain as well as rigorous modelling. Creating accurate and complete domain
models may be difficult, and model flaws might result in inaccurate or poor strategies.
Traditional planning methodologies may fail to deal with issues that have complicated
temporal and concurrent limitations. Some domains need the use of specific planning
approaches such as temporal planning or partial-order planning.

4. Uncertainty in Plan Execution: The planning technique normally assumes predictable
action execution. In reality, uncertainties and external circumstances might have an impact
on execution, possibly causing variations from the expected result.

Overall, the planning strategy is an important and commonly used tool in AI, operations research,
and robotics. While it has limits, continuous research and the development of more sophisticated
planning approaches continue to address and overcome many of these obstacles, making the
planning approach more successful for handling complicated real-world situations.

95

Artificial Intelligence

CONCLUSION

We defined the challenge of planning in deterministic, fully observable, static contexts in this
chapter. We discussed the PDDL model for planning issues as well as several algorithmic
techniques to solve them. Planning systems are problem-solving algorithms that use explicit
propositional or relational representations of states and actions to solve problems. These
representations enable the construction of powerful and adaptable problem-solving algorithms as
well as the generation of useful heuristics. The Planning Domain Definition Language (PDDL)
defines the beginning and target states as literal conjunctions, and actions in terms of their
preconditions and consequences. State-space search may be performed in either the forward or
backward direction. Subgoal independence assumptions and other relaxations of the planning issue
may be used to generate effective heuristics.

A planning graph may be built sequentially, beginning with the initial state. Each layer comprises
a superset of all the literals or actions that might happen at that time step and encodes mutual
exclusion relations between literals or actions that cannot happen at the same time. Planning graphs
provide valuable heuristics for state-space and partial-order planners, and they may be directly
employed in the Graphplan method.

 Alternative techniques include first-order deduction over situation calculus axioms, modelling a
planning issue as a Boolean satisfiability or constraint fulfillment problem, and directly searching
over the space of partly ordered plans. Each of the primary methods to planning has its supporters,
and there is no agreement on which is ideal. Competition and cross-fertilization across techniques
have resulted in considerable increases in planning system efficiency.

REFERENCES:

[1] J. Segovia-Aguas, S. Jiménez, and A. Jonsson, “Computing programs for generalized
planning using a classical planner,” Artif. Intell., 2019, doi: 10.1016/j.artint.2018.10.006.

[2] P. Haslum, “Narrative planning: Compilations to classical planning,” J. Artif. Intell. Res.,
2012, doi: 10.1613/jair.3602.

[3] J. Segovia-Aguas, S. Jiménez, and A. Jonsson, “Computing hierarchical finite state
controllers with classical planning,” J. Artif. Intell. Res., 2018, doi: 10.1613/jair.1.11227.

[4] P. Gomoluch, D. Alrajeh, A. Russo, and A. Bucchiarone, “Learning neural search policies
for classical planning,” in Proceedings International Conference on Automated Planning

and Scheduling, ICAPS, 2020. doi: 10.1609/icaps.v30i1.6748.

[5] D. Aineto, S. Jiménez, and E. Onaindia, “Learning STRIPS action models with classical
planning,” in Proceedings International Conference on Automated Planning and

Scheduling, ICAPS, 2018. doi: 10.1609/icaps.v28i1.13870.

[6] L. Chrpa, M. Vallati, and T. L. McCluskey, “Inner entanglements: Narrowing the search in
classical planning by problem reformulation,” Comput. Intell., 2019, doi:
10.1111/coin.12203.

[7] A. Kolobov, Mausam, and D. S. Weld, “Classical planning in MDP heuristics: With a little
help from generalization,” in ICAPS 2010 - Proceedings of the 20th International

Conference on Automated Planning and Scheduling, 2010. doi: 10.1609/icaps.v20i1.13424.

96

Artificial Intelligence

[8] D. Gnad, Á. Torralba, M. Domínguez, C. Areces, and F. Bustos, “Learning how to ground
a plan - partial grounding in classical planning,” in 33rd AAAI Conference on Artificial

Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference,

IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2019, 2019. doi: 10.1609/aaai.v33i01.33017602.

[9] M. Katz, E. Keyder, F. Pommerening, and D. Winterer, “Oversubscription planning as
classical planning with multiple cost functions,” in Proceedings International Conference

on Automated Planning and Scheduling, ICAPS, 2019.

[10] N. Lipovetzky, M. Ramirez, and H. Geffner, “Classical planning algorithms on the atari
video games,” in AAAI Workshop - Technical Report, 2015.

97

Artificial Intelligence

CHAPTER 11

PLANNING AND ACTING IN THE REAL WORLD:

FROM CONCEPT TO EXECUTION

Shambhu Bharadwaj, Associate Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- shambhu.bharadwaj@gmail.com

ABSTRACT:

Real-world planners are more complicated they expand both the representation language and the
way the planner interacts with the environment. This chapter explains how. expands the traditional
planning language to discuss activities with time limitations and resource restrictions. outlines
ways for creating hierarchically ordered plans. This enables human specialists to share their
knowledge about how to address the issue with the planner. Because the planner may address an
issue at an abstract level before going into specifics, hierarchy lends itself to effective plan
building. provides agent designs that can manage unpredictable environments and interleave
deliberation and execution, as well as real-world applications. demonstrates how to plan while
other agents are present in the environment.

KEYWORDS:

Activity, Agent, Planning, Scheduling, Time.

INTRODUCTION

Solving scheduling issues entails devising optimum or near-optimal plans that allocate resources
and time to tasks or activities while taking into account a variety of restrictions. Scheduling issues
may arise in a variety of contexts, including project management, production planning, personnel
scheduling, transportation, and others. Here are some popular ways and strategies for dealing with
scheduling issues. Heuristic techniques are algorithms that swiftly give approximate answers to
scheduling difficulties. These approaches may not ensure optimality, but they are often efficient
and capable of dealing with large-scale issues. Heuristic methods include the following Algorithms
Based on Genetic Information. Annealing Simulation [1]–[3]. Linear Programming with Integer
Variables (ILP) formulations may express scheduling issues as linear programs with integer
variables. ILP solvers may identify optimum schedules for small to medium-sized problems by
setting suitable goal functions and restrictions.

Constraint Satisfaction difficulties (CSP) Scheduling difficulties may be expressed as CSPs, where
variables represent tasks or activities and constraints represent time and resources. CSP solvers
can provide viable schedules that meet all of the constraints. MILP formulations allow for the
simultaneous optimization of both the temporal and resource components of the scheduling issue.
For small to medium-sized issues, MILP solvers may identify optimum schedules. The Critical
Path Method (CPM) is a project management approach that identifies the critical route in a project
schedule and calculates the minimal time necessary to finish the project. CPM is appropriate for
project scheduling with precedence limitations. The Resource-Constrained Project Scheduling
issue (RCPSP) is a well-known issue in project scheduling in which activities have resource needs
and precedence limitations. RCPSP may be solved using specialized methods such as branch-and-

98

Artificial Intelligence

bound or dynamic programming. Some scheduling issues require time limitations in which
activities must be completed. For scheduling issues with time windows, techniques such as Time-
Windowed Vehicle Routing Problem (TWVRP) are applied [4]–[6].

Local search algorithms, such as hill climbing or iterated local search, explore the search space
repeatedly in order to identify better schedules by making incremental adjustments to the present
schedule. Some scheduling challenges include unpredictable job durations or resource availability.
To deal with uncertainty, techniques such as stochastic scheduling or resilient scheduling are
utilized. Specialized algorithms and formalisms, such as time Constraint Networks (TCN) and
Resource-Constrained Project Scheduling Problem (RCPSP), may handle scheduling issues with
both time and resource restrictions. The right strategy is determined by the size and complexity of
the scheduling issue, the available computer resources, and the project's unique restrictions and
goals. In reality, a variety of strategies may be utilized, and domain-specific information may lead
the selection of the most appropriate ways for efficiently solving scheduling challenges.

Planning In A Hierarchical Structure

Hierarchical planning is a method for breaking down complicated planning issues into smaller,
more manageable subproblems. It entails breaking down tasks and objectives into numerous levels
of abstraction, resulting in a hierarchical framework that makes the planning process easier.
Hierarchical planning is especially beneficial for issues with vast state spaces or extended action
sequences. Hierarchical planning's key components include:

1. Task Decomposition: The planning issue is divided into levels, each reflecting a distinct
degree of abstraction. Lower-level activities are more detailed and reflect smaller subgoals,
while higher-level tasks are more abstract and represent greater goals.

2. Refinement Techniques: Refinement techniques are employed at each level of the
hierarchy to further deconstruct tasks into subtasks until the planning challenge is broken
down into basic and manageable components. AND/OR trees and task networks are
examples of refinement approaches.

3. Goal Achievement: The planning process entails developing strategies to accomplish
objectives at various levels of abstraction. Lower-level plans help to attain higher-level
objectives, which leads to the achievement of the top-level goal.

4. HTNs (Hierarchical Task Networks): HTNs are a popular formalism in hierarchical
planning. They represent task hierarchy decomposition and strategies for refining tasks into
subtasks.

5. Plan Reuse: Hierarchical planning allows for the reuse of plans at various levels of
abstraction. Once a strategy for achieving a subgoal has been developed, it may be utilized
as a primitive action to accomplish higher-level objectives. Higher degrees of abstraction
allow for more generic plans that may be implemented in many contexts, boosting the
planning process's scalability and adaptability [7], [8].

Advantages of Hierarchical Planning

1. Scalability: Hierarchical planning is capable of dealing with bigger and more complicated
planning issues by breaking them down into smaller, manageable subproblems.

2. Modularity: By concentrating on individual components, the hierarchical structure
enables for simple maintenance and change of designs.

99

Artificial Intelligence

3. Reusability: Lower-level plans may be reused to meet higher-level objectives, decreasing
planning work.

4. Flexibility: Hierarchical planning facilitates flexible planning by allowing for multiple
degrees of complexity and accuracy in the planning process.

Drawbacks

However, hierarchical planning has significant drawbacks

Refining Complexity: Determining suitable refining techniques and guaranteeing compatibility
across various levels of the hierarchy may be difficult.

Loss of Information: Higher-level abstractions may lose certain information, resulting in less
exact plans.

Plan the Search Space: The search space may still be rather extensive, especially if there are
several alternative combinations of techniques at various levels.

Overall, hierarchical planning is a helpful strategy for dealing with complicated planning issues
that has been effectively implemented in a variety of disciplines such as robotics, automated
manufacturing, and job scheduling. It offers a standardized framework for arranging planning
duties, allowing for efficient and successful plan production in difficult situations [9], [10].

Nondeterministic Domain Planning and Action

In a nondeterministic domain, planning and acting include dealing with uncertainty and various
alternative outcomes for actions. The result of an action in a nondeterministic domain is not always
known with certainty. Instead, the execution of an action might result in several outcomes or
potential states, each with its own probability. In order to cope with nondeterminism, planners and
agents must examine probabilistic information and make choices that take uncertainty into
account. Here are some fundamental principles and strategies for nondeterministic planning and
action:

1. MDPs: MDPs (Markov Decision Processes) are a popular formalism for modelling
decision-making in a nondeterministic setting. The probabilities regulate the system's state
transitions in an MDP, and each action has associated rewards or costs. The goal is to create
a policy that maximizes the cumulative anticipated benefit over time. Probabilistic
planning involves planners using MDP models to create strategies that maximize predicted
outcomes under uncertainty. To identify approximation solutions for MDPs, techniques
such as Value Iteration, Policy Iteration, and Q-Learning are applied.

2. POMDPs (Partially Observable Markov Decision Processes): POMDPs expand MDPs
to handle scenarios in which the agent's state is not entirely observable, resulting in
increased uncertainty. Belief states, which indicate the agent's views about its current state
based on observations and actions, are required in POMDPs.

3. Reactive Planning: A reactive planning technique may be employed in nondeterministic
contexts. Reactive agents make judgments based on current observations rather than
expressly planning long-term action sequences.

4. Adaptive Strategies: To increase performance in a nondeterministic environment, agents
might use adaptive strategies that dynamically alter their behaviours depending on
feedback and observable results.

100

Artificial Intelligence

5. Uncertainty Handling: Agents must be prepared to deal with uncertainties, such as
adopting activities with the greatest predicted benefit or taking risk considerations into
account while making judgments.

6. Monte Carlo Techniques: Monte Carlo techniques, such as Monte Carlo Tree Search
(MCTS), are often used in nondeterministic situations to explore the state-action space
stochastically and evaluate the value of actions.

7. Learning from Experience: Learning from experience may be critical in nondeterministic
settings. Data obtained from interactions with the environment may be used by agents to
enhance decision-making processes.

8. Adapting Plans: In dynamic and unpredictable contexts, plans may need to be adjusted on
the fly depending on observed results and changing circumstances.

DISCUSSION

Dealing with nondeterminism complicates planning and acting tasks, but it also necessitates more
resilient and adaptable agents. In real-world circumstances where outcomes are not always clear,
properly accounting for uncertainty may lead to more realistic and effective decision-making.
Sensorless planning, as well as contingent planning. Sensorless planning and contingency planning
are two specialized planning methodologies that handle unique planning issues. Sensorless
planning is planning in domains where the agent does not have direct access to or use of sensors
or perceptual information. During plan execution, the agent does not get real-time input about the
environment in sensorless planning. This absence of sensory input complicates the planning issue
since the agent must make judgments based only on the knowledge available at the moment of
planning. Sensorless planning is popular in situations when sensors are unavailable, too costly, or
unreliable. Planning for distant robotic systems, autonomous agents working in unknown or
unexpected settings, and resource-constrained systems with limited sensory capabilities are
examples of sensorless planning domains. To manage sensorless planning, agents may use
approaches such as:

1. Open-Loop Planning: The agent anticipates a series of actions, assuming the environment
stays constant throughout execution. The agent does not get input and is unable to adjust
its strategy depending on the current condition of the environment.

2. Model-Based Planning: The agent constructs a model of the environment and predicts
various action consequences. The model is used to develop the plan, which is then executed
by the agent without the need of continuous sensing.

3. Robust Planning: Agents may utilize replanning methods to produce new plans on the fly
based on observed results or to adjust to changing situations. Robust planning tries to
design strategies that can deal with environmental uncertainties and variances.

4. Contingent Planning: Also known as conditional planning, contingent planning refers to
planning in domains where the ideal plan is dependent on specific circumstances or
occurrences that are not completely understood at the time of planning. The agent must
account for various alternative scenarios and construct a strategy that can adapt to diverse
conditions as they unfold in contingency planning.

Contingent planning occurs in dynamic contexts with unknown aspects such as shifting objectives,
environmental circumstances, or other agents' behaviour. It necessitates that the agent be prepared
for several outcomes and be able to react accordingly. The agent explores several branches of the
plan search space, taking into account many conceivable situations, and assesses the plans using

101

Artificial Intelligence

conditional probabilities. The agent represents the uncertainty in the environment using
probabilistic models and optimizes plans using alternative probability distributions. Agents may
use adaptive strategies, which dynamically modify their plans in response to observable events or
situations. Sensorless planning and contingency planning both need the use of specific strategies
to address the particular issues given by their respective domains. These techniques are critical for
creating resilient and flexible planning systems that can cope with real-world uncertainties and
constraints.

Online Scheduling

Online replanning is a dynamic planning method that incorporates real-time modification of a plan
when new information becomes available during execution. The agent continually observes the
environment and updates its current plan depending on observable states and changes in the world
in online replanning. This flexibility enables the agent to react to unforeseen events, uncertainties,
or changes from the original strategy successfully. The following are key elements of online
replanning:

1. Real-Time Adaptation: Online replanning allows the agent to adapt quickly to changes
in the environment or the advent of unexpected events without having to re-plan
everything.

2. Plan Continuation: Rather of fully discarding the initial plan, online replanning aims to
modify and continue the present plan in order to fulfill the original goals or adapt to new
objectives. Online replanning is especially beneficial in dynamic contexts where
circumstances and needs might change quickly and unexpectedly.

3. Resource Management: Online replanning aids in effective resource management since
the agent may alter its activities in real-time to prevent overusing resources or dealing with
resource limits.

4. Partial Observability: In domains with partial observability, online replanning is useful
because the agent may utilize fresh observations to update its beliefs and make educated
choices.

5. Handling Uncertainty: The capacity to replan online enables agents to cope with
uncertainties and missing knowledge during execution.

6. Failure Recovery: When a plan fails or a deviation occurs, online replanning helps the
agent to recover and identify alternate alternatives.

Depending on the planning area and issue characteristics, online replanning strategies might differ.
Some typical online replanning tactics include The agent adds or alters activities in the existing
plan progressively depending on new knowledge while remaining consistent with the original
objectives. In reactive planning, the agent bases choices on the most recent observations rather
than making explicit long-term plans. The agent fixes the present plan iteratively by resolving
conflicts or deviations and iteratively improving plan quality. Merging and branching methods
may be used to reconcile and coordinate activities in domains with numerous agents or concurrent
plans. Some online replanning systems use heuristic search algorithms that can effectively traverse
the search space in order to identify new plans or fix existing ones.

In dynamic and unpredictable contexts, such as robots, autonomous cars, and real-time decision-
making systems, online replanning is critical. It enables more robust and adaptable behaviour,
improving the agent's capacity to complete tasks efficiently in ever-changing environments.

102

Artificial Intelligence

Multi-Agent Coordination

The technique of coordinating the activities of several agents to accomplish shared goals or
objectives is known as multiagent planning. Individual agents cooperate, negotiate, or compete
with one another in multiagent planning to create a unified plan or strategy that maximizes overall
performance, taking into consideration the interactions and dependencies between agents and their
activities. The following are key aspects of multiagent planning:

1. Decentralization: Multiple autonomous agents make choices independently or with little
collaboration in multiagent planning. Each agent has its own set of beliefs, objectives, and
capabilities.

2. Interdependence: One agent's activities may influence the opportunities or consequences
for other actors. Agents must examine how their choices may affect others and vice versa.

3. Cooperation and Competition: Agents may work together to accomplish common
objectives, or they might compete for scarce resources or incentives. Agents may speak
with one another in order to share information, negotiate, or coordinate their activities.

4. Joint and Individual Goals: The goal of multiagent planning is to discover solutions that
fulfill both individual agent goals and overall collective goals.

5. Conflict Resolution: When agents have competing aims or interests, multiagent planning
may require resolving disputes or finding compromises.

The amount of coordination and cooperation among agents determines the kind of multiagent
planning problem. Agents collaborate to attain a shared objective, and their activities benefit each
other. The goal is to devise a collaborative strategy that optimizes the group benefit or utility.
When agents have competing aims and interests, their actions might have a direct impact on each
other's performance. The goal is to create a strategy that maximizes an agent's utility while
predicting other agents' behaviours. Agents function autonomously and asynchronously,
frequently with minimal communication, in Distributed Multiagent Planning. Finding a set of local
plans for each agent that together fulfill the global goals is the planning challenge. Agents work
together to plan and coordinate their behaviours in order to attain a common objective. Various
strategies and algorithms are utilized to solve multiagent planning problems:

1. Game Theory: Game-theoretic techniques represent agent interactions as games and
search for Nash equilibria or Pareto-optimal solutions.

2. Decentralized Planning: Decentralized planning algorithms enable agents to construct
local plans independently and collaborate via communication or observation.

3. Communication and Centralized Planning: A central planner evaluates the global state
and coordinates the activities of all agents via communication and negotiation.

4. Market-Based Approaches: Market-based approaches share resources and duties among
actors via bidding and auction systems.

5. Multiagent Reinforcement Learning: Multiagent reinforcement learning allows agents
to learn optimum tactics in interactive contexts via trial and error.

Multiagent planning is an important topic of artificial intelligence study, especially in domains
involving numerous autonomous agents, such as robotics, distributed systems, autonomous
vehicles, and multi-robot systems. It entails tackling complicated issues including coordination,
communication, and strategic decision-making among independent organizations in order to
obtain effective and efficient results.

103

Artificial Intelligence

CONCLUSION

Many acts need resources such as money, gas, or raw materials. It is easier to think of these
resources as numbers in a pool rather than trying to reason about each individual coin and note in
the globe. Actions may both create and consume resources, and it is typically inexpensive and
practical to test incomplete plans for resource restrictions before making additional changes. One
of the most valuable resources is time. It may be managed by specialist scheduling algorithms or
by integrating scheduling with planning. Hierarchical task network (HTN) planning enables the
agent to accept domain designer input in the form of high-level actions (HLAs) that may be
performed in a variety of ways by lower-level action sequences. HLA effects may be described
using angelic semantics, enabling for the generation of provably valid high-level plans without
regard for lower-level implementations. Many real-world applications demand extremely big
plans, which HTN algorithms may generate.

Conventional planning algorithms are based on comprehensive and exact information as well as
deterministic, fully observable surroundings. This premise is violated in many disciplines.
Contingent plans enable the agent to feel the environment during execution in order to choose
which branch of the plan to follow. Sensorless or conformant planning may be used in certain
instances to create a plan that functions without the requirement for perception. Searching in the
space of belief states may yield both conformant and contingent plans. A critical issue is the
efficient encoding or computation of belief states. To recover from unforeseen circumstances
caused by nondeterministic actions, exogenous events, or erroneous models of the environment,
an online planning agent employs execution monitoring and splices in corrections as required.
When there are other agents in the environment with whom to collaborate or compete, multiagent
planning is required. Joint plans may be created, but they need some sort of coordination if two
agents are to agree on which joint plan to execute.

REFERENCES:

[1] H. Strubelt, S. Trojahn, S. Lang, and A. Nahhas, “Scheduling Approach for the Simulation
of a Sustainable Resource Supply Chain,” Logistics, 2018, doi: 10.3390/logistics2030012.

[2] Y. Liu, L. Wang, Y. Wang, X. V. Wang, and L. Zhang, “Multi-agent-based scheduling in
cloud manufacturing with dynamic task arrivals,” in Procedia CIRP, 2018. doi:
10.1016/j.procir.2018.03.138.

[3] S. M. Nosratabadi, R. A. Hooshmand, and E. Gholipour, “A comprehensive review on
microgrid and virtual power plant concepts employed for distributed energy resources
scheduling in power systems,” Renewable and Sustainable Energy Reviews. 2017. doi:
10.1016/j.rser.2016.09.025.

[4] A. Turky, N. R. Sabar, S. Dunstall, and A. Song, “Hyper-heuristic local search for
combinatorial optimisation problems,” Knowledge-Based Syst., 2020, doi:
10.1016/j.knosys.2020.106264.

[5] S. Umetani, “Exploiting variable associations to configure efficient local search algorithms
in large-scale binary integer programs,” Eur. J. Oper. Res., 2017, doi:
10.1016/j.ejor.2017.05.025.

104

Artificial Intelligence

[6] A. Al-Adwan, A. Sharieh, and B. A. Mahafzah, “Parallel heuristic local search algorithm
on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures,” Appl. Intell.,
2019, doi: 10.1007/s10489-018-1283-2.

[7] J. N. Asmussen, J. Kristensen, K. Steger-Jensen, and B. V. Wæhrens, “When to integrate
strategic and tactical decisions? Introduction of an asset/inventory ratio guiding fit for
purpose production planning,” Int. J. Phys. Distrib. Logist. Manag., 2018, doi:
10.1108/IJPDLM-02-2018-0058.

[8] M. Gansterer, C. Almeder, and R. F. Hartl, “Simulation-based optimization methods for
setting production planning parameters,” Int. J. Prod. Econ., 2014, doi:
10.1016/j.ijpe.2013.10.016.

[9] D. Dannenhauer and H. Munoz-Avila, “Raising expectations in GDA agents acting in
dynamic environments,” in IJCAI International Joint Conference on Artificial Intelligence,
2015.

[10] R. Li, W. Wang, Z. Chen, and X. Wu, “Optimal planning of energy storage system in active
distribution system based on fuzzy multi-objective bi-level optimization,” J. Mod. Power

Syst. Clean Energy, 2018, doi: 10.1007/s40565-017-0332-x.

105

Artificial Intelligence

CHAPTER 12

KNOWLEDGE REPRESENTATION: ENCODING INFORMATION

FOR INTELLIGENT SYSTEMS

Ajay Rastogi, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- ajayrahi@gmail.com

ABSTRACT:

The preceding chapters presented the technology for knowledge-based agents: propositional and
first-order logic syntax, semantics, and proof theory, as well as the construction of agents that
employ these logics. This chapter addresses the issue of what information to include in such an
agent's knowledge base and how to represent facts about the world. proposes the concept of a
generic ontology, which organizes the universe into a hierarchy of categories. Concerns knowledge
about beliefs and includes the core categories of things, substances, and measurements. Then we
return to the technology for reasoning with this stuff, which examines reasoning systems geared
for efficient inference with categories and reasoning with default knowledge. All of the
information is brought together in the framework of an Internet purchasing environment.

KEYWORDS:

Default, Knowledge, Reasoning, Shopping, Search.

INTRODUCTION

Ontological engineering is a branch of artificial intelligence and knowledge representation that
focuses on the design and construction of ontologies. An ontology is a formal, explicit statement
of the ideas, connections, and things that exist within a given area of knowledge. Ontological
engineering is the process of developing, improving, and maintaining ontologies in order to
express and arrange information in a systematic and computationally accessible manner.
Ontological engineers strive to create a conceptual model of a domain by identifying the domain's
core ideas, classes, properties, and connections. This modelling technique includes working with
domain specialists to capture their knowledge and experience. Ontology design is the process of
defining the structure and content of an ontology using different knowledge representation
languages such as OWL (Web Ontology Language) or RDF (Resource Description Framework).
The design choices guarantee that the ontology is expressive, reusable, and appropriate for the
applications envisaged [1]–[3].

Ontological engineers gather and gain information from domain specialists, current data sources,
literature, and other pertinent resources. Interviews, surveys, data mining, and natural language
processing are examples of knowledge gathering strategies. Ontologies are often written in a
formal language that allows for logical reasoning and inference.

This allows automated reasoning and deduction, which supports intelligent applications that use
ontologies. Ontological engineering is critical in the Semantic Web, a World Wide Web extension
that intends to allow robots to grasp the meaning of information. Ontologies offer the semantic
groundwork for transferring and combining data from many online sources. Ontological

106

Artificial Intelligence

engineering encourages the creation of common ontologies that enable data exchange and
interoperability across various systems and applications. Ontologies aid in the organization and
structuring of knowledge, making it simpler to manage, retrieve, and distribute information [4]–
[6].

Ontological engineering is often domain-specific, with ontologies built to represent knowledge in
specific fields such as healthcare, finance, biology, and others. Intelligent systems, knowledge-
based applications, and decision support systems that demand a formal representation of
knowledge require ontological engineering. It serves as the foundation for a wide range of AI
applications, including semantic search, natural language interpretation, machine learning, expert
systems, and data integration. Ontological engineering improves the capacity of AI systems to
reason, infer, and give more intelligent and context-aware answers by capturing the meaning and
semantics of information. Similar issues exist in the wumpus world. Although we represent time,
it has a basic structure: Nothing occurs until the agent acts, and all changes are immediate. A more
generic ontology, more suited to the actual world, would allow for several changes to occur at the
same time. We also utilized a Pit predicate to determine whether squares contain pits [7]–[9].

We might have allowed for several types of pits by having numerous persons belonging to the pit
class, each with unique attributes. Similarly, we may wish to make room for creatures other than
wumpuses. We may not be able to identify the precise species based on the given percepts,
therefore we'd need to create a biological taxonomy to enable the agent forecast the behaviour of
cave inhabitants based on meagre data. Changes like this may be made to any special-purpose
ontology in order to advance it toward broader generality. The obvious issue is whether all of these
ontologies converge on a general-purpose ontology. The answer, after centuries of philosophical
and computational inquiry, is Maybe. In this part, we describe one general-purpose ontology that
synthesizes concepts from those ages. General-purpose ontologies differ from collections of
special-purpose ontologies in two ways. A general-purpose ontology should be usable in almost
any special-purpose domain. This implies that no symbolic problem may be finessed or swept
under the rug.Different fields of knowledge must be unified in any sufficiently demanding subject,
since reasoning and problem solving may entail numerous areas at the same time.

A robot circuit-repair system, for example, must reason about circuits in terms of electrical
connection and physical layout, as well as time, for circuit timing analysis and labour cost
estimation. Thus, the phrases expressing time must be able to be concatenated with those defining
spatial layout, and they must operate equally well for nanoseconds and minutes, as well as
angstroms and meters. The actual universe is made up of fundamental items such as atomic
particles and composite objects constructed from them. We may overcome the difficulty required
in dealing with massive numbers of basic things separately by thinking at the level of big objects
such as apples and vehicles. However, there is a considerable chunk of reality that seems to resist
any clear individuation division into different things. This section is referred to as things things.
Assume I have some butter and an aardvark in front of me. There is only one aardvark, but no
evident number of butter-objects, since each portion of a butter-object is likewise a butter-object,
at least until we get to extremely tiny pieces [10], [11].

This is the main difference between stuff and things. Unfortunately, cutting one aardvark in half
does not result in two aardvarks. The English language clearly differentiates between stuff and
things. Linguists differentiate between count nouns and mass nouns, such as aardvarks, holes, and
theorems. Several rival ontologies claim that they can handle this distinction. Only one is discussed

107

Artificial Intelligence

here; the others are discussed in the historical notes section. To adequately portray anything, we
start with the obvious. We must include in our ontology at least the gross lumps of items with
which we interact. For example, we may identify a lump of butter as the one that was left on the
table the night before and pick it up, weigh it, sell it, or do anything we want with it. It is an object
in these ways, much like the aardvark. We also define the Butter category.

DISCUSSION

Exhaustive decomposition is a problem-solving approach that is often employed in artificial
intelligence, optimization, and combinatorial issues. It entails breaking down a difficult issue or
search space into all conceivable combinations or subproblems, then meticulously studying each
alternative to discover the optimal solution or completely analyzing the whole search area.
Exhaustive decomposition in the context of optimization issues means evaluating all conceivable
combinations of variables or parameters in order to identify the best solution. It investigates all
alternative solutions methodically, without missing any, guaranteeing that no potentially ideal
option is neglected. The following are key characteristics of exhaustive decomposition:

1. Exhaustive decomposition ensures that all potential solutions or combinations inside the
search space are assessed, resulting in comprehensive coverage of the solution space.

2. Because the number of potential possibilities grows exponentially with issue size,
exhaustive decomposition is only viable for small problem instances or when the search
space is relatively limited.

3. Exhaustive decomposition can identify the globally optimum solution in circumstances
when the search space is small and the optimization goal can be accurately quantified.

4. This strategy requires a systematic and comprehensive search of all conceivable choices,
which takes time and is computationally costly for large search areas.

Exhaustive decomposition is very beneficial when the search space is limited and the issue may
be solved by evaluating all feasible solutions directly. However, when the search space expands
rapidly, the time and computer resources necessary for a thorough search become prohibitively
expensive. Exhaustive decomposition is often used in practice as a benchmark or validation
approach for small-scale issues to confirm the accuracy of more efficient approximation
algorithms or heuristics. Approximate algorithms, heuristic search, or optimization techniques
such as dynamic programming, branch and bound, or Monte Carlo methods are often used to
identify near-optimal solutions in a more computationally tractable way for bigger problems.

Things and things are examples of objects

Objects refers to a key idea in object-oriented programming (OOP) in the context of computer
programming and software development. Objects are instances of classes, which are blueprints or
templates for constructing certain data structures or things. Objects in OOP represent real-world
things, ideas, or abstract data types, and they contain data attributes or properties as well as
behaviour methods or functions associated with such entities. The following are the essential
characteristics of objects in the context of object-oriented programming:

1. A class is a data type that is specified by the user and determines the structure and
behaviour of objects. It acts as a template for the creation of items. A class defines the
characteristics data members and methods that class objects will have.

108

Artificial Intelligence

2. An instance is a unique occurrence or manifestation of a class that is produced using the
class blueprint. An object is generated when an instance is created.

3. Attributes are the features or variables associated with an item. They are also known as
properties or data members. They represent the status or data of the item. For instance, if
we have a class called Car, its characteristics may be colour, make, model, and year.

4. Methods are functions specified in a class that execute actions or operations on the class's
objects. Methods indicate the behaviour or acts that objects are capable of carrying out. A
Car class, for example, may include methods like start, accelerate, and brake.

5. Encapsulation is an OOP paradigm that conceals an object's internal characteristics and
exposes just the important functionality through a well-defined interface public methods.
This safeguards the data of the object and guarantees that it can only be read and updated
in a regulated way.

6. Inheritance is an OOP technique that enables a class referred to as a subclass or derived
class to inherit properties and methods from another class referred to as a superclass or
base class. This allows for code duplication while also promoting the is-a link between
classes.

7. Polymorphism enables objects of various classes to be viewed as belonging to the same
superclass. It allows for code flexibility and adaptation by allowing for alternative
implementations of the same function in different subclasses.

8. Objects and object-oriented programming offer a powerful and modular technique to
organize and structure code in software development, making it simpler to manage large
systems, encourage code reusability, and represent real-world things and interactions.

Event Analysis

In a dynamic environment, event calculus is a formal logical framework for modelling and
reasoning about actions, events, and their consequences. It is a first-order logic variation that offers
a systematic method for representing and reasoning about temporal characteristics of events and
actions. The event calculus was created to solve some of the shortcomings of traditional first-order
logic when dealing with temporal and dynamic domains. It enables the portrayal of activities,
change, and causation through time to be more natural and expressive. It has a broad range of
applications in artificial intelligence, knowledge representation, and automated reasoning. The
following are key principles and aspects of event calculus:

1. Events: In a dynamic environment, events indicate acts or occurrences. Each event occurs
at a certain time and is characterized by a collection of circumstances, consequences, and
other relevant qualities.

2. Fluents: Fluents are assertions whose truth value may alter over time. They are used to
depict the condition of the world and how it evolves as a result of events.

3. Time: The event calculus contains a time concept to represent the temporal sequence of
occurrences as well as the duration between them.

4. Causal Links: The event calculus supports the depiction of causal links between events,
in which the occurrence of one event may cause or affect the occurrence of another. The
event calculus neatly addresses the frame issue, which deals with the representation of what
stays unaltered after an action. The calculus can describe modifications and inferences
quickly without the need to explicitly state unaltered characteristics. Event Calculus offers
a Natural and Intuitive Action Description Language. The event calculus offers a natural

109

Artificial Intelligence

and intuitive action description language for expressing the circumstances, effects, and
temporal characteristics of activities.

5. Reasoning and Planning: The event calculus provides automated reasoning and planning
methods for inferring the consequences of actions, predicting the outcomes of event
sequences, and performing temporal projection.

Robotics, intelligent systems, natural language processing, knowledge-based systems, and
temporal databases are just a few of the fields where the event calculus may be used. It is especially
effective for describing and reasoning about complicated and dynamic situations including actions,
events, and temporal interactions. The event calculus' formal character enables for exact modelling
and reasoning, allowing for more advanced and trustworthy intelligent systems.

Mental Occurrences and Mental Goals

Mental events and mental aims are often debated notions in cognitive science and psychology.
They are concerned with the interior processes and aims of people's thoughts. Mental events are
cognitive processes, actions, or operations that occur inside a person's mind. These occurrences
are inferred through behaviour, verbal accounts, and other outward manifestations rather than
directly seen. Perception, memory, attention, reasoning, problem-solving, decision-making, and
emotions are only a few examples of mental events. When a person reads a book, for example, the
mental activities involved may include visual perception of the text, information processing,
understanding of the content, and emotional reactions to the material. Researchers in cognitive
science often examine mental events to better understand how the mind works, how information
is processed, and how people interact with their surroundings. Based on the fundamental cognitive
processes, cognitive models and theories are built to explain and predict mental events and
behaviour. Mental objectives, also known as cognitive objectives or cognitive goals, are internal
aims or desired outcomes that people establish in their brains to drive their behaviour and decision-
making. These goals are mental representations of what people wish to attain or achieve in certain
circumstances.

A student preparing for an exam, for example, may have the mental goal of comprehending and
recalling the course information in order to do well on the examination. Similarly, while beginning
a new work, a person may have the mental goal of gaining the essential skills and duties to succeed
in the position. Mental goals are important in moulding human behaviour and motivation. They
impact the allocation of attention and cognitive resources, lead problem-solving techniques, and
drive the efforts and activities of people. Setting and pursuing mental objectives is critical for
reaching personal goals and adjusting to different conditions.

Understanding mental events and goals is critical in disciplines such as education, cognitive
psychology, human-computer interaction, and artificial intelligence. It assists academics and
practitioners in the creation of successful learning techniques, the development of user-friendly
interfaces, the modelling of decision-making processes, and the development of intelligent systems
capable of interacting with and responding correctly to human objectives and intents.

Networks of Semantic Relations

Semantic networks are a kind of graphical knowledge representation approach that is used to
display the interactions and connections between various ideas or entities in a domain. They give
an organized and visually appealing manner to represent information, stressing the semantic or

110

Artificial Intelligence

meaningful links between items rather than their qualities or properties. Artificial intelligence,
cognitive science, linguistics, and knowledge engineering all make use of semantic networks.
Semantic networks include the following characteristics:

1. Nodes: Individual concepts or entities in the domain are represented by nodes in a semantic
network. Each node relates to a single item, idea, or word, and is frequently labelled with
the concept's name.

2. Edges: Edges, also known as links or arcs, connect network nodes and express conceptual
connections. A semantic network's edges describe the semantic linkages or links between
ideas.

3. Undirected or Directed Semantic Networks: Semantic networks may be directed or
undirected. The edges in directed networks have a specified direction that indicates the
flow or directionality of the connection. The edges in undirected networks do not have a
direction, indicating a bidirectional or symmetric connection.

4. Transitivity: Some semantic networks include transitive edges, which allow for inferences
based on the transitive features of the links. For example, if idea A is linked to concept B,
and concept B is linked to concept C, then concept A and concept C have an implicit
connection. Semantic networks may have hierarchical structures in which nodes are
arranged into tiers or layers depending on their generalization or specialization. This
hierarchy depicts a notion taxonomy or categorization.

5. Semantic Types: In certain semantic networks, nodes are classified according to their traits
or features. Semantic types link together comparable ideas to create a more structured
representation. Semantic networks are adaptable and may represent a broad variety of
information, such as lexical knowledge, domain-specific knowledge, and ontologies. They
are often used to describe domain-specific knowledge bases, model natural language
semantics, and help with information retrieval and interpretation. WordNet, a lexical
database that organizes words into synsets sets of synonyms and specifies the connections
between words based on their meanings, is a typical example of a semantic network. Other
examples include idea maps, mind maps, and taxonomies, which are used in a variety of
fields to graphically represent and organize information.

Logics of Description

Description Logics (DL) is a formal knowledge representation language family that is used in
artificial intelligence, knowledge engineering, and semantic web technologies. DLs are a subset of
first-order logic (FOL) that is intended to express and reason about structured knowledge in a more
tractable and efficient manner. They give a formal framework for describing ideas, persons, and
their interactions. Description Logics' key features and components include Concepts represent
groups of people or things that share qualities. Concepts in DL are specified using unary predicates,
which serve as the foundation for classifying and categorizing persons. Individuals are tangible
components associated with distinct notions. They represent instances of domain classes or
entities. Roles are binary linkages between persons and are also known as properties or
relationships. Roles contain domain and range limits that govern the sorts of people who may be
linked by the role.

Description Logics split the knowledge base into two major parts the TBox (Terminological Box)
and the ABox (Assertional Box). The TBox holds terminological information, such as concept and
role definitions, while the ABox contains specific assertions or facts about persons and their

111

Artificial Intelligence

connections. DL supports concept subsumption connections in which one concept is more broad
and another is more particular. Subsumption is analogous to inheritance in object-oriented
programming in that it indicates a is-a connection. Description logics provide efficient automated
reasoning methods like as categorization and instance verification. Classification entails finding
the subclass and superclass connections in the TBox, while instance checking confirms whether a
particular concept description is satisfied by an individual. Because DL works on the open world
assumption, the lack of explicit information in the ABox is not seen as a negative. The ABox may
be updated with new information without compromising current knowledge. OWL is a Description
Logics extension that is used in the Semantic Web to describe ontologies and express knowledge
in a machine-readable fashion. In many applications, logics play an important role in formalizing
and reasoning about ontologies, knowledge bases, and domain-specific information. They are used
in the creation of knowledge-based systems, information retrieval, natural language processing,
and the design of the Semantic Web, as a powerful and expressive technique of describing
complicated knowledge structures and connections.

Limitation and Default Logic

Circumscription and default logic are two formal reasoning frameworks used in non-monotonic
reasoning and knowledge representation. They are intended to be more flexible and understandable
than classical logic in dealing with exceptions, partial information, and default assumptions. In the
late 1970s, Raymond Reiter devised a non-monotonic reasoning approach called circumscription.
It is used to limit the extension of specific predicates or notions in a logical theory in order to
simplify and make reasoning more clear. The goal of circumscription is to reduce the number of
things that meet a given predicate or notion while still satisfying the available information. This is
accomplished by including a circumscription operator that is applied to certain predicates in logical
formulae. The circumscription operator effectively limits the collection of objects that may be
included in the circumscribed predicate's extension. Circumscription may be used to convey
default assumptions and to deal with exceptions. It is often used in arguments regarding default
inheritance and default negation.

Default Logic

Another non-monotonic reasoning paradigm established by Raymond Reiter in 1980 is default
logic. It is used to reason about partial knowledge and to manage defensible reasoning, in which
conclusions are considered to be true by default but may be overruled by new information. Default
logic expresses rules as default rules, which consist of an antecedent and a consequent. The default
rules describe default assumptions that are presumed to be true by default, but may be modified if
evidence to the contrary is found. When reasoning in default logic, the system looks for extensions
that fulfill the default rules' premises, and the conclusions are added to the extensions. However,
if there are conflicts between default rules or evidence that contradicts the results, the extensions'
conclusions may be withdrawn. Default logic is especially effective for dealing with commonsense
thinking and reasoning under uncertainty, when the given knowledge may be inadequate or
contradictory. Circumscription and default logic are both forms of non-monotonic reasoning, in
which conclusions may alter depending on new knowledge or exceptions. These reasoning
frameworks may capture human-like thinking, cope with partial or ambiguous information, and
make assumptions in the face of ambiguity. They are used in a variety of disciplines, including as
knowledge representation, expert systems, and automated reasoning systems.

112

Artificial Intelligence

Systems for Maintaining the Truth

Truth Maintenance Systems (TMS) are artificial intelligence knowledge representation and
reasoning systems that manage and preserve the consistency of a knowledge base in the presence
of modifications or updates. TMS keeps track of the relationships between information
components and guarantees that the repercussions of changes to the knowledge base are handled
effectively. Truth Maintenance Systems include the following key features:

1. TMS recognizes conflicts when new information contradicts previously held ideas or
assumptions in the knowledge base.

2. TMS maintains knowledge base consistency by recognizing and resolving conflicts.
3. TMS saves justifications or explanations for the system's inferences and conclusions. This

helps to explain why certain conclusions were reached and gives a trail of thought.
4. TMS keeps track of dependencies between assertions in the knowledge base. The system

updates the dependencies to reflect changes as new information is added or withdrawn.
5. TMS propagates the effects of modifications to all impacted information when new

information is introduced to the knowledge base.
6. TMS controls the truth values true, false, or unknown of assertions in the knowledge base,

tracking their present state.
7. In the event of a dispute, TMS may erase the results of certain modifications and return the

knowledge base to a consistent state.

Truth Maintenance Systems are especially beneficial when the knowledge base is dynamic and
susceptible to constant additions or modifications. They are used in a variety of AI applications,
including expert systems, diagnostic and troubleshooting systems, and intelligent agents, where
reasoning and decision-making are dependent on the capacity to maintain a consistent and up-to-
date knowledge base. The system employs a directed graph to represent the dependencies between
assertions, and backtracking is achieved by tracing the pathways in the graph to restore
consistency, which is a popular implementation of Truth Maintenance Systems. TMS has made
significant contributions to the fields of non-monotonic reasoning and knowledge representation,
enabling AI systems to manage changes and updates to knowledge bases and reason in uncertain
and dynamic settings.

The surroundings of an Internet shopping agent

The environment of an internet shopping agent refers to the online ecosystem in which the
shopping agent functions and executes its responsibilities. Internet shopping agents, also known
as shopping bots or shopping assistants, are software programs or artificial intelligence (AI) agents
that aid consumers in finding, comparing, and purchasing items or services on the internet. The
following factors describe an online shopping agent's environment:

1. Internet shopping agents engage with a variety of e-commerce websites, including
Amazon, eBay, Walmart, and other online shops. These websites act as key sources of
product information and provide consumers with a diverse choice of items and services to
explore and buy.

2. E-commerce websites have large product databases with information about numerous
items, such as descriptions, pricing, reviews, and availability. These databases are accessed
by Internet shopping agents in order to obtain product information for consumers.

113

Artificial Intelligence

3. Search engines are often used by shopping agents to identify relevant goods based on user
queries or preferences. Search engines assist them in locating items on various e-commerce
websites.

4. The environment of the shopping agent comprises the user interface, through which users
interact with the agent. This interface may take the shape of a web application, browser
extension, mobile app, or any other platform that enables users to enter search queries,
establish preferences, and display search results.

5. Web scraping methods may be used by Internet shopping agents to gather product
information from e-commerce websites. Web scraping enables them to collect data from
many sources, such as pricing, reviews, and availability.

6. Data privacy and security are key features of the shopping agent's environment. To
preserve users' privacy and prevent unwanted access, personal and financial information
must be handled securely.

7. Shopping agents may interact with payment gateways to make online purchases more safe
and smooth. Payment gateways allow consumers to make purchases using a variety of
payment options.

8. Some online shopping agents employ recommendation algorithms to propose goods based
on customer interests, recent purchases, or browsing history.

9. The internet shopping agent environment is very competitive, with different shopping
agents and online platforms trying to deliver the greatest customer experience and
competitive offers.

10. Product pricing, availability, and reviews are always changing in a dynamic environment.
Shopping agents must constantly update their information in order to present users with
accurate and up-to-date results.

Overall, the environment of the online shopping agent is broad and complicated, with various
components and data sources with which the agent interacts to aid consumers in discovering the
best items and offers for their requirements. The capacity of the agent to explore this environment,
gather important information, and display it to users in a user-friendly and useful way determines
its efficacy and efficiency.

CONCLUSION

We believe that by going into the specifics of how one represents various types of information, we
have given the reader a sense of how genuine knowledge bases are built as well as a sense of the
intriguing philosophical concerns that emerge.Large-scale knowledge representation necessitates
the use of a general-purpose ontology to organize and connect the numerous particular categories
of knowledge.A general-purpose ontology should include a broad range of knowledge and, in
theory, be capable of addressing any domain.Creating a big, general-purpose ontology is a huge
task that has yet to be completely fulfilled, despite the fact that present frameworks seem to be
extremely strong.Based on categories and the event calculus, we established an upper ontology.
Categories, subcategories, components, organized things, measurements, substances, events, time
and space, change, and beliefs were all discussed. Natural sorts cannot be entirely specified in
logic, although their attributes may be expressed.Actions, events, and time may all be expressed
in situation calculus or more expressively in event calculus. Such representations allow an agent
to build plans using logical inference.We offered a comprehensive examination of the Internet
shopping domain, demonstrating how the generic ontology may be employed by a shopping
agent.Special-purpose representation systems, such as semantic networks and description logics,

114

Artificial Intelligence

have been developed to aid in the organization of a category hierarchy. Inheritance is a kind of
inference that allows the attributes of objects to be determined from their category
membership.The closed-world assumption, as implemented in logic programs, eliminates the need
to describe a large amount of negative information. It's preferable to think of it as a default that
may be overridden by further information.Nonmonotonic logics, such as circumscription and
default logic, are designed to capture universal default thinking.Knowledge updates and
modifications are handled effectively by truth maintenance systems.

REFERENCES:

[1] R. Mizoguchi and J. Bourdeau, “Using Ontological Engineering to Overcome AI-ED
Problems: Contribution, Impact and Perspectives,” Int. J. Artif. Intell. Educ., 2016, doi:
10.1007/s40593-015-0077-5.

[2] S. Cakula and A. B. M. Salem, “E-learning developing using ontological engineering,”
WSEAS Trans. Inf. Sci. Appl., 2013.

[3] R. Peachavanish, H. A. Karimi, B. Akinci, and F. Boukamp, “An ontological engineering
approach for integrating CAD and GIS in support of infrastructure management,” Adv. Eng.

Informatics, 2006, doi: 10.1016/j.aei.2005.06.001.

[4] R. Mizoguchi, “Tutorial on ontological engineering Part 2: Ontology development, tools
and languages,” New Gener. Comput., 2004, doi: 10.1007/bf03037281.

[5] V. V. Panteleev, A. V. Kizim, A. V. Matohina, and V. A. Kamaev, “Intellectual Information
Support for Operation of Technical Systems Based on Ontological Engineering,” in
Procedia Computer Science, 2015. doi: 10.1016/j.procs.2015.08.632.

[6] Y. Hayashi, J. Bourdeau, and R. Mizoguchi, “Using ontological engineering to organize
learning/instructional theories and build a theory-aware authoring system,” Int. J. Artif.

Intell. Educ., 2009.

[7] V. Devedžic, “Understanding Ontological Engineering,” Commun. ACM, 2002, doi:
10.1145/505248.506002.

[8] R. Mizoguchi, “The role of ontological engineering for AIED research,” Comput. Sci. Inf.

Syst., 2005, doi: 10.2298/csis0501031m.

[9] R. Mizoguchi, “Part 1: Introduction to ontological engineering,” New Gener. Comput.,
2003.

[10] J. M. Gómez-Pérez and C. Ruiz, “Ontological engineering and the semantic web,” Stud.

Comput. Intell., 2010, doi: 10.1007/978-3-642-14461-5_8.

[11] B. Zang, Y. Li, W. Xie, Z. Chen, C. F. Tsai, and C. Laing, “An ontological engineering
approach for automating inspection and quarantine at airports,” J. Comput. Syst. Sci., 2008,
doi: 10.1016/j.jcss.2007.04.020.

115

Artificial Intelligence

CHAPTER 13

QUANTIFYING UNCERTAINTY:

DEALING WITH IMPERFECT INFORMATION IN AI

Manish Joshi, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- gothroughmanish@gmail.com

ABSTRACT:

Commitments are essential in multi-agent cooperation. They are, however, intrinsically
unpredictable, and it is critical to account for these uncertainties during planning and scheduling.
This study covers the issue of dealing with commitment ambiguity. We suggest a novel
commitment model that integrates uncertainty, the use of contingency analysis to minimize
uncertainty, and a negotiation framework for dealing with unclear commitments. Multi-agent
coordination, multi-agent planning, and decision making under uncertainty are some of the terms
used in this paper. One of the key issues in artificial intelligence is dealing with uncertainty. In a
multi-agent system, an agent must deal with not only the uncertain elements of its own actions,
but also the uncertain perceptions of the behaviours of other agents. In this research, we look at
the uncertainty associated with agent commitments and approaches for reducing it.

KEYWORDS:

Data, Decision, Event, Marketing, Uncertainty.

INTRODUCTION

In artificial intelligence, intelligent agents must deal with uncertainty. Incomplete or unclear
information, unexpected settings, and intrinsic limits in the agent's knowledge and sensory
capacities all contribute to uncertainty. Intelligent agents must be provided with methods to
successfully cope with ambiguity and make appropriate judgments in such circumstances. Here
are some examples of how agents deal with uncertainty.

Agents often use probabilistic reasoning to represent and reason about uncertain information.
Probabilistic models, such as Bayesian networks or Markov decision processes, use probabilities
to describe uncertainty. These models enable agents to evaluate the probability of various events
and make actions based on those estimates. In the face of fresh data, agents may utilize Bayesian
inference to update their views. Agents begin with previous beliefs and update them with new
knowledge using Bayes' theorem, making their beliefs increasingly correct over time [1]–[3].

Fuzzy logic is used to manage imprecise or unclear data by giving concepts degrees of
membership. Instead of sharp binary values, fuzzy logic allows for gentle transitions between true
and false, making reasoning more flexible. Agents employ methods like confidence intervals and
variance estimation to quantify uncertainty.

Uncertainty quantification enables actors to express the degree of uncertainty in their predictions
or actions. To cope with uncertainty, agents balance exploration and exploitation techniques in
decision-making. Exploration is attempting new behaviours in order to collect additional

116

Artificial Intelligence

information, while exploitation entails maximizing predicted returns by using present knowledge.
Monte Carlo techniques, such as Monte Carlo simulation and Monte Carlo tree search, employ
random sampling to predict uncertain outcomes or explore different routes in decision-making
situations [4]–[6].

Agents can minimize uncertainty over time by learning from data and experience. Agents may
adapt and enhance their performance as they gather more data using machine learning approaches
such as supervised learning, reinforcement learning, and unsupervised learning. Agents are
outfitted with capabilities to elegantly manage errors and failures. They may recover from
uncertain conditions by using contingency plans, gathering further knowledge, or requesting
human assistance. Sensory fusion methods are used by agents in multi-sensor settings to integrate
information from numerous senses and minimize ambiguity in perception. Agents use planning
algorithms that account for uncertainty when reasoning about future actions and consequences.
Handling uncertainty is a critical component of developing intelligent agents capable of operating
efficiently in complicated and unpredictable real-world situations. Agents can make educated
judgments, adapt to changing situations, and offer robust and trustworthy behaviour by using
different uncertainty management approaches [7]–[9].

Uncertainty

Uncertainty is a basic notion in artificial intelligence and decision-making, stemming from the
environment's inadequate knowledge, ambiguity, and unpredictability. It denotes a lack of
assurance or trust in the results or repercussions of acts or occurrences. Here's a rundown of the
uncertainty:

1. Uncertainty is defined as the condition of not knowing what will happen in the future or
the real status of the world.

2. Incomplete knowledge, noisy or incorrect data, complex and unpredictable surroundings,
restricted sensory capacities, and intrinsic randomness may all lead to uncertainty.

3. AI agents manage uncertainty using a variety of strategies, including probabilistic
reasoning, Bayesian inference, fuzzy logic, uncertainty quantification, and data learning.

4. Probabilistic models, such as Bayesian networks and Markov decision processes, use
probabilities to evaluate the probability of various events.

5. Fuzzy logic allows for gentle transitions between true and false, making it suitable for
inaccurate or ambiguous data.

6. Agents balance exploration and exploitation methods, seek further information, and make
judgments based on the best available information during decision-making.

7. Agents use data and experience to minimize uncertainty over time, enhancing their
performance and decision-making as they learn more.

8. In multi-sensor settings, agents employ sensory fusion strategies to merge data from many
senses and decrease perception uncertainty.

9. Agents use planning algorithms that account for uncertainty when reasoning about future
actions and consequences.

10. Dealing with uncertainty is critical in the development of intelligent agents capable of
operating efficiently in complicated and unpredictable real-world situations.

Handling uncertainty is a key difficulty in AI, and good uncertainty management is required for
the development of strong and dependable intelligent systems. Agents can make educated

117

Artificial Intelligence

judgments, adapt to changing situations, and perform effectively in uncertain and dynamic
environments by using different uncertainty management approaches [10].

DISCUSSION

Uncertainty and Sound Judgment

Uncertainty is crucial in making reasonable judgments. Rational decision-making is assessing
available information, analyzing potential outcomes, and determining the optimal course of action
based on the facts and the individual's preferences and objectives. Here's how uncertainty
influences rational decision-making. Uncertainty typically emerges when there is limited or
incomplete knowledge about the environment, alternatives, or prospective consequences. In such
instances, rational decision-making entails choosing the best option feasible based on the available
knowledge, even if the result is uncertain. Uncertainty and risk are inextricably linked. Assessing
the risks associated with various options and contemplating the possible repercussions of each
option is part of rational decision-making. Decisions involving greater uncertainty or risk may
need more cautious or conservative methods.

When making rational judgments in the face of uncertainty, probabilistic reasoning is often used.
Based on existing facts or past data, agents evaluate the probability of various outcomes and utilize
this knowledge to make educated decisions. with uncertain circumstances, decision-makers must
assess prospective advantages and losses as well as the trade-offs associated with various options.
The goal of rational decision-making is often to maximize anticipated utility, which takes into
consideration both the likelihood of various outcomes and the related values or preferences.
Rational judgments in dynamic and unpredictable contexts may incorporate adaptivity. To make
the best decisions, decision-makers constantly change their views and methods in response to new
knowledge and changing situations. Learning from experience may help to lessen uncertainty.
Rational decision-makers use previous results and feedback to improve their decision-making
process and their capacity to deal with uncertainty in the future.

In certain circumstances, decision-makers may confront restrictions such as time limits or
restricted resources, which contribute to uncertainty. Rational judgments include taking these
limits into account and choosing choices that are viable and practical. Rational decision-making
takes individual tolerance for uncertainty into account. Decision-makers' risk aversion or readiness
to accept risks may differ, impacting their decisions in uncertain circumstances. To summarize,
uncertainty is an intrinsic component of decision-making, and sensible decision-makers accept it
by using diverse coping mechanisms. They evaluate risks, use probabilistic thinking, weigh trade-
offs, and make judgments based on existing facts and experience. Rational decision-makers
attempt to make optimum decisions given the uncertainties they confront by recognizing and
resolving ambiguity in a methodical and conscientious way.

Probabilistic Reasoning

Probabilistic inference is a key method in probability theory and statistics that uses available
information or observed data to create predictions or draw conclusions about uncertain situations.
It entails utilizing fresh knowledge to update and refine probabilities, as well as employing
mathematical procedures to determine the chance of various occurrences. Artificial intelligence,
machine learning, data analysis, and decision-making all make extensive use of probabilistic
inference. Among the key principles and methods of probabilistic inference are:

118

Artificial Intelligence

1. Bayesian Inference: Bayesian inference is a popular probabilistic inference approach that
uses Bayes' theorem to update probability. To determine posterior probabilities, past
information prior probabilities is combined with fresh evidence. The cornerstone of
Bayesian statistics and probabilistic reasoning is Bayesian inference. The likelihood
function shows the likelihood of detecting the supplied data or evidence given a certain
hypothesis or model. It measures how well the theory accounts for the observed data.

2. Prior Probability: Before examining fresh evidence, the prior probability describes the
original belief or likelihood attributed to a hypothesis or occurrence. It is based on prior
knowledge or historical facts. The posterior probability describes the updated belief or
likelihood of a hypothesis or occurrence after taking into account fresh data. It is
determined using Bayes' theorem and takes both the prior probability and the likelihood
into consideration.

3. Maximum Likelihood Estimation (MLE): MLE is a technique for estimating statistical
model parameters based on observed data. It attempts to discover the parameter values that
maximize the probability of the observed data.

4. The Expectation-Maximization (EM) Algorithm is an iterative approach for estimating
parameters in probabilistic models when some data is absent or unobservable. Until
convergence, it alternates between estimating missing data expectation step and changing
model parameters maximization step.

5. Markov Chain Monte Carlo (MCMC): MCMC is a Bayesian inference and statistical
modelling sampling technique. It provides a series of samples from a complicated
probability distribution, allowing for approximation inference in situations when precise
answers are computationally impossible.

The act of summing or integrating over certain variables in a joint probability distribution to
determine the probability distribution of the remaining variables is known as marginalization. It is
used to calculate the likelihood of certain occurrences of interest. In a variety of applications,
probabilistic inference offers a disciplined and systematic technique to reason under uncertainty,
update beliefs based on new data, and make informed choices. By combining probabilistic
reasoning into data analysis and modelling, more robust and accurate predictions may be made, as
well as a better understanding of uncertain and complicated processes.

Independence

The absence of a link or impact between two or more random variables is described as
independence in probability theory and statistics. The occurrence or result of one event or random
variable has no effect on the probability or distribution of the other. Independence is an important
quality in many probabilistic and statistical investigations since it simplifies computations and
makes modelling and inference simpler. Two random variables X and Y are called independent
mathematically if their joint probability distributions can be factorized into the product of their
separate probability distributions. To put it another way, with independent variables X and Y:

P (X, Y) = P (X + P (Y).

Similarly, if occurrences A and B are independent, their combined probability is equal to the sum
of their individual probabilities:

P (A + B) = P (A + B)

119

Artificial Intelligence

The following are some significant aspects of independence:

1. Mutual Independence: Three or more random variables are deemed mutually independent
if they are all pairwise independent and every subset of them is independent.

2. Conditional Independence: Two random variables X and Y are conditionally independent
given another random variable Z if their joint distribution factorizes as follows when
conditioned on Z:
P (X, Y, Z) = P (X, Y, Z) * P (Y, Z)

3. Covariance and Independence: When two random variables X and Y are independent,
their covariance a measure of their joint variability is zero. However, independence does
not always imply zero covariance.

4. Independence and Correlation: While zero correlation suggests that two variables have
no linear connection, it does not always imply independence. Independence indicates a lack
of association, yet this is not always the case.

Independence is a fundamental notion in probability and statistics, with several applications
including hypothesis testing, experimental design, sampling, machine learning, and Bayesian
networks. Probabilistic calculations become simpler when random variables are independent,
allowing for more efficient and accurate modelling of complicated systems with numerous
variables.

The Fundamental Rules and Their Application

Basic rules are fundamental concepts and mathematical features that control the manipulation and
computation of probabilities in probability theory. These principles are essential for carrying out
different probabilistic calculations and making educated judgments in the face of uncertainty. Here
are some fundamental laws and their applications in probability theory:

Sum Rule (Total Probability Law)

The Sum Rule, also known as the Law of Total Probability, is a basic concept in probability theory
that is used to calculate the likelihood of an occurrence by considering all potential outcomes. It is
especially beneficial when the event of interest might occur in a variety of contexts or
circumstances represented by other events. The Sum Rule is represented mathematically as
follows:

If B1, B2..., Bn is a partition of the sample space S i.e., the events B1, B2..., Bn are mutually
exclusive and collectively exhaustive, then the probability of A for each event A is the sum of the
probabilities of A happening in each partition:

For i = 1 to n, P(A) = P (A | Bi) * P(Bi).

where:

P(A) represents the probability of occurrence A.

P (A | Bi) is the conditional probability of an event A given event Bi.

P (Bi) represents the probability of occurrence Bi, and

n is the partition's number of events.

120

Artificial Intelligence

The total Rule asserts that the probability of event A is the weighted total of A's probabilities for
each scenario represented by the events in the partition. P (A | Bi) * P(Bi) expresses the probability
of event A happening given the situation described by Bi, multiplied by the likelihood of Bi
occurring. The Law of Total Probability is often used in circumstances where the probability of A
is not directly accessible but the probabilities of A given several scenarios (Bi) are known. We
may calculate the overall likelihood of A happening by evaluating all alternative situations and
adding their contributions. The Sum Rule is often used in Bayesian inference to assess the
likelihood of an occurrence given evidence seen under various situations or scenarios. It is an
essential tool in different probabilistic computations and statistical studies, and it plays a critical
part in reasoning under uncertainty.

Rule of Product (Multiplication)

The Product Rule, also known as the Multiplication Rule, is a basic concept in probability theory
that is used to calculate the likelihood of two or more occurrences happening concurrently. It
allows us to evaluate the likelihood of many occurrences intersecting, taking into account their
individual probabilities as well as the conditional probabilities between them. The Product Rule is
represented mathematically as follows. The chance of both A and B happening for two occurrences
A and B is provided by the product of the likelihood of A and the conditional probability of B
given A:

P(A) * P (B | A) = P(A)

Alternatively, the Product Rule may be written as:

P (A, B) = P (A + P (B | A)

where:

P (A B) is the probability of events A and B intersecting.

P(A) represents the probability of occurrence A.

P (B | A) is the conditional probability of event B given the occurrence of event A.

P (A, B) is the probability of occurrences A and B happening concurrently.

In other terms, the Product Rule asserts that the likelihood of both A and B happening equals the
product of A's probability and B's probability provided that A has previously happened. The
Product Rule is essential for calculating the probability of numerous occurrences and their
interactions. To execute different probabilistic calculations and statistical inference tasks, it is
often utilized in combination with the Sum Rule and Bayes' Theorem. Calculating the probability
of the intersection of separate events, estimating the joint probabilities of events in statistical
models, and comprehending the relationships between various events in probability distributions
and Bayesian networks are all applications of the Product Rule.

Marginalization

Marginalization, also known as Summing Out or Marginal Probability, is a basic operation in
probability theory that is used to calculate the probability of one variable by summing or
integrating across all possible values of another variable. This method is very effective when
dealing with joint probability distributions containing numerous variables, and we are only

121

Artificial Intelligence

interested in one variable's probability distribution while disregarding the others. Marginality may
be stated mathematically as follows the probability distribution of X alone (marginal probability
of X) may be derived by summing or integrating over all possible values of Y for two random
variables X and Y with their joint probability distribution P (X, Y):

P (X) = P (X, Y) for all Y values in the discrete case, or P(X) = P (X, y) dy for all y values in the
continuous case.

To put it another way, marginalization is the process of summing out or integrating out the variable
Y from the joint distribution P (X, Y) to get the probability distribution of X alone. The
marginalization process enables us to concentrate on the probability of individual variables, which
makes it simpler to reason about and evaluate single occurrences or outcomes without taking into
account the intricacies of the combined distribution. We marginalize away the dependencies by
summing or integrating over the other variables and get the probability distribution of interest.
Marginalization is an important strategy in many probabilistic calculations, such as:

1. Finding the probability distribution of one variable in a joint distribution when the other
variables are unimportant or unseen is known as marginal probability.

2. The marginal probability of an event in the presence of alternative situations or scenarios
represented by other occurrences is determined by the Law of Total Probability.

3. The expected value of a random variable calculated by marginalizing across its distribution.
4. When doing Bayesian parameter estimation, marginal likelihood is used to integrate out

nuisance parameters in the likelihood function.

Marginalization is a strong method in probability theory that is used in statistical inference,
machine learning, and decision-making to extract useful information and simplify complicated
probabilistic models by concentrating on variables of relevance.

Probability Under Certain Conditions

Conditional probability is a key notion in probability theory that estimates the likelihood of an
event happening in the presence of another event that has already happened or is known to be true.
It is used to update probability in response to new data or situations, and it is critical in reasoning
under uncertainty. The conditional probability of an event A given event B is represented as P (A
| B) and is defined as follows:

P (A | B) = P (A / P(B).

where:

P (A | B) denotes the conditional probability of event A in the presence of occurrence B.

P (A B) is the probability of occurrences A and B occurring concurrently.

P (B) represents the probability of occurrence B.

In other words, the conditional probability P (A | B) quantifies the chance that event A will occur
in the absence of event B.

The following are some key points of conditional probability:

122

Artificial Intelligence

Conditional probability is a method of updating probabilities depending on new information or
evidence. It indicates the altered uncertainty regarding event A after the occurrence of event B.

Using the formula P (A | B) = P (A B) / P(B), the conditional probability of A given B is connected
to the joint probability of A and B as well as the marginal probability of B.

For numerous occurrences A1, A2..., An, the conditional probability chain rule states:

P (A1 A2... An) = P(A1) * P (A2 | A1) * P (A3 | A1 A2) *... * P (Aₙ ₁ ₂ ₙ ₁₋ | A ∩ A ∩ ... ∩ A)

Using conditional probabilities, we may use the chain rule to compute the combined probability
of many occurrences.

Two events A and B are considered independent if and only if P (A | B) = P(A), implying that the
occurrence of event B has no effect on the probability of event A. The Law of Total Probability
describes an event's probability A as a total of all potential scenarios represented by occurrences
Bi, weighted by their conditional probabilities given A:

For all conceivable events Bi that divide the sample space, P (A) = P (A | Bi) * P(Bi).

Conditional probability is critical in many applications, including Bayesian inference, statistical
modelling, machine learning, decision-making, and risk assessment. It enables us to revise our
views and make sound predictions and judgments in response to new observations or situations.

Theorem of Bayes

The Bayes' Theorem is a key theorem in probability theory that enables us to update the probability
of a hypothesis or event in response to fresh data or observations. The theorem is named after
Reverend Thomas Bayes, who initially proposed it. The Bayes' Theorem is a cornerstone of
Bayesian inference, providing a systematic method for doing probabilistic reasoning under
uncertainty. Bayes' Theorem is represented mathematically as follows:

The conditional probability of event A given event B is provided by: For two events A and B,
where P(B) > 0, the conditional probability of event A given event B is given by:

P (A | B) = (P (B | A) / P(B)

where:

P (A | B) represents the posterior probability of event A given occurrence B.

P (B | A) denotes the conditional probability of event B in the presence of occurrence A
(likelihood).

P (A) represents the prior probability of occurrence A (the probability of A prior to witnessing B),
and

P (B) represents the prior probability of occurrence B (the likelihood of B prior to seeing A).

The updated probability of event A (posterior probability) is proportional to the prior probability
of A, scaled by the likelihood of seeing event B given event A, according to Bayes' Theorem. The
division by P(B) normalizes the posterior probability, guaranteeing that it adds up to 1. The
following are some key points concerning Bayes' Theorem:

123

Artificial Intelligence

1. Bayes' Theorem gives a systematic technique to update our views (probabilities) about a
hypothesis or event based on fresh data or observations.

2. Bayes' Theorem helps us to make more informed and accurate predictions or judgments by
combining past knowledge with new evidence.

3. Bayes' Theorem is important to Bayesian inference, which provides a strong framework
for statistical modelling and parameter estimation. Given observed data, it is used to
compute the posterior distribution of model parameters.

4. Bayes' Theorem is used in medical diagnostics, forensic analysis, and other domains to
calculate the likelihood of a medical condition or occurrence based on the findings of a test
or observation.

The prior probability describes our initial view or uncertainty about an occurrence before any
additional evidence is seen. The posterior probability indicates the revised view or probability after
the new evidence has been considered. Bayes' Theorem is a fundamental notion in probability
theory that has several applications in domains such as artificial intelligence, machine learning,
data science, and decision-making. It offers a logical framework for reasoning with uncertainty
and revising our views in response to observable facts or evidence. These fundamental principles
constitute the foundation of probability theory and are required for many probabilistic
computations such as hypothesis testing, statistical modelling, decision-making, and machine
learning.

They let us to reason about uncertain occurrences and calculate probabilities, make predictions,
and draw conclusions based on available information and observable facts. Because of the absolute
independence of random variable subsets, the complete joint distribution may be reduced into
smaller joint distributions, considerably lowering its complexity. In actuality, absolute freedom is
rare. Bayes' rule allows for the computation of unknown probability from known conditional
probabilities, generally in the causative direction. Applying Bayes' rule to a large amount of
evidence causes the same scaling issues as the entire joint distribution. Conditional independence
caused by direct causal linkages in the domain may enable the whole joint distribution to be
decomposed into smaller conditional distributions. Given a single cause variable, the naive Bayes
model assumes conditional independence of all effect variables and expands linearly with the
number of effects.

CONCLUSION

This chapter proposed probability theory as a good basis for uncertain reasoning and gave a modest
introduction to its application. Uncertainty results from both sloth and stupidity. It is unavoidable
in contexts that are complicated, nondeterministic, or only partly observable. Probabilities
represent the agent's incapacity to make a firm conclusion about the truth of a phrase. Probabilities
sum up the agent's views in light of the facts. Decision theory integrates the agent's beliefs and
wants, defining the ideal action as that which maximizes predicted utility. Prior probabilities and
conditional probabilities over simple and complicated propositions are included in basic
probability statements. The axioms of probability limit the potential probabilistic assignments to
propositions. In certain instances, an agent who violates the axioms must act irrationally. The
likelihood of each complete assignment of values to random variables is specified by the whole
joint probability distribution. It is often too vast to generate or utilize explicitly, but when it is
accessible, it may be used to answer inquiries by simply adding up entries for the potential worlds
matching to the query propositions.

124

Artificial Intelligence

REFERENCES:

[1] D. N. Leite, S. T. Silva, and O. Afonso, “Institutions, economics and the development
quest,” J. Econ. Surv., 2014, doi: 10.1111/joes.12038.

[2] N. Criado, E. Argente, P. Noriega, and V. Botti, “Reasoning about norms under uncertainty
in dynamic environments,” Int. J. Approx. Reason., 2014, doi: 10.1016/j.ijar.2014.02.004.

[3] S. Parsons et al., “Argument schemes for reasoning about trust,” Argument Comput., 2014,
doi: 10.1080/19462166.2014.913075.

[4] T. Xiong, Z. Pu, J. Yi, and X. Tao, “Fixed-time observer based adaptive neural network
time-varying formation tracking control for multi-agent systems via minimal learning
parameter approach,” IET Control Theory Appl., 2020, doi: 10.1049/iet-cta.2019.0309.

[5] C. D. Mathys et al., “Uncertainty in perception and the Hierarchical Gaussian filter,” Front.

Hum. Neurosci., 2014, doi: 10.3389/fnhum.2014.00825.

[6] S. Venkatramanan, B. Lewis, J. Chen, D. Higdon, A. Vullikanti, and M. Marathe, “Using
data-driven agent-based models for forecasting emerging infectious diseases,” Epidemics,
2018, doi: 10.1016/j.epidem.2017.02.010.

[7] M. F. Arevalo-Castiblanco, D. Tellez-Castro, J. Sofrony, and E. Mojica-Nava, “Adaptive
synchronization of heterogeneous multi-agent systems: A free observer approach,” Syst.

Control Lett., 2020, doi: 10.1016/j.sysconle.2020.104804.

[8] J. Li and Z. Sheng, “A multi-agent model for the reasoning of uncertainty information in
supply chains,” Int. J. Prod. Res., 2011, doi: 10.1080/00207543.2010.524257.

[9] H. Du and Y. Jiang, “Strategic information sharing in a dynamic supply chain with a carrier
under complex uncertainty,” Discret. Dyn. Nat. Soc., 2019, doi: 10.1155/2019/4695654.

[10] G. Anders, A. Schiendorfer, F. Siefert, J. P. Steghöfer, and W. Reif, “Cooperative resource
allocation in open systems of systems,” ACM Trans. Auton. Adapt. Syst., 2015, doi:
10.1145/2700323.

125

Artificial Intelligence

CHAPTER 14

PROBABILISTIC REASONING: UNCERTAINTY

MANAGEMENT IN AI AND DECISION MAKING

Namit Gupta, Associate Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- namit.k.gupta@gmail.com

ABSTRACT:

The fundamental concepts of probability theory, emphasizing the significance of independence
and conditional independence connections in simplifying probabilistic representations of the
universe. This chapter presents a systematic method for formally representing such connection
ships in the form of Bayesian networks. We explain these networks' syntax and semantics and
demonstrate how they may be used to capture uncertain information in a natural and efficient
manner. We next explain how, although computationally intractable in the worst scenario,
probabilistic inference can be done effectively in many actual cases. We also discuss a number of
approximation inference methods that are often used when accurate inference is impossible. We
investigate how probability theory may be applied to worlds containing objects and relations that
is, to first-order representations as opposed to propositional representations. Finally, we examine
several methods to uncertain reasoning.

KEYWORDS:

Data, Bayesian, Models, Probability, Variables.

INTRODUCTION

We learned in Chapter 13 that the whole joint probability distribution can answer any query about
the domain, but it may become prohibitively huge as the number of variables increases.
Furthermore, defining probabilities for each alternative universes is unnatural and time-
consuming. We also discovered that independence and conditional independence links among
variables may significantly minimize the number of probabilities required to construct the whole
joint distribution. To express the relationships between variables, this section presents a data
structure called a Bayesian network. Bayesian networks can express almost any whole joint
probability distribution and do so in many circumstances extremely succinctly. A Bayesian
network is a directed graph with quantita tive probability information marked at each node. The
complete specifications are as follows. Each node represents a random variable, which may be
either discrete or continuous. A network of directed connections or arrows connects two nodes. If
an arrow connects node X to node Y, X is said to be Y's parent [1]–[3].

Each node Xi has a conditional probability distribution P(Xi | P arents(Xi)) that quantifies the
influence of the parents on the node. The network topology the collection of nodes and
linksspecifies the conditional independence connections that exist in the domain in a manner that
will be detailed subsequently. The intuitive interpretation of an arrow is that X has a direct impact
on Y, implying that causes are the parents of effects. A domain expert's decision on what direct
impacts exist in the domain is frequently simplemuch simpler, in fact, than identifying the prob
abilities themselves. Once the topology of the Bayesian network has been established, all that

126

Artificial Intelligence

remains is to provide a conditional probability distribution for each variable given its parents. We'll
see how the topological and conditional distributions work together to provide the whole joint
distribution for all variables. Remember the basic world from Chapter 13 with the variables
Toothache, Cavity, Catch, and Weather? We demonstrated that Weather is independent of the
other variables; moreover, we suggested that, given Cavity, Toothache and Catch are conditionally
independent. Intuitively, the network depicts the fact that Cavity is a direct cause of Toothache
and Catch, but Toothache and Catch have no direct causal link. Consider the following example,
which is little more complicated.

You have a new burglar alarm installed at your home. It is fairly accurate in detecting burglaries,
although it also reacts to mild earthquakes on occasion. You also have two neighbours, John and
Mary, who have vowed to phone you at work if they hear the alert. John almost usually calls when
he hears the alarm, but he sometimes mixes the phone ringing with the alarm and calls as well.
Mary, on the other hand, enjoys loud music and often misses the alarm. We'd want to evaluate the
likelihood of a burglary based on the evidence of who has and has not contacted. The network
structure demonstrates that theft and earthquakes have a direct impact on the likelihood of the
alarm going off, but whether John and Mary call is solely dependent on the alarm. Thus, the
network depicts our beliefs that individuals do not immediately sense burglaries, do not notice tiny
earthquakes, and do not communicate before phoning [4]–[6].

Each row in a CPT contains the conditional probability of each node value for a conditioning case.
A conditioning case is just a potential value combination for the parent nodesa little possible world,
if you will. Because the entries indicate an exhaustive set of instances for the variable, each row
must add. Once you know that the probability of a true value is p, the probability of false must be
1 - p, hence we often remove the second number. A table for a Boolean variable with k Boolean
parents, in general, includes 2k independently specifiable probability. A node with no parents has
just one row, which represents the prior probability of each variable's potential values. There are
no nodes in the network that correlate to Mary's present listening to loud music or to the phone
ringing and confusing John. The ambiguity connected with the linkages from Alarm to JohnCalls
and MaryCalls encapsulates these variables. This is both laziness and ignorance in action: it would
take a lot of effort to figure out why those elements are more or less probable in any given scenario,
and we have no plausible method of obtaining the essential knowledge anyhow[7], [8].

Bayesian Networks' Semantics

The semantics of Bayesian networks refers to the underlying meaning or interpretation of the
graphical model, which uses directed acyclic graphs (DAGs) to represent probabilistic correlations
among a collection of random variables. Bayesian networks are a valuable tool for probabilistic
reasoning and inference because they give a compact and understandable approach to describe
probabilistic dependencies and conditional interactions between variables. Bayesian network
semantics may be summarized as follows:

1. Nodes and Random Variables: In the Bayesian network, each node represents a random
variable. Depending on the application, the random variables might be discrete, continuous,
or a combination of the two.

2. Edges and Conditional Dependencies: The directed edges that connect nodes express
conditional dependencies between the random variables that they are linked with. An arc
connecting nodes X and Y indicates that Y is conditionally reliant on X. To put it another
way, the value of Y is determined by the value of X.

127

Artificial Intelligence

3. Conditional Probability Tables (CPTs): Conditional probability tables (CPTs) are used
to quantify conditional dependencies. A conditional probability distribution for a node Y
given the values of its parents in the graph the nodes with incoming arcs to Y is specified
by a CPT. Each element in the CPT reflects the likelihood of a certain value of Y given its
parents' values.

4. Chain Rule of Probability: By applying the chain rule of probability to the network's
graphical structure, the joint probability distribution of all variables in the Bayesian
network is produced. We may describe the joint probability as a product of the individual
conditional probabilities represented by the CPTs using the chain rule.

5. Bayes' Theorem: A key rule utilized in Bayesian networks to accomplish probabilistic
inference is the Bayes' Theorem. It enables us to adjust the probability of the network's
nodes random variables in response to fresh evidence or observations. Bayesian networks
allow for probabilistic inference, such as determining the posterior probability of
unobserved variables or forecasting the likelihood of future occurrences. Variable
elimination, belief propagation, and Monte Carlo sampling techniques such as Markov
Chain Monte Carlo (MCMC) may all be used to accomplish inference.

6. Causal Reasoning: For causal reasoning, Bayesian networks may be utilized, with the
direction of the edges indicating causal links between variables. This enables us to reason
about the effects of interventions and forecast the outcomes of activities.

Bayesian networks provide a strong and logical framework for describing and reasoning in the
face of uncertainty. Their semantics provide for a clear understanding of probabilistic
dependencies, conditional linkages, and causal links between variables, making them useful tools
in a variety of disciplines such as artificial intelligence, machine learning, decision support
systems, and expert systems [9]–[11].

Conditional Distributions Effectively Represented

Efficient conditional distribution representation is critical in many probabilistic models and
inference procedures. The representation should allow for compact storage and efficient
calculations, particularly when dealing with numerous variables or high-dimensional data. Here
are some typical approaches for encoding conditional distributions efficiently. Conditional
probability tables (CPTs) are a simple and straightforward means of representing conditional
distributions in Bayesian networks. The CPT of each node in the network provides the probability
of its values given the values of its parents. While CPTs are simple in small networks, they become
unworkable in big networks with numerous variables since the number of parameters rises
exponentially with the number of parent combinations.

In many circumstances, conditional distributions may be expressed by breaking the joint
distribution down into smaller components. This factorization may take advantage of variable
conditional independence, resulting in a more compact form. This concept is used by factor graphs
and probabilistic graphical models (PGMs) to effectively depict complicated joint distributions.
When there are numerous zero probabilities in the conditional distributions as in high-dimensional
data, sparse representations may be utilized to retain just the non-zero elements, lowering memory
needs and speeding up calculations.

Tree-structured models, such as Bayesian networks with tree structures, provide efficient
representations and inference techniques. The tree structure is used by belief propagation and
junction tree algorithms to effectively calculate marginal probabilities. Parametric models use a

128

Artificial Intelligence

collection of parameters to approximate the conditional distribution. To approximate continuous
conditional distributions, for example, Gaussian or other parametric distributions may be
employed, decreasing the number of parameters necessary. Non-parametric models, such as kernel
density estimation or Dirichlet process models, may give flexible representations of conditional
distributions without assuming certain functional forms, although they may need greater
processing resources. Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC), are
effective for estimating complicated conditional distributions. They create samples from the
distribution of interest via random sampling, enabling for approximation inference in instances
when precise calculations are impractical. Scalability and performance in various probabilistic
models and inference algorithms rely on efficient representation of conditional distributions. The
representation chosen is determined by the specific problem, the distribution's complexity, and the
computational resources available. When choosing a suitable representation for a given
application, the trade-offs between accuracy, computational efficiency, and memory usage must
be carefully considered.

DISCUSSION

Exact Investigation In Bayesian Networks

In Bayesian networks, exact inference refers to the process of calculating the exact probabilities
of specific events or variables in the network based on the joint probability distribution represented
by the network's structure and parameters. Exact inference involves computing exact probabilities
without relying on approximations or sampling methods. There are several algorithms for exact
inference in Bayesian networks:

Variable Elimination: Variable elimination is a general-purpose algorithm used for exact
inference in Bayesian networks. It exploits the factorization of the joint probability distribution to
efficiently compute marginal probabilities of individual variables or conditional probabilities of
specific events. The algorithm performs a series of factor operations summing or maximizing over
variables to eliminate variables and eventually obtain the desired probabilities.

Junction Tree Algorithm: The junction tree algorithm is an extension of variable elimination
designed to work with more complex network structures, including cycles. It constructs a junction
tree from the Bayesian network, which represents the dependencies between variables in a tree-
like structure. The algorithm then performs message passing through the tree to compute the exact
probabilities.

Exact Inference in Special Cases: For certain types of Bayesian networks with specific
structures, exact inference can be performed more efficiently. For example, exact inference is
straightforward in tree-structured Bayesian networks, where variable elimination or junction tree
algorithms can be applied efficiently.

Enumeration: For small Bayesian networks with a limited number of variables and states, exact
inference can be achieved through simple enumeration. Enumerating all possible combinations of
values for the variables and calculating the joint probabilities directly provides the exact results.
However, this approach becomes computationally infeasible as the number of variables and their
states increases.

Dynamic Programming: In some cases, dynamic programming techniques can be used to
efficiently calculate the joint probabilities or marginals in Bayesian networks. Dynamic

129

Artificial Intelligence

programming is particularly useful for networks with a recursive structure, such as hidden Markov
models. It is important to note that exact inference in Bayesian networks can become
computationally expensive, especially for large networks or networks with cycles. In practice,
approximate inference techniques, such as sampling-based methods Markov Chain Monte Carlo
or variational methods, are often used to perform inference in complex Bayesian networks when
exact methods are not tractable. The choice of the exact inference algorithm depends on the
network's structure, size, and the specific probabilities of interest. Exact inference can provide
precise results when feasible, but approximate methods may be necessary for more complex
networks.

Variable Ordering and Variable Relevance

Variable ordering and variable relevance are two important concepts in exact inference algorithms
for Bayesian networks. They both play a significant role in the efficiency and effectiveness of
these algorithms. Variable ordering refers to the specific sequence in which variables are
eliminated or processed during the inference process. In exact inference algorithms like variable
elimination and junction tree, the order in which variables are eliminated can significantly impact
the computational complexity and memory requirements of the algorithm. Choosing an
appropriate variable ordering can lead to more efficient computations and faster convergence. The
choice of variable ordering can be critical in avoiding the so-called exponential explosion problem.
The computational complexity of exact inference algorithms can grow exponentially with the
number of variables and their interactions.

By selecting a suitable variable ordering, the number of operations or the size of intermediate
factors can be reduced, leading to more efficient inference. Min-Fill is a commonly used heuristic
that selects the variable that minimizes the number of additional edges that need to be added to the
graph to make it a chordal graph a graph with no induced cycles. This heuristic aims to reduce the
complexity of variable elimination. Weighted Min-Fill is an extension of Min-Fill that takes into
account the sizes of the factors resulting from elimination. It aims to minimize both the number of
fill edges and the size of intermediate factors. Min-Neighbors selects the variable with the
minimum number of neighbors in the graph. This heuristic aims to identify the variable with the
smallest impact on the rest of the variables.

Variable relevance refers to the importance of individual variables in influencing the probabilities
of interest in the Bayesian network. Some variables may have a significant impact on the final
probabilities, while others may have little or no influence. Identifying the most relevant variables
can help prioritize the computation and improve the efficiency of exact inference algorithms. There
are various measures of variable relevance, such as mutual information, conditional mutual
information, and sensitivity analysis. These measures can be used to rank the variables based on
their impact on the target probabilities or their contribution to the uncertainty in the inference. By
considering variable relevance when selecting the variable ordering, it is possible to focus on the
most important variables first, potentially obtaining approximate results faster. This strategy can
be particularly useful when dealing with large and complex Bayesian networks, as it allows the
algorithm to concentrate its efforts on the most influential variables. In summary, variable ordering
and variable relevance are essential considerations in exact inference algorithms for Bayesian
networks. By choosing a suitable variable ordering and accounting for variable relevance, the
efficiency and accuracy of the inference process can be improved, making exact inference more
feasible for larger and more complex networks.

130

Artificial Intelligence

Clustering Algorithms

Clustering algorithms are unsupervised machine learning techniques that group similar data points
together in the same cluster based on their similarities or proximity in a given feature space. The
goal of clustering is to partition data into homogeneous groups, where data points within each
group are more similar to each other than to those in other groups.

Clustering is widely used in various fields, including data analysis, pattern recognition, image
segmentation, and recommendation systems. Here are some common clustering algorithms:

1. K-Means Clustering: K-Means is one of the most popular and simple clustering
algorithms. It aims to partition data into K clusters, where each cluster is represented by its
centroid. The algorithm iteratively assigns data points to the nearest centroid and updates
the centroids based on the mean of the assigned points until convergence.

2. Hierarchical Clustering: Hierarchical clustering creates a tree-like structure of clusters
by recursively merging or splitting clusters based on their similarity. The algorithm can be
agglomerative or divisive . Agglomerative starts with each data point as its cluster and
repeatedly merges the closest clusters until only one cluster remains. Divisive starts with
all data points in one cluster and recursively divides it into smaller clusters.

3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise): DBSCAN is
a density-based clustering algorithm that groups data points based on their density and
connectivity. It identifies core points data points with enough neighboring points within a
specified radius and expands clusters from these core points.

4. Mean Shift Clustering: Mean Shift is an iterative clustering algorithm that seeks to find
the modes of the underlying data distribution. It shifts data points towards the mode of their
local density, thereby finding the cores of clusters.

5. Gaussian combination Model (GMM): GMM is a probabilistic model that assumes data
points are created from a combination of various Gaussian distributions. The program
calculates the parameters of these Gaussians using the Expectation-Maximization (EM)
algorithm and allocates data points to the most probable Gaussian distribution, therefore
clustering the data.

6. Affinity Propagation: Affinity Propagation is a message-passing algorithm that assigns
data points to exemplars representative points based on message passing between data
points. Exemplars function as cluster centers, and data points are given to the closest
exemplar.

7. Spectral Clustering: Spectral clustering turns data points into a graph, where the edges
reflect pairwise similarities. It then employs graph-based methods, such as spectral
decomposition or graph cuts, to segment the graph into clusters.

Each clustering technique has its benefits and drawbacks and is ideal for various kinds of data and
applications. The choice of the clustering technique relies on the data properties, the intended
number of clusters, and the degree of interpretability necessary for the output. Additionally, certain
algorithms may be more sensitive to noise or outliers, while others may tolerate irregularly formed
clusters well. It is vital to understand the nature of the data and the features of the clustering
algorithms before picking the best suited one for a certain job.

131

Artificial Intelligence

Models of Rationality and First-Order Probability

The terms rational probability model and first-order probability model appear to be
interchangeable, as they are not standard terminologies in probability theory or statistics. However,
I can explain two key concepts: rational behaviour and first-order probability model.

1. Rational Behaviour: Rational behaviour refers to the assumption that individuals or agents
make decisions that maximize their expected utility or achieve their goals given the available
information. In the context of decision theory and game theory, rational behaviour assumes that
individuals act logically, consistently, and in accordance with their preferences. Individuals
evaluate the potential outcomes of their actions, consider the probabilities of various events
occurring, and choose the action that yields the highest expected utility or value. It is important to
note that the concept of rationality can change depending on the context and the assumptions made
about an individual's knowledge and beliefs.

2. First-order Probability Model: A first-order probability model is a formalism in logic and
knowledge representation that combines probability theory and first-order logic. First-order logic
allows for the representation of quantified variables, relationships between objects, and more
complex logical statements. By incorporating probability into first-order logic, one can reason
about uncertain or probabilistic relationships among entities. First-order probability models are
often used in probabilistic logic programming, statistical relational learning, and other areas where
uncertainty and complex relationships need to be captured and reasoned about. These models
enable the representation of uncertain knowledge, making them suitable for reasoning in domains
with incomplete or noisy information. In summary, rational behavior refers to decision-making
that is consistent with maximizing expected utility, while a first-order probability model combines
probability theory with first-order logic to represent and reason about uncertain relationships
among entities. These notions pertain to separate fields of research, yet they are both crucial in
understanding decision-making under uncertainty and modeling complicated probabilistic
interactions.

Relational Probability Models

Relational probability models, also known as statistical relational models or probabilistic graphical
models with relational data, are a class of models that combine probability theory with first-order
logic to handle uncertainty and complex relationships among entities in relational databases or
knowledge bases. These models are used to express and reason about probabilistic relationships
among objects or entities and their properties in a relational framework. Relational probability
models are especially useful in fields where data is organized as a collection of connected entities,
and standard statistical approaches may not adequately capture the dependencies and correlations
contained in the data. Some essential characteristics of relational probability models include:

1. First-Order Logic: Relational probability models employ first-order logic to express
connections among entities and their properties. This logic allows for the quantification of
variables, assertions of rules, and the development of sophisticated logical statements that
encapsulate the interconnections in the data.

2. Probabilistic Graphical Models: Relational probability models are typically expressed as
probabilistic graphical models, such as Bayesian networks or Markov logic networks.
These graphical models offer a clear and concise depiction of probabilistic dependencies
and conditional interactions among entities and attributes.

132

Artificial Intelligence

3. Uncertain Connections: Relational probability models may cope with uncertain or partial
information in the data, allowing for the modeling of missing values, noisy observations,
and ambiguous connections.

4. Inference and Learning: Inference algorithms in relational probability models entail
reasoning about the probabilities of unseen entities or attributes given observed data.
Learning algorithms may also be used to estimate the parameters of the models from data.

5. Applications: Relational probability models have applications in various fields, including
knowledge base completion, link prediction, social network analysis, information
extraction, and recommender systems.

Relational probability models bridge the gap between probabilistic reasoning and relational data
representation, making them effective tools for modeling and reasoning about large systems with
interrelated elements. They offer a versatile and expressive framework to manage uncertainty and
interdependence in relational databases and knowledge bases, allowing more accurate and
insightful analysis in many applications.

Open-Universe Probability Models

Open-universe probability models, also known as open-world or open-domain probability models,
are a type of probabilistic models that explicitly account for the uncertainty regarding the existence
or identity of objects in the universe or region of interest. These models are meant to manage
circumstances when the data or knowledge may be imperfect, and there could be unknown or
undiscovered things. Open-universe probability models are especially significant in fields where
the universe of entities is not completely known or continually increasing, such as natural language
processing, information retrieval, and knowledge graphs. In contrast, closed-world assumptions
assume that all relevant entities and their relationships are explicitly represented in the data, and
anything not explicitly represented is considered false or unknown. This assumption might lead to
erroneous outcomes when dealing with inadequate or dynamic data. Key aspects of open-universe
probability models include:

1. Unknown or Unobserved Entities: Open-universe probability models allow for the
expression of ambiguity regarding the existence or identification of entities. At the time of
modelling or inference, entities may be known, observed, or completely unknown.

2. Partial Information: These models can handle partial or incomplete information, such as
missing or uncertain relationships or entity attributes.

3. Probabilistic Reasoning: To reason about uncertain information, open-universe
probability models employ probability theory. They enable the quantification of
uncertainty and the making of probabilistic inferences about the existence or properties of
entities. In open-universe probability models, inference entails calculating the probabilities
of unobserved entities or relationships given the observed data and model parameters.
Open-universe probability models are widely used in a variety of applications, including
information extraction from unstructured text, question answering systems, knowledge
graph completion, and social network link prediction.

The following are some specific approaches and models that fall under the category of open-
universe probability models. A probabilistic programming framework for dealing with uncertainty
and open-world assumptions. It enables the specification of soft truth values, which represent
different levels of belief in the truth of statements. OpenIE (Open Information Extraction) systems
extract information from text without assuming a fixed set of entities or relationships, allowing for

133

Artificial Intelligence

the discovery of new facts and relationships. In open-domain question answering systems, answers
can come from a variety of sources and are not restricted to a predefined set of entities or
relationships. Open-universe probability models are useful in situations where the world is vast,
constantly changing, or knowledge is incomplete or uncertain. These models provide a more
realistic and flexible approach to reasoning and inference in complex and dynamic environments
by explicitly considering uncertainty and open-world assumptions.

The Dempster-Shafer theory represents ignorance.

Dempster-Shafer theory, also known as belief function theory or evidence theory, is a
mathematical framework for representing and reasoning with uncertainty and ignorance in a
principled manner. It allows you to combine evidence from multiple sources and deal with
incomplete or contradictory data. When there is uncertainty about the true state of affairs and
probabilities are not well-defined or available, the theory is especially useful. The concept of a
belief function, also known as a mass function, is central to Dempster-Shafer theory. A belief
function is a mathematical function that assigns levels of belief to different sets of outcomes in a
given space. The mass function reflects the available evidence for various outcomes and can be
interpreted as a measure of the degree of belief in each possibility. Dempster-Shafer theory's key
concepts include:

1. Basic Probability Assignment (BPA): The belief function assigns a non-negative value
to each subset of the outcome space, which is known as the basic probability assignment.
The sum of the basic probabilities over all subsets is equal to 1, reflecting the total belief
in all possible outcomes.

2. Ignorance and the Mass Function: In situations of ignorance, where there is no specific
evidence for or against certain outcomes, the belief function assigns a mass to the set of all
possible outcomes, representing a state of uncertainty or lack of knowledge.

3. Combining Evidence: When evidence from multiple sources is available, Dempster-
Shafer theory allows for combining belief functions to obtain a new belief function that
incorporates the evidence from all sources. The combination process uses a mathematical
operation known as Dempster's rule of combination.

4. Discounting and Conflict: Dempster-Shafer theory provides a way to handle conflicting
evidence or inconsistent beliefs. Conflict arises when the total mass assigned to the union
of two sets exceeds 1. The conflict can be discounted to restore coherence to the belief
function.

5. Mass Transfer: In Dempster-Shafer theory, evidence is often represented in terms of
belief functions derived from different sources or sensors. The idea of mass transfer
illustrates how belief functions are modified as new evidence becomes available.

Dempster-Shafer theory is frequently employed in domains such as artificial intelligence, decision
theory, pattern recognition, and data fusion. It offers a flexible and resilient framework for
modeling uncertainty, incorporating data from many sources, and reasoning under incomplete or
contradictory knowledge. However, it may be computationally costly, particularly for vast spaces
of outcomes, and may need careful processing of competing information to achieve meaningful
findings. In polytrees, precise inference requires time linear in the size of the network. In the
general scenario, the issue is unsolvable. Stochastic approximation methods such as likelihood
weighting and Markov chain Monte Carlo may produce acceptable approximations of the real
posterior probability in a net , and can deal with considerably bigger networks than can accurate

134

Artificial Intelligence

algorithms. Probability theory may be linked with representational notions from first-order logic
to develop highly strong systems for reasoning under uncertainty. Relational probabil ity models
(RPMs) incorporate representational requirements that provide a well-defined probability
distribution that may be described as an analogous Bayesian network. Open universe probability
models manage existence and identity uncertainty, creating prob ablity distributions across the
infinite range of first-order potential universes. Various alternative strategies for reasoning under
uncertainty have been offered. Gen erally speaking, truth-functional systems are not well suited
for such reasoning.

CONCLUSION

This chapter has discussed Bayesian networks, a well-developed model for uncertain information.
Bayesian networks provide a function approximately equivalent to that of propositional logic for
certain knowledge. A Bayesian network is a directed acyclic graph whose nodes correspond to
random variables; each node has a conditional distribution for the node, given its parents. Bayesian
networks give a succinct technique to depict conditional independence rela tionships in the
domain. A Bayesian network describes a complete joint distribution; each joint entry is defined
as the product of the corresponding entries in the local conditional distributions. A Bayesian
network is typically exponentially smaller than an explicitly enumerated joint distribution. Many
conditional distributions may be expressed compactly by canonical families of distributions.
Hybrid Bayesian networks, which incorporate both discrete and continuous variables, employ a
variety of canonical distributions. Inference in Bayesian networks entails determining the
probability distribution of a collection of query variables, given a set of evidence variables. Exact
inference techniques, such as variable elimination, assess sums of products of conditional
probabilities as effi ciently as feasible.

REFERENCES:

[1] A. Denovan, N. Dagnall, K. Drinkwater, A. Parker, and P. Clough, “Perception of risk and
terrorism-related behavior change: Dual influences of probabilistic reasoning and reality
testing,” Front. Psychol., 2017, doi: 10.3389/fpsyg.2017.01721.

[2] C. Primi, M. A. Donati, and F. Chiesi, “A mediation model to explain the role of
mathematics skills and probabilistic reasoning on statistics achievement,” Stat. Educ. Res.

J., 2016, doi: 10.52041/serj.v15i2.246.

[3] A. Denovan, N. Dagnall, K. Drinkwater, and A. Parker, “Latent profile analysis of
schizotypy and paranormal belief: Associations with probabilistic reasoning performance,”
Front. Psychol., 2018, doi: 10.3389/fpsyg.2018.00035.

[4] F. Costello and P. Watts, “Invariants in probabilistic reasoning,” Cogn. Psychol., 2018, doi:
10.1016/j.cogpsych.2017.11.003.

[5] K. A. Clements, S. L. Gray, B. Gross, and I. M. Pepperberg, “Initial evidence for
probabilistic reasoning in a grey parrot (Psittacus erithacus),” J. Comp. Psychol., 2018, doi:
10.1037/com0000106.

[6] D. Osherson, D. Perani, S. Cappa, T. Schnur, F. Grassi, and F. Fazio, “Distinct brain loci in
deductive versus probabilistic reasoning,” Neuropsychologia, 1998, doi: 10.1016/S0028-
3932(97)00099-7.

135

Artificial Intelligence

[7] M. Heyvaert, M. Deleye, L. Saenen, W. Van Dooren, and P. Onghena, “How do high school
students solve probability problems? A mixed methods study on probabilistic reasoning,”
Int. J. Res. Method Educ., 2018, doi: 10.1080/1743727X.2017.1279138.

[8] K. Apajalahti, E. Hyvönen, J. Niiranen, and V. Räisänen, “Combining ontological
modelling and probabilistic reasoning for network management,” J. Ambient Intell. Smart

Environ., 2017, doi: 10.3233/AIS-160419.

[9] Tulupyev, Nikolenko, and Sirotkin, “Cycles in Bayesian networks: probabilistic semantics
and relations with neighboring nodes,” SPIIRAS Proc., 2014, doi: 10.15622/sp.3.14.

[10] L. Zhou, L. Wang, L. Liu, P. Ogunbona, and D. Shen, “Learning discriminative Bayesian
networks from high-dimensional continuous neuroimaging data,” IEEE Trans. Pattern

Anal. Mach. Intell., 2016, doi: 10.1109/TPAMI.2015.2511754.

[11] G. A. Davis, “Bayesian reconstruction of traffic accidents,” Law, Probab. Risk, 2003, doi:
10.1093/lpr/2.2.69.

136

Artificial Intelligence

CHAPTER 15

PROBABILISTIC REASONING OVER TIME:

MODELING DYNAMIC UNCERTAINTY IN AI

Ashish Bishnoi, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- ashishbishnoi04@gmail.com

ABSTRACT:

To the degree that their sensors allow, agents in partly visible surroundings must be able to keep
track of the present state. We demonstrated a mechanism for doing so an agent maintains a belief
state that reflects which world states are now conceivable. The agent can forecast how the world
will change in the next time step based on the belief state and a transition model. The agent may
update the belief state based on the percepts seen and a sensor model. This is a common
misconception: in the past, belief states were represented by explicitly listed sets of states; now,
they are represented by logical formulae. Those techniques described belief states in terms of
which world states were feasible, but they couldn't indicate whether those states were probable or
unlikely. We utilize probability theory in this chapter to measure the degree of belief in items of
the belief state. As shown, time is handled in the same manner that a changing world is modelled
by utilizing a variable for each feature of the world state at each moment in time. The transition
and sensor models are both potentially uncertain the transition model represents the probability
distribution of the variables at time t given the state of the world in the past, whilst the sensor
model describes the likelihood of each percept at time t given the current state of the world. covers
the fundamental inference problems and discusses the overall structure of inference algorithms for
temporal models.

KEYWORDS:

Data, Filter, Model, System, Time.

INTRODUCTION

We created our probabilistic reasoning tools in the setting of static worlds, where each random
variable has a single fixed value. When fixing an automobile, for example, we presume that
whatever is broken stays broken throughout the diagnostic procedure; our task is to deduce the
status of the car from observable data, which likewise remains fixed. Consider a somewhat
different situation: caring for a diabetic patient.

We have proof such as recent insulin dosages, food consumption, blood sugar measurements, and
other physical symptoms, much as in the case of auto maintenance. The job is to examine the
patient's present condition, including blood sugar and insulin levels. We may make a decision
regarding the patient's food intake and insulin dosage based on this information.

Unlike in the case of automobile maintenance, the dynamic components of the issue are critical
here. Blood sugar levels and readings may fluctuate quickly over time, based on recent meal
consumption and insulin dosages, metabolic activity, time of day, and other factors [1]–[3]. We
must model these changes in order to evaluate the present condition based on the history of

137

Artificial Intelligence

evidence and forecast the effects of therapeutic efforts. The same issues emerge in a variety of
different circumstances, such as monitoring the whereabouts of a robot, tracking a country's
economic activities, and making meaning of a spoken or written sequence of words. How may
such dynamic circumstances be modelled?

Sensor and Transition Models

Transition and sensor models are two key components of many probabilistic modelling
frameworks, notably in state estimation, filtering, and control. These models are utilized in a
variety of applications, including as robotics, autonomous systems, and signal processing. Let's
take a closer look at each of these models:

1. Transition Model

The transition model depicts the evolution of the system's state across time. It depicts the
probability link between the system's present state and its future state in response to a control input
or action. Typically, the transition model is stated as a probability distribution that encapsulates
the uncertainty associated with state changes. The transition model is often described as a
conditional probability distribution in the context of dynamic systems:

(P(X_t | X_t-1, U_t)

where:

 X_t represents the system's condition at time t.

 X_t-1 is the system's state at the preceding time step (t-1).

 U_t denotes the system's control input or action at time t.

The transition model serves as the basis for recursive state estimation techniques like as the
Kalman filter, extended Kalman filter (EKF), and particle filter, which utilize it to estimate the
system's future state given previous states and control inputs.

2. Sensor Model

The sensor model describes how measurements or observations are connected to the system's real
state. It depicts the probability distribution of sensor data given the system's underlying state.
Sensor models are used in the state estimation process to accommodate noisy and ambiguous data
[4]–[6]. The sensor model is often expressed as a conditional probability distribution in the context
of dynamic systems:

P(Z_t | X_t)

where:

 Z_t is the measurement or observation taken at time t from the sensors.

 X_t represents the system's real condition at time t.

The sensor model is critical in recursive filtering methods such as the Kalman filter and particle
filter, where it is utilized to update the system's predicted state based on fresh sensor readings.

138

Artificial Intelligence

Both transition and sensor models are essential components of probabilistic filtering techniques
such as the Kalman filter, particle filter, and variations thereof. Because these models include
uncertainty and noise into the estimating process, they are strong instruments for state estimation
and control in dynamic and unpredictable contexts.

Interdependence in the termporal model

Interference in temporal models refers to the interaction of multiple temporal components or
entities in the model, which might result in dependencies or correlations between them.
Interference plays an important role in understanding the dynamics and forecasting future
behaviour in temporal models, which try to capture the connections and patterns in time-varying
data. Time series analysis, dynamic Bayesian networks, hidden Markov models, and other
temporal probabilistic models may all exhibit interference [7]–[9]. The following are some
examples of prevalent forms of interference in temporal models:

1. Interference occurs when data points or occurrences at distinct time steps are dependent on
one another. In a time series, for example, the value of a variable at a given time point may
be determined by its prior values. The current hidden state in a hidden Markov model is
determined by the preceding hidden state.

2. When the influence of an event or signal at one time step propagates to future time steps,
this is referred to as lag interference. It is especially important in time series analysis and
signal processing, because the value at a given time step might impact subsequent values
with a temporal delay.

3. Cross-temporal interference occurs when distinct temporal components or entities interact
or correlate. In a dynamic Bayesian network, for example, the state of one variable at one
moment may be modified by the state of another variable at a later time.

4. In state estimation tasks like as tracking or filtering, interference refers to how previous
observations, control inputs, and the model's transition and sensor functions impact the
estimate of the present state.

5. Interference may also reflect the concept of temporal causality, in which actions in the past
have a causal impact on occurrences in the future. grasp the causal linkages between
occurrences in time requires a grasp of temporal causality.

6. In real-world temporal data, there is often noise and uncertainty connected with
observations and model parameters. In order to account for these elements in the temporal
model, interference with noise and uncertainty must be included.

Understanding interference in temporal models is critical for accurate time-varying data
modelling, prediction, and inference. To successfully control interference and capture temporal
relationships and patterns, several approaches such as dynamic programming, recursive filtering
algorithms, and probabilistic graphical models are utilized. Properly modelling interference may
lead to enhanced performance in dynamic system activities such as forecasting, anomaly detection,
and control .

Filtering and Forecasting

Filtering and prediction are two key tasks in temporal data analysis, especially when it comes to
state estimation and time series forecasting. Both jobs include generating predictions about a
system's future state or behaviour based on observable data up to a given point in time. Filtering
is the process of approximating a system's current state given a series of observations up to the

139

Artificial Intelligence

present moment. It's also known as state estimate or data assimilation. The goal of filtering is to
determine the best approximation of the present state of the system, taking into account the
uncertainty in the observations as well as the system's dynamics. The Kalman filter for linear
Gaussian systems is a popular filtering method. Based on the observed measurements and the
system's transition model, the Kalman filter iteratively updates the state estimate. It efficiently
balances the impact of observations and forecasts to get an ideal estimate with the lowest mean
squared error. The extended Kalman filter (EKF) and the particle filter also known as the Monte
Carlo filter are often employed for filtering jobs in non-linear or non-Gaussian systems. The EKF
linearizes non-linear system dynamics, while the particle filter depicts the state estimate as a
collection of particles, allowing for a more flexible approach to dealing with non-linearities and
non-Gaussian noise [10], [11].

Prediction

Prediction is the challenge of anticipating a system's future state or behaviour based on previous
data up to a given point in time. It entails utilizing existing knowledge to project the system's
condition ahead in time while accounting for the inherent uncertainty in the prediction process.
Prediction models are used in time series forecasting to produce forecasts beyond the observable
data. Time series prediction techniques such as autoregressive integrated moving average
(ARIMA), exponential smoothing, and seasonal decomposition of time series (STL) are commonly
employed.

For time series forecasting, machine learning techniques such as neural networks and support
vector machines are often used, allowing for more complicated and data-driven forecasts. In
conclusion, filtering and prediction are important activities in temporal data analysis. Filtering is
the process of estimating the current state of a system given a series of observations up to the
present moment, which is often done using methods like as the Kalman filter, EKF, or particle
filter. Prediction is anticipating a system's future state or behaviour based on previous data,
generally using time series forecasting methods or machine learning techniques. Both tasks are
critical in a broad variety of applications, including as robotics, finance, weather forecasting, and
control systems, where understanding and predicting system temporal behaviour is critical. The
method of calculating the distribution across previous states is known as smoothing.

DISCUSSION

Smoothing differs from filtering in that the purpose of filtering is to estimate the current state of a
system given only prior observations up to the present moment. Smoothing makes use of the whole
history of observations, both past and future, to generate a more precise and refined approximation
of the system's prior states.

The Rauch-Tung-Striebel (RTS) smoother, an extension of the Kalman filter for linear Gaussian
systems, is one of the most well-known smoothing methods. To generate smoothed estimates of
the system's previous states, the RTS smoother uses the full observation sequence and performs a
backward pass following the forward run of the Kalman filter. Similar smoothing approaches, such
as the extended Rauch-Tung-Striebel (ERTS) smoother for the extended Kalman filter or the
particle smoother for particle filtering, may be used for non-linear or non-Gaussian systems.

Smoothing is especially useful when historical data is being corrected or updated, or when the
available observations at the time are noisy or inadequate. Smoothing may increase the accuracy

140

Artificial Intelligence

of predicted previous states and create a more coherent and consistent representation of the
system's history by including future knowledge. It's commonly utilized in domains including signal
processing, finance, and robotics, where precise and trustworthy estimations of prior conditions
are critical for decision-making and analysis.

Backward-Forward Algorithm

When the underlying state sequence is not observable, the forward-backward approach, also
known as the forward-backward process or the Baum-Welch algorithm, is used to estimate the
parameters of hidden Markov models (HMMs). HMMs are probabilistic models that are
extensively used in voice recognition, natural language processing, and bioinformatics to represent
sequential data with hidden states. There are two kinds of variables in HMMs:

Observable Variables: These are the data that can be seen at each time step.

Hidden Variables: These are the system's unobservable or latent states that produce the observed
data.

The forward-backward approach seeks the greatest likelihood estimates of model parameters such
as transition probabilities between hidden states and emission probabilities for observable
variables. The algorithm is divided into two major steps:

Forward Pass: The forward pass is when the algorithm computes the forward probabilities, also
known as alpha values, which are the chances of witnessing the partial sequence of observable
variables up to a specific time step given the model parameters. The following equations are used
to compute the forward probability recursively:

a_t(i) = P(O_1, O_2,..., O_t, q_t = S_i |) = [_j=1N a_t-1(j) * a_ij] * b_i(O_t) * a_i(O_t)

where:

 t denotes the time step.

 i and j are the concealed states.

 a_t(i) is the forward probability of state i at time t.

 a_ij is the chance of transitioning from state i to state j.

 b_i(O_t) denotes the probability of witnessing the observable variable O_t given the state S_i.

Backward Pass: During the backward pass, the algorithm computes the backward probabilities,
also known as beta values, which are the chances of observing the partial sequence of observable
variables from a certain time step to the end of the sequence given the model parameters. The
following equations are used to compute the backward probabilities recursively:

b_t(i) = P(O_t+1, O_t+2,..., O_T | q_t = S_i,) = _j=1N (a_ij * b_t+1(j) * b_j(O_t+1))

where:

T represents the total number of time steps.

Estimating Model Parameters: After computing the forward and backward probabilities, the
Baum-Welch step is used to update the model parameters, including the transition and emission

141

Artificial Intelligence

probability. The Expectation-Maximization (EM) technique is used to perform these updates,
which include maximizing the log-likelihood of the observed data given the model.

The forward-backward technique makes forward and backward passes repeatedly and updates the
model parameters until convergence, improving the estimations of the hidden states and model
parameters. When the state sequence is unobservable, the forward-backward approach is an
essential tool for training hidden Markov models. It is commonly used in applications that need
the modelling and analysis of sequential data with hidden structures, such as voice recognition,
part-of-speech tagging, and bioinformatics.

Smoothing With s Fixed Latency

Definite-lag smoothing is a smoothing procedure used in temporal data analysis in which the aim
is to estimate the previous states of a system given the whole sequence of observations up to the
current time with a definite number of steps into the past. Unlike classic smoothing techniques,
which utilize all available data to estimate prior states, fixed-lag smoothing only uses a restricted
amount of past time steps to estimate past states. When computing restrictions or real-time
processing requirements limit the capacity to utilize all available data for smoothing, the fixed-lag
smoothing technique comes in handy. Fixed-lag smoothing may greatly minimize the computing
overhead while still delivering relatively accurate estimates of prior states by restricting the
number of past time steps to examine. The major processes of fixed-lag smoothing are similar to
those used in older smoothing algorithms, such as the Rauch-Tung-Striebel (RTS) smoother in the
Kalman filter:

1. Forward Pass: The forward pass, like filtering, estimates the current state of the system based
on observations up to the present time.

2. Backward Pass: Instead of examining the complete sequence of observations, fixed-lag
smoothing only examines a set number of prior time steps in the backward pass. Using the fixed-
lag constraint, it computes smoothed estimations of the system's previous states. The reverse pass
begins with the current time step and iterates backward for the number of time steps indicated. The
fixed-lag smoothing method often achieves a compromise between complete smoothing accuracy
and filtering computational efficiency. The approach may be used in real-time settings or
circumstances where the whole history of observations is not easily accessible by using a fixed-
lag restriction. Fixed-lag smoothing is widely utilized in a variety of applications, including mobile
robots, sensor fusion, and online state estimation, when accurate and fast estimations of previous
states are needed but computing resources are restricted. The fixed lag is chosen based on the
unique application and the trade-off between computing efficiency and state estimation quality.

Markov model with a hidden Markov chain

A Hidden Markov Model (HMM) is a popular statistical model for modelling sequential data with
hidden states. It is a generative probabilistic model that enables us to express complicated patterns
and relationships in sequential data, where the underlying state sequence is not immediately visible
but effects the observed data. HMMs are used in a wide range of applications, including voice
recognition, natural language processing, bioinformatics, finance, and many more. They are
particularly effective for modelling time series data, when the underlying state or structure is
unknown but may be deduced from the observable data.

142

Artificial Intelligence

Hidden Markov Model Elements

1. Hidden States: The HMM posits an underlying series of hidden states, abbreviated as S_1,
S_2,..., S_T, that forms a Markov chain. Each state denotes a certain condition or state of the
system at a given time step.

2. Observations: The concealed state emits an observable variable at each time step, also known
as an observation or emission. The set of potential observations is designated by the letters O_1,
O_2,..., O_N, and each observation corresponds to a certain hidden state.

3. State Transition Probabilities: The HMM is distinguished by a set of state transition
probabilities, denoted as a_ij, that describe the likelihood of migrating from state S_i to state S_j.
A transition matrix is formed by these transition probabilities.

4. Emission Probabilities: The HMM also contains a set of emission probabilities, represented as
b_i(O_t), which indicate the likelihood of emitting observation O_t if the system is in state S_i at
time t. The HMM contains an initial state distribution, abbreviated as _i, which indicates the chance
of starting in state S_i at the start of the series.

Key Functions of Hidden Markov Models

1. The objective of state estimation is to estimate the sequence of hidden states that best
describes the observable data given a series of observations. This is often performed by the
use of the forward algorithm, commonly known as filtering.

2. The purpose of state sequence decoding is to discover the most probable sequence of
hidden states that produced the seen data. The Viterbi algorithm is used to do this.

3. The process of learning the parameters of the HMM transition probabilities, emission
probabilities, and starting state distribution from a given collection of observed data is
known as parameter estimation. The Expectation-Maximization (EM) technique, notably
the Baum-Welch algorithm, is often used for this.

4. Because of its capacity to capture complex connections and patterns in time series data,
HMMs offer a robust framework for modelling sequential data and have wide applications
in a variety of disciplines.

The Kalman Filter

Kalman filtering is a popular recursive method used to estimate the state of a linear dynamic system
from a sequence of noisy observations. It is named for its originator, Rudolf Kalman, and is
extensively used in control systems, navigation, robotics, and signal processing. When dealing
with systems that are vulnerable to uncertainty and noise, the Kalman filter is very useful.

It combines knowledge of the system's dynamic model with sensor data to offer an optimum
estimate of the system's real state, accounting for errors in both the model and the measurements.

The Kalman Filter's Key Steps

The Kalman filter begins with an initial estimate of the system's state and covariance. The first
estimate is often based on past information or a first observation. Based on the dynamic model of
the system, the Kalman filter forecasts the system's state at the next time step in this phase.

Using the state transition matrix and the control input, the filter predicts the future state of the
system. Using the state transition matrix and the error covariance matrix, the filter predicts the

143

Artificial Intelligence

uncertainty in the state estimate. After predicting the system's state, the Kalman filter considers
the actual measurements from sensors. The following computations are included in this step: The
Kalman gain indicates the forecast and measurement's relative weight.

It is determined by combining the error covariance and the measurement noise covariance. The
difference between the actual measurement and the projected measurement based on the state
prediction is the measurement residual.

By combining the measurement residual and the Kalman gain, the filter updates the state estimate.
After absorbing the measurement information, the filter updates the error covariance to reflect the
decreased uncertainty. As fresh measurements become available, the Kalman filter repeatedly
repeats the prediction and measurement update stages at each time step. It gives an ideal
approximation of the system's real state by continually updating it based on the dynamic model
and sensor readings while taking uncertainties into account.

When sensor readings are noisy or incomplete, and the system's behaviour can be characterized by
a linear dynamic model, the Kalman filter comes in handy. Variants of the Kalman filter, such as
the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), may be used to address
these difficulties in non-linear or non-Gaussian systems.

Gaussian distributions are being updated

The act of altering the parameters of a Gaussian distribution based on new data or knowledge is
referred to as updating Gaussian distributions in statistical modelling. This procedure is popular in
statistical approaches such as Bayesian inference, filtering, and machine learning algorithms. The
mean and variance (2) of a Gaussian distribution, also known as a normal distribution, define it.
We commonly consider two circumstances when updating Gaussian distributions:

Updating with New Observations and Bayesian Inference: In Bayesian inference, we begin
with a prior hypothesis about the parameters of a Gaussian distribution. As fresh data becomes
available, we use Bayes' theorem to update our belief and produce the posterior distribution. The
posterior distribution evolves into a new updated Gaussian distribution that incorporates both prior
knowledge and the probability of fresh data.

Given:

 Gaussian prior distribution: N(_0, _02)

 Likelihood of new data: N(_new, _new2)

The updated Gaussian distribution (posterior) is calculated as follows: N(_post, _post2) = N(_new,
_new2) * N(_0, _02).

The preceding procedure is often depicted as a weighted mixture of the prior and likelihood, with
the weights determined by the prior and data variances.

Filtering in Gaussian Processes and the Kalman Filter: We estimate the state of a dynamic
system given noisy data using filtering techniques such as the Kalman filter. We update the
Gaussian distribution representing the state depending on the most recent observation and the
system's dynamics at each time step.

144

Artificial Intelligence

Given:

Gaussian current distribution: N(_current, _current2)

Probability of a new observation: N(_observation, _observation2)

N(_post, _post2) = N(_observation, _observation2) * N(_current, _current2) is the updated
Gaussian distribution (posterior).

The operation, like the Bayesian inference case, is a weighted mixture of the prior and likelihood.
The updated Gaussian distribution is generated in both circumstances by computing the mean and
variance of the posterior distribution. The practice of updating Gaussian distributions is critical in
many statistical and machine learning techniques because it enables models to adapt to new data
and include uncertainty in a rational way. Gaussian distributions are commonly employed in
statistical applications due to their efficiency and versatility.

Kalman Filtering's Applicability

Because of its capacity to predict the state of a dynamic system from noisy observations in real-
time, Kalman filtering is widely used in a variety of areas and domains. Its adaptability and efficacy
derive from its capacity to deal with uncertainty, generate appropriate estimations, and respond to
changing situations. The following are some of the important areas where Kalman filtering finds
substantial application. Kalman filtering is widely employed in navigation and tracking systems.
Based on sensor readings such as GPS, accelerometers, and gyroscopes, it can determine the
location, velocity, and orientation of moving objects such as automobiles, airplanes, and
spacecraft. Kalman filters are important in control engineering because they offer state feedback
to control systems. The filter can alter control inputs to achieve desired performance or stability in
systems such as autonomous cars, robotics, and industrial automation by properly assessing the
system's state. Kalman filtering is utilized in a variety of signal processing applications, including
voice processing, audio processing, and picture processing.

It has the ability to minimize noise, improve signal quality, and monitor signal fluctuations in real
time. Kalman filtering is used in finance for a variety of applications, including volatility
modelling, option pricing, and portfolio optimization. It can calculate underlying asset values and
volatility based on market prices. Kalman filters may be implemented into machine learning
algorithms for dynamic systems whose state changes over time. Kalman filtering, for example,
may be used in reinforcement learning to predict the state and make better judgments in partly
observable contexts. Kalman filtering is used in multi-sensor systems to integrate information from
numerous sensors to produce more accurate and reliable estimations of the system's state. This is
particularly significant in robots, self-driving cars, and augmented reality applications. Kalman
filtering is used in biomedical applications such as physiological monitoring and medical imaging.
It may be used to reduce noise from medical signals such as ECGs and EEGs, as well as to follow
organ movement in medical imaging. Based on sensor data, Kalman filtering is used in
environmental monitoring to estimate and forecast different factors such as pollution levels,
weather conditions, and water quality. Overall, Kalman filtering is a diverse and strong method
for dynamic system state estimation and prediction. Its versatility makes it a vital tool for
engineers, academics, and practitioners working with real-time data and systems vulnerable to
uncertainty and noise.

145

Artificial Intelligence

Dynamic Bayesian networks and DBN construction

A Dynamic Bayesian Network (DBN) is a sort of probabilistic graphical model that extends the
notion of Bayesian networks to depict time-varying systems. DBNs are especially effective for
modelling temporal dependencies and dynamic processes in a variety of disciplines, including
robotics, finance, healthcare, and natural language processing. A DBN is the joint probability
distribution across a succession of random variables, each of which corresponds to a time step. A
DBN's graphical structure is made up of two major components:

Dynamic Structure: The dynamic structure illustrates the time-dependent relationships between
variables. It is often composed of a chain or a directed acyclic graph (DAG), with each node
representing a random variable at a given time step and directed edges encoding the temporal
connections between variables.

Temporal Conditional Probability Tables (CPTs): The CPTs define the conditional probability
distributions of each variable given its parents variables from the previous time step for each time
step. These probabilities represent how the system's state develops over time depending on
previous states.

Model of Transient Failure

The transient failure model is a concept in reliability engineering and system reliability analysis.
It is a sort of failure that happens in a system but is just transitory or intermittent. Transient failures
are often brief and might occur infrequently as a result of a variety of causes such as ambient
conditions, noise, or momentary malfunctions. Transient failures, as opposed to permanent
failures, which result in the total or long-term breakdown of a system or component, do not
permanently harm the system. Instead, the system may recover from the failure, resume regular
functioning, and continue to operate normally. Transient failures, on the other hand, may have a
major effect on system performance, uptime, and user experience, particularly if they occur often
or in essential components. The transient failure model has the following important characteristics:

1. Transient Failures: Transient failures are brief and unexpected. They may come and
vanish without notice, making them difficult to forecast and identify.

2. Transitory Vs. Permanent Failures: Unlike permanent failures, which involve
component repair or replacement, transitory failures often do not necessitate urgent
maintenance measures. The system may resume normal functioning after the underlying
problem is addressed or removed.

3. Sources of Transient Failures: Electrical noise, temperature changes, radiation impacts,
electromagnetic interference (EMI), software faults, and other transient events in the
environment may all cause transient failures. Although transitory failures can not cause
lasting harm, their cumulative impact on system dependability and availability can be
considerable. Frequent transitory failures might diminish system uptime and need more
maintenance.

4. Detection and Mitigation: It is critical to detect and mitigate transient problems in order
to ensure system dependability. To identify and manage transitory failures gracefully,
techniques like as redundancy, error checking, and fault tolerance systems are often used.

5. Reliability Analysis: The transient failure model may be used into system reliability
models in reliability analysis to analyze overall system performance and anticipate system
availability and mean time between failures (MTBF).

146

Artificial Intelligence

When developing and assessing the dependability of complex systems, system designers and
reliability engineers take transient failures into account, particularly those that operate in harsh or
difficult conditions. Understanding the causes and consequences of transitory failures aids in the
implementation of suitable methods to increase system resilience and sustain consistent
performance in the face of brief disruptions.

CONCLUSION

The broad challenge of expressing and reasoning about proba bilistic temporal processes has been
addressed in this chapter. The changing state of the world is addressed by using a collection of
random variables to represent the state at each moment in time. Representations may be
constructed to meet the Markov property, which states that the future is independent of the past
given the present. This, together with the assumption that the process is stationary that is, the
dynamics do not vary over time simplifies the representation significantly. A temporal probability
model consists of a transition model that describes the state development and a sensor model that
describes the observation process. Filtering, prediction, smoothing, and calculating the most
probable explanation are the primary inference tasks in temporal models. Each of these may be
accomplished using simple, recursive algorithms with run times that are proportional to the length
of the sequence. Hidden Markov models, Kalman filters, and dynamic Bayesian networks which
contain the other two as specific examples were examined in more detail. Exact inference with
numerous state variables is unsolvable unless specific assumptions are established, as in Kalman
filters. The particle filtering technique seems to be a successful approximation approach in
practice. When attempting to maintain track of a large number of items, ambiguity emerges as to
which observations relate to which objects this is known as the data association issue. Although
the number of connection hypotheses is often prohibitively high, MCMC and particle filtering
methods for data association perform admirably in reality.

REFERENCES:

[1] K. Gold and B. Scassellati, “Using probabilistic reasoning over time to self-recognize,” Rob.

Auton. Syst., 2009, doi: 10.1016/j.robot.2008.07.006.

[2] C. Cassisi, M. Prestifilippo, A. Cannata, P. Montalto, D. Patanè, and E. Privitera,
“Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden
Markov Models at Mt. Etna,” Pure Appl. Geophys., 2016, doi: 10.1007/s00024-016-1284-
1.

[3] M. C. Oveneke, I. Gonzalez, V. Enescu, D. Jiang, and H. Sahli, “Leveraging the Bayesian
Filtering Paradigm for Vision-Based Facial Affective State Estimation,” IEEE Trans.

Affect. Comput., 2018, doi: 10.1109/TAFFC.2016.2643661.

[4] D. Yan, L. M. Gades, T. Guruswamy, A. Miceli, U. M. Patel, and O. Quaranta, “A two-
dimensional resistor network model for transition-edge sensors with normal metal features,”
Supercond. Sci. Technol., 2019, doi: 10.1088/1361-6668/ab2b91.

[5] S. Hou, X. Zhang, W. Dai, X. Han, and F. Hua, “Multi-model- and soft-transition-based
height soft sensor for an air cushion furnace,” Sensors (Switzerland), 2020, doi:
10.3390/s20030926.

147

Artificial Intelligence

[6] T. D. O. de Araújo, C. G. R. Dos Santos, R. S. D. A. D. Lima, and B. S. Meiguins, “A model
to support fluid transitions between environments for mobile augmented reality
applications,” Sensors (Switzerland), 2019, doi: 10.3390/s19194254.

[7] N. Gorogiannis and M. Ryan, “Minimal refinements of specifications in model and
termporal logics,” Form. Asp. Comput., 2007, doi: 10.1007/s00165-006-0014-3.

[8] Y. Martínez-Díaz, N. Hernández, and H. Méndez-Vázquez, “Multi-face tracking based on
spatio-temporal detections,” in Intelligent Data Analysis, 2016. doi: 10.3233/IDA-160851.

[9] A. Basiri, P. Amirian, S. Marsh, and T. Moore, “Automatic detection of points of interest
using spatio-termporal data mining,” J. Mob. Multimed., 2015.

[10] D. O. Afanasyev and E. A. Fedorova, “On the impact of outlier filtering on the electricity
price forecasting accuracy,” Appl. Energy, 2019, doi: 10.1016/j.apenergy.2018.11.076.

[11] D. B. Nelson and D. P. Foster, “Filtering and forecasting with misspecified ARCH models
II. Making the right forecast with the wrong model,” J. Econom., 1995, doi: 10.1016/0304-
4076(94)01635-D.

148

Artificial Intelligence

CHAPTER 16

MAKING SIMPLE DECISIONS: FOUNDATIONS OF

RATIONAL AND INTELLIGENT CHOICE

Anu Sharma, Assistant Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- er.anusharma18@gmail.com

ABSTRACT:

In this chapter, we explain how utility theory and probability theory work together to create a
decision-theoretic agent an entity that can make rational choices based on what it thinks and what
it desires. Such an agent can make decisions in situations where uncertainty and competing goals
prevent a logical agent from making a decision a goal-based agent distinguishes between good and
bad states, whereas a decision-theoretic agent has a continuous measure of outcome quality. The
core tenet of decision theory is introduced the maximizing of anticipated utility. We demonstrate
how every rational agent's behaviour may be described by assuming a utility function that is being
maximized. Delves more into the nature of utility functions, particularly their relationship to
discrete amounts such as money. Demonstrates how to handle utility functions are dependent on
many variables. We explain the implementation of decision-making systems in. We develop a
decision network also known as an impact diagram formalism that extends Bayesian networks by
including actions and utilities. The rest of the chapter addresses challenges that occur in decision
theory applications to expert systems.

KEYWORDS:

Choice, Decision, Function, Information, Theory.

INTRODUCTION

Decision theory is an area of mathematics, statistics, and philosophy concerned with making
decisions under uncertainty. It offers a formal framework for rational decision-making with the
goal of maximizing good outcomes and minimizing unfavorable ones. The person or thing in
charge of making choices or decisions is known as a decision maker. A decision problem is a
circumstance or environment in which a decision maker must choose between two or more
possibilities. The several courses of action or alternatives accessible to the decision maker. The
many outcomes or occurrences that may occur, typically with varied degrees of uncertainty. The
consequences or advantages associated with each choice and condition of nature combination.
Payoffs are used to measure whether a result is desirable or undesirable. The subjective ranking or
ordering of options by the decision maker based on their related payoffs. Preferences represent the
values and aspirations of the decision maker [1]–[3].

Decision theory seeks to aid decision makers in determining the best possible course of action by
accounting for the probability of various states of nature as well as the payoffs associated with
each choice and state of nature. There are two techniques to making decisions under uncertainty.
This method assigns probability to various states of nature and calculates the anticipated utility or
expected value of each possibility. The decision maker then selects the option with the highest
projected utility. To arrive at posterior probabilities, Bayesian Decision Theory includes previous

149

Artificial Intelligence

beliefs and updates them with fresh facts. The decision maker may make optimum Bayesian
judgments by mixing prior beliefs and probabilities with payoffs. Decision theory is used in a
variety of sectors, including economics, finance, management, engineering, medicine, and
artificial intelligence. It is especially useful when dealing with difficult choices that include various
aspects and uncertainties. However, decision-making is not always completely rational, and human
biases may impact decisions even when well-defined decision-theoretic frameworks are present
[4]–[6].

MEU (Maximum Expected Utility) premise

The Maximum Expected Utility (MEU) Principle is a fundamental idea in decision theory. It
establishes a normative framework for rational decision-making in the face of uncertainty,
claiming that a rational decision maker should choose the choice that maximizes their anticipated
utility. The Principle of Maximum Expected Utility is explained in detail below:

1. Decision Maker: The decision maker is faced with a choice dilemma with several
possibilities to pick from.

2. States of Nature: There are several conceivable states of nature, each of which
corresponds to a distinct consequence or occurrence.

3. Assigning Probabilities: The decision maker allocates subjective probabilities to the
various states of nature, indicating their beliefs or level of uncertainty about which state of
nature will occur.

4. Payoffs: The decision maker evaluates the payout or utility for each choice and state of
nature combination. The utility expresses the outcome's subjective desire or desirability.

5. Calculating Anticipated Utility: The anticipated utility for each option is determined by
adding the products of the probability of the states of nature and their associated payoffs
for that alternative.

6. Choosing the Best Alternative: The decision maker chooses the option with the greatest
predicted usefulness. According to the MEU principle, this is the most reasonable and best
option.

It should be noted that the MEU principle presumes that the decision maker is logical, consistent,
and has well-defined preferences. Furthermore, the probability attributed to natural states and
utility values are subjective and are dependent on the decision maker's opinions and values. The
MEU principle, although being a key premise in decision theory, has certain limitations. It is
dependent on the capacity of the decision maker to appropriately estimate probabilities and
utilities, which may be difficult in complicated and unpredictable real-world settings. Furthermore,
it does not take into account whether the decision maker is risk-averse or risk-seeking, which might
impact the ultimate choice [7]–[9].

Overall, although the MEU principle serves as a normative baseline for rational decision-making
in the face of uncertainty, real human decision-making often deviates from this ideal owing to
cognitive biases and other psychological variables. As a consequence, researchers are continuing
to investigate departures from predicted utility models in order to obtain insights into human
decision-making behaviour. An ordinal utility function is a concept used in economics and
decision theory to reflect an individual's or decision maker's preferences. It is named ordinal
because it maintains the order of preferences while not quantifying their strength in absolute terms.
To put it another way, it captures which choices are favored over others without giving numerical
numbers to the amount of preference [10], [11].

150

Artificial Intelligence

An ordinal utility function ranks distinct options based on the preferences of the decision maker.
It tells whether one option is preferred, equally desired, or less preferred than another, but it does
not reflect the strength of these preferences. An ordinal utility function is often illustrated
graphically using indifference curves. An indifference curve displays all possible combinations of
two commodities or traits that result in the same degree of utility or pleasure for the decision
maker. Higher indifference curves suggest higher utility levels. Ordinal utility functions must meet
the transitivity condition, which indicates that if a decision maker likes option A over alternative
B and favors alternative B over alternative C, they must also prefer alternative A over alternative
C. Ordinal utility functions allow for monotonic modifications without changing the underlying
preferences. This implies that doubling the utility values or performing any strictly increasing
transformation to the utility function has no effect on the preference ranking.

While ordinal utility functions cannot quantify absolute amounts of value, they are adequate for
understanding and evaluating choices and decision-making behaviour in a wide range of economic
and social circumstances. They are especially important for researching consumer decisions since
they assist economists and academics in understanding how customers make trade-offs between
various products and services depending on their preferences. Cardinal utility functions, on the
other hand, describe preferences with particular numerical values that quantify the level of pleasure
or usefulness. Many economic investigations do not need Cardinal Utility Functions, and Ordinal
Utility Functions typically give enough information to explain individual and market behaviour.
Furthermore, cardinal utility functions may be difficult to quantify in reality, while ordinal utility
functions depend only on ranking information, which is often simpler to get from people.

Utility Expectations and Post-Decision Disappointment

As previously stated, anticipated utility theory is a normative decision-making paradigm that
implies rational decision-makers should choose the option with the greatest expected value. It
entails assigning probability to various natural states and estimating the anticipated utility for each
option based on those probabilities and related payoffs. Post-decision disappointment, also known
as post-choice dissonance, is a psychological phenomenon that happens after the making of a
decision. It refers to the sense of regret or dissatisfaction that a decision maker may have after
choosing a certain option, particularly when there is ambiguity involved in the decision-making
process. The following is an explanation of the link between anticipated utility theory and post-
decision disappointment:

1. In the framework of anticipated utility theory, a rational decision maker chooses the option
with the greatest expected utility, taking into account the probabilities and payoffs
associated with each alternative and state of nature. The decision is made based on the facts
available at the time of the decision.

2. Disappointment after making a choice and experiencing the actual consequence: If the
realized outcome is less favorable than predicted, the decision maker may feel disappointed
or regretful. This sense of disappointment may emerge for a variety of reasons, including
unanticipated events, unforeseeable conditions, or flaws in original probability or utility
estimations.

3. Post-choice disappointment is sometimes associated with the idea of outcome regret, which
is the remorse felt when the consequence of a decision is less than anticipated. It is crucial
to emphasize that post-decision disappointment is a psychological phenomenon that may

151

Artificial Intelligence

affect how people feel about their choices, even if those decisions were reasonable and
based on predicted benefit.

4. Individuals may not always operate in line with the concepts of anticipated utility theory
in real-world decision-making. Various cognitive biases, emotions, and uncertainties may
all impact decision-making, resulting in decisions that are not rationally optimal. Post-
decision sadness is one such emotional reaction that can be influenced by variables other
than the anticipated utility framework.

5. Understanding how people deal with post-choice disappointment and other emotional
reactions to decision results is becoming more crucial in understanding human decision-
making behaviour as research in behavioural economics and decision-making advances.

DISCUSSION

The Impact of Certainty

The certainty effect is a cognitive bias that occurs while making decisions under risk or uncertainty.
It refers to the propensity of people to choose known outcomes over probable or uncertain
outcomes, even if the anticipated values expected utilities of the outcomes are the same or better
for the unsure alternative. In other words, individuals put a greater value on certain outcomes, even
if the anticipated payout is smaller, than on an option with a higher expected payoff but significant
uncertainty or risk. The confidence effect has received a lot of attention in the area of behavioural
economics, and it has consequences for how people make decisions in different situations. The
following situation is one of the famous tests that established the certainty effect:

Participants have the option of earning $100 for certain or taking part in a lottery with a 50%
chance of winning $200 and a 50% chance of winning nothing. As a result, many people choose
the sure $100 choice over the lottery, even though the lottery's anticipated value is $100 (0.5 *
$200), which is the same as the sure option. When presented with options involving profits, this
demand for certainty often leads to risk-averse behaviour. When the choices involve potential
losses, people exhibit the opposite behaviour known as risk-seeking behaviour under certainty. In
such cases, people are more likely to choose a risky option with a chance of avoiding a certain loss
over a sure loss of the same expected magnitude. The certainty effect may have a big impact on
real-life decisions including financial investments, insurance selections, and company strategy. It
may cause people to make poor decisions by putting too much focus on certainty, which can lead
to lost possibilities for bigger payoffs or better outcomes. Understanding cognitive biases such as
the certainty effect is important in decision-making situations because it assists decision-makers
in becoming aware of their own biases and improving their capacity to make more reasonable and
well-informed decisions.

The Framing Effects

The framing effect is a cognitive bias in decision-making that happens when the manner in which
information is presented, or framed, impacts people's decisions or judgements even while the
underlying substance or alternatives remain unchanged. In other words, the framing of a choice or
event may dramatically influence how others perceive and react to it. The framing effect is a well-
known phenomenon in behavioural economics and psychology, with significant implications for
understanding human decision-making behaviour. It emphasizes that the context and terminology
in which alternatives are given may impact people's judgments in addition to the objective
attributes of those options. Here are two instances of the framing effect in action:

152

Artificial Intelligence

Positive Versus Negative Framing

1. Favorable Framing: People are more risk-averse when an option is presented in a
favorable light, highlighting the possible rewards or benefits. Individuals may be more
likely to choose a medical treatment if they are informed it has a 90% success rate.

2. Negative Framing: When the same option is presented in a negative light, emphasizing
possible losses or downsides, individuals become more risk-averse. People may be more
inclined to forgo a medical operation if they are informed that it has a 10% failure risk.

Loss Frame vs. Gain Frame

1. Gain Frame: In a gain frame, the emphasis is on what may be gained by selecting a certain
choice. A product advertising, for example, may stress the advantages of utilizing the
product and the good consequences it may bring.

2. Loss Frame: The focus in a loss frame is on what may be lost if a certain choice is not
picked. The negative repercussions of not utilizing the product may subsequently be
highlighted in an advertising promoting the same product.

People may have legitimate interests for avoiding losses or gaining profits, thus the framing effect
is not always illogical. The bias, on the other hand, stems from the fact that the framing itself might
lead to inconsistent conclusions based only on the presentation of information, rather than any
underlying disparities in the alternatives being offered.

It is critical to be aware of the framing effect and to evaluate the substance of the options rather
than being too affected by how those choices are presented in order to make better informed
selections.

Individuals may aim for better logical decision-making by concentrating on the objective features
of the alternatives and the possible repercussions, independent of how the information is presented,
by acknowledging this bias. Similarly, marketers and communicators may use the framing effect
to influence behaviour, but they must do it in an ethical and transparent manner.

Theory Of Multi-Attribute Utility

MAUT is a decision-making paradigm that extends the ideas of anticipated utility theory to
circumstances when judgments include several qualities or criteria. MAUT offers a systematic
method for evaluating and comparing alternatives based on their performance across several
dimensions or features, each with its own weight or value. In many real-world choices, people or
organizations must analyze a variety of criteria or traits rather than a single criterion to assess the
attractiveness of many options. MAUT addresses these difficult issues by transforming the
decision problem into a multiattribute model. The following are the essential components of
Multiattribute Utility Theory:

1. Attributes: The many dimensions or criteria pertinent to the choice issue. Attributes may be
quantitative or qualitative, and they reflect the many characteristics that distinguish alternatives.

2. Weights: The weights or proportional priority allocated to each property. The decision maker's
choices or priorities among the various qualities are reflected in the weights. To achieve
normalization, the total of the weights should equal 1.

153

Artificial Intelligence

3. Utility Functions: A utility function is built for each characteristic to describe how the decision
maker's preferences fluctuate with regard to that attribute. The utility function converts attribute
values into utility scores, which indicate the amount of satisfaction or desirability associated with
various levels of the characteristic.

MAUT combines the various attribute utilities using the weights provided to determine the total
utility or attractiveness of each choice. This procedure produces a single numerical number that
sums up the decision maker's preference for each possibility. Using the calculated utilities, the
decision maker may rank the alternatives and choose the one with the highest total utility as the
most favored choice. MAUT offers a systematic and formal method for dealing with multiattribute
decision-making issues. It assists decision-makers in making informed decisions by openly
assessing the relative relevance of numerous factors and carefully analyzing alternatives. However,
MAUT still relies on subjective judgements and utility evaluations, and the accuracy of the
assigned weights and utility functions, which may be difficult to ascertain in reality, determines
the quality of the findings. Nonetheless, MAUT is still a useful tool in subjects like economics,
engineering, management, and environmental studies, where choices often entail numerous
conflicting factors.

Distributions Totaled

Cumulative distributions (CDFs) are basic notions in probability theory and statistics. A
cumulative distribution function expresses the likelihood that a random variable will have a value
that is less than or equal to a specific value. It gives a cumulative assessment of the probability
associated with various random variable values. The cumulative distribution function F(x) for a
discrete random variable X is defined as follows:

F(x) = P (X ≤ x),

P (X x) denotes the chance that X is less than or equal to x.

The cumulative distribution function F(x) for a continuous random variable X is defined as the
integral of the probability density function (PDF) up to the value x:

F(x) = [f(t) dt, where t is the integral from negative infinity to x.

The cumulative distribution function is represented as follows:

1. F(x) is a non-decreasing function: for any two values x1 and x2, the cumulative
distribution function F(x1) F(x2) is satisfied.

2. F(x) range: The cumulative distribution function accepts values between 0 and 1,
i.e., 0 F(x) 1. F(x) = 0 when x = -, and F(x) = 1 when x = +.

Probabilities:

The CDF offers probabilities for the random variable's cumulative ranges. F(a) reflects the chance
that X is less than or equal to a, while F(b) - F(a) denotes the likelihood that X is between a and b.
The cumulative distribution function is a crucial tool for assessing and comprehending random
variable properties.

It calculates percentiles and other statistical metrics such as anticipated values and variances to
assist assess the probability of specific occurrences. It is crucial to note that the cumulative
distribution function applies to both discrete and continuous random variables, however the

154

Artificial Intelligence

notation and computations change significantly. Furthermore, the quantile function is the inverse
of the cumulative distribution function, and it enables us to discover the value associated with a
certain probability.

Mutual Preferred Autonomy

Mutual Preferential Independence (MPI) is a feature of decision makers' preference structures in
the context of multi-criteria decision-making. It is a key assumption in several decision analysis
methodologies and may help to simplify decision-making by decreasing the complexity of
comparing options across numerous criteria. Consider a decision maker in the context of MPI who
is assessing many choices based on multiple criteria or qualities. The quality of reciprocal preferred
independence states that the decision maker's preferences for two options (let's say A and B) in
relation to one criterion are independent of their preferences in relation to another criterion. In
other words, if the decision maker favors option A over alternative B for one criterion, the
preference order between A and B stays constant regardless of how the other criteria are evaluated.
Similarly, if the decision maker prefers A to B for another criteria, this preference has no bearing
on the decision maker's preference order for the first criterion. Mutual preferred independence may
be expressed mathematically as follows:

a. If A is preferred over B for criteria C1 and A is preferred over B for criterion C2, A is
preferred over B overall.

b. If B is preferred over A for criteria C1, and B is preferred over A for criterion C2, then B
is preferred over A overall.

By breaking down a complicated multi-criteria choice issue into individual comparisons between
two options for each criterion, the notion of mutual preference independence simplifies the
decision analysis process. By assuming mutual preference independence, the decision maker
avoids the requirement for time-consuming and cognitively difficult collaborative analyses of
alternatives across all criteria. However, it is critical to understand that mutual preference
independence is an assumption that may not always be true in real-world decision-making. Some
choice problems may demonstrate criterion interdependence, in which preferences for one
criterion impact preferences for others. In such instances, more advanced decision analysis
approaches that take into account the interdependence of criteria may be required.

Decision-Making Network

A decision network is a graphical depiction of a choice issue that incorporates parts of probability
theory, decision theory, and graph theory. It is also known as an influence diagram or decision
graph. Decision networks are used to describe and evaluate complicated decision-making
scenarios that include ambiguity and a number of interconnected factors. The choice issue is
represented in a decision network by nodes and arrows linking these nodes. Each node represents
a random or choice variable, and the arrows reflect the probabilistic or causal links between these
variables. A decision network's primary components are as follows:

1. Decision Nodes: These nodes indicate the decision variables, or the options available to the
decision maker in the decision issue. Squares or rectangles are often used to represent decision
nodes.

155

Artificial Intelligence

2. Chance Nodes: These nodes indicate the choice problem's uncertain or random factors, over
which the decision maker does not have complete control. Chance nodes are often shown as circles
or ovals.

3. Utility Nodes: These nodes describe the utility or value assigned by the decision maker to
various outcomes. Diamonds are often used to represent utility nodes.

4. Arrows: The arrows linking the nodes represent the variables' causal or probabilistic links. An
arrow connecting a chance node to a choice node, for example, shows that the result of the chance
node influences the decision.

5. Conditional Likelihood: Conditional probability tables (CPTs) are coupled with chance nodes
to indicate the likelihood of various events depending on their parent nodes' varied states. Utility
functions are linked to utility nodes to indicate the decision maker's preferences for various
outcomes.

Choice networks are an effective technique for constructing and evaluating choice issues,
particularly when there is ambiguity and interdependence between variables. They enable
decision-makers to see the links between the various components of the decision issue and assess
the predicted utility of alternative options. Decision networks may be used with various algorithms,
such as the decision tree algorithm or Bayesian networks, to identify optimum choices, measure
sensitivity to changes in parameters, and do sensitivity analysis on the whole decision-making
process. Decision networks are widely employed in industries such as banking, healthcare,
engineering, and operations research, where complex decision issues need rigorous study and
optimization.

The Worth of Information

In decision theory and economics, the value of information measures the possible advantages of
receiving extra knowledge before making a choice. It refers to the increase in projected utility or
decrease in decision uncertainty that may be obtained via the acquisition of new knowledge.
Decision-makers often confront circumstances in which they lack comprehensive knowledge
about the probability of various events or the repercussions of their choices while making decisions
under ambiguity. They may be willing to commit money, time, or effort to seek extra knowledge
to enhance the quality of their judgments in such instances. The importance of information is
especially essential in instances where:

1. When a decision maker is unclear about the states of nature, the outcomes associated with
distinct choices, or the probability of those outcomes, there is uncertainty.

2. Costs of information collection. Information gathering often incurs costs such as money,
time, or effort. The worth of information helps in determining if the advantages of getting
it exceed the expenses.

3. diverse choice options have diverse consequences: The influence of different decision
alternatives might vary greatly depending on the current condition of nature. In such
circumstances, more information may assist in determining the optimal option.

4. External variables impact choice results. When decision outcomes are influenced by
external factors outside the decision maker's control, more knowledge may be useful in
adjusting to changing situations.

156

Artificial Intelligence

Decision analysts and economists employ a variety of approaches to determine the value of
information, including sensitivity analysis, decision trees, and Bayesian updating. These strategies
assist in quantifying how more knowledge might alter a decision maker's probability, anticipated
utility, or optimum choices. Decision makers benefit from information analysis in numerous ways:

1. Avoiding needless information collection. If the value of information is minimal, decision
makers may save resources by not obtaining information that will have little influence on
their choices.

2. Orienting information acquisition. Decision makers may prioritize information collecting
efforts by concentrating on the most valuable information.

3. Decision makers may improve the robustness and efficacy of their choices by adding
important information.

To summarize, the value of information analysis offers a systematic technique to weighing the
advantages of gaining extra information against the costs involved with doing so in order to make
better informed and optimum choices under uncertainty.

Analysis of Decision Theoretical Experts

Expert analysis is critical in decision theory for understanding and making choices under
ambiguity. Seeking feedback and insights from experts with specific knowledge and skills relating
to the choice issue at hand is what decision theory expert analysis entails. Here are some of the
most important features of decision theory expert analysis:

1. Expert elicitation is the practice of obtaining information and expertise from experts in
order to acquire a better understanding of a situation. Individuals having domain-specific
knowledge, technical competence, or experience in comparable decision-making scenarios
may be considered experts. Interviews, questionnaires, and organized workshops may all
be used to gather information from experts.

2. Experts are often used to assist in quantifying the uncertainty associated with the decision
issue. They may offer probabilistic estimates, best-guess values, ranges, or other
measurements for uncertain variables and outcomes. In decision-making under uncertainty,
when probabilities and other inputs are often unclear or unknown, uncertainty
quantification is critical.

3. Identifying Relevant Decision Criteria and Weights. Experts may help identify relevant
decision criteria and their relative relevance or weights. They may give insights into which
traits are most important for the decision maker's goals, which aids in the development of
the multi-criteria decision model.

4. Decision makers may employ expert analysis to validate the assumptions and model inputs
used in the decision-making process. Experts may assist in determining the appropriateness
of model parameters, identifying possible biases, and calibrating the model to appropriately
represent real-world situations.

5. The input of experts is useful in doing sensitivity analysis to determine how differences in
model inputs affect decision results. They may advise on which inputs are more sensitive
or vital, as well as assist prioritize the need for more precise information.

6. Risk analysis and scenario planning may be aided by experts. Decision makers may grasp
the variety of possible outcomes and build resilient solutions that work well across multiple
situations by analyzing diverse scenarios and their potential consequences.

157

Artificial Intelligence

Expert analysis may assist in identifying and addressing ethical problems as well as possible
unintended effects linked with various decision alternatives. Many decision-making scenarios,
particularly those with major social or environmental implications, need ethical considerations.
Expert decision theory analysis provides a more detailed view of the choice issue, which may lead
to more informed and robust conclusions. However, it is critical to note that expert analysis has
limits, such as the possibility of biases and uncertainty in expert assessments. To guarantee the
correctness and validity of the decision-making process, careful examination of the dependability
and credibility of expert input is required.

CONCLUSION

This chapter demonstrates how to use utility theory and probability to allow an agent to choose
behaviours that optimize its predicted performance. Probability theory states what an agent should
think based on evidence, utility theory states what an agent desires, and decision theory combines
the two to state what an agent should do. Using decision theory, we can create a system that makes
choices by examining all potential actions and selecting the one that results in the best predicted
outcome. A rational agent is one such system. Utility theory demonstrates that an agent with a
utility function has preferences between lotteries that are compatible with a set of basic axioms;
moreover, the agent chooses actions as though maximizing its predicted utility. Utility theory is
concerned with utilities that are dependent on numerous unique state attributes. Stochastic
dominance is a very helpful strategy for making clear judgments, even when qualities may not
have exact utility values. They are a logical extension of Bayesian networks, since they include
choice and utility nodes as well as chance nodes. Sometimes, in order to solve an issue, additional
information must be gathered before reaching a decision. The projected gain in utility over making
a choice without the knowledge is characterized as the value of information. When compared to
pure inference systems, expert systems that include utility information offer extra capabilities.
They may utilize the value of information to select which questions to ask, if any; they can
recommend contingency plans and they can evaluate the sensitivity of their choices to modest
changes in probability and utility evaluations.

REFERENCES:

[1] E. Hasegawa et al., “Nature of collective decision-making by simple yes/no decision units,”
Sci. Rep., 2017, doi: 10.1038/s41598-017-14626-z.

[2] H. R. Heekeren, I. Wartenburger, H. Schmidt, H. P. Schwintowski, and A. Villringer, “An
fMRI study of simple ethical decision-making,” Neuroreport, 2003, doi:
10.1097/00001756-200307010-00005.

[3] N. J. Evans and S. D. Brown, “People adopt optimal policies in simple decision-making,
after practice and guidance,” Psychon. Bull. Rev., 2017, doi: 10.3758/s13423-016-1135-1.

[4] N. H. Lurie and N. Wen, “Simple Decision Aids and Consumer Decision Making,” J.

Retail., 2014, doi: 10.1016/j.jretai.2014.08.004.

[5] K. Lloyd and D. S. Leslie, “Context-dependent decision-making: A simple Bayesian
model,” J. R. Soc. Interface, 2013, doi: 10.1098/rsif.2013.0069.

[6] S. N. Whitney, A. L. McGuire, and L. B. McCullough, “A Typology of Shared Decision
Making, Informed Consent, and Simple Consent,” Annals of Internal Medicine. 2004. doi:
10.7326/0003-4819-140-1-200401060-00012.

158

Artificial Intelligence

[7] E. J. H. Robinson, N. R. Franks, S. Ellis, S. Okuda, and J. A. R. Marshall, “A simple
threshold rule is sufficient to explain sophisticated collective decision-making,” PLoS One,
2011, doi: 10.1371/journal.pone.0019981.

[8] M. Mailasari, “Model Multi Attribute Decision Making Metode Simple Additive Weighting
Dalam Penentuan Penerima Pinjaman,” ejournal.bsi.ac.id, 2016.

[9] C. Surya, “Sistem Pendukung Keputusan Rekomendasi Penerima Beasiswa Menggunakan
Fuzzy Multi Attribut Decision Making (FMADM) dan Simple Additive Weighting
(SAW),” J. Rekayasa Elektr., 2015, doi: 10.17529/jre.v11i4.2364.

[10] Y. J. Wang, “Interval-valued fuzzy multi-criteria decision-making based on simple additive
weighting and relative preference relation,” Inf. Sci. (Ny)., 2019, doi:
10.1016/j.ins.2019.07.012.

[11] S. C. Streufert, “Effects of information relevance on decision making in complex
environments,” Mem. Cognit., 1973, doi: 10.3758/BF03198100.

159

Artificial Intelligence

CHAPTER 17

COMPLEX DECISIONS: CHALLENGES

AND STRATEGIES FOR INTELLIGENT DECISION-MAKING

Pradeep Kumar Shah, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- pradeep.rdndj@gmail.com

ABSTRACT:

In this chapter, we will look at the computational challenges that arise while making judgments in
a stochastic setting. Whereas Chapter 16 dealt with one-shot or episodic choice issues in which the
usefulness of each action's result was fully known, this chapter deals with sequential decision
problems in which the agent's utility depended on a succession of actions. Utility, uncertainty, and
sensing are all factors in sequential choice issues, which also include search and planning problems
as special examples. illustrates how sequential choice problems are created and solved to provide
optimum behaviour that balances the risks and benefits of behaving in an uncertain environment.
extends these concepts to the situation of partly observable settings, and creates a full architecture
for decision-theoretic agents in partially visible environments by integrating dynamic Bayesian
networks with decision networks from Chapter 16. The second section of the chapter discusses
multi-agent settings. The interactions among the agents challenge the concept of optimum
behaviour in such environments. presents the key concepts of game theory, such as the notion that
rational actors may need to behave randomly. examines how multiagent systems may be
constructed such that several agents can work together to accomplish a shared objective.

KEYWORDS:

Decision, Games, Policy, State, Value.

INTRODUCTION

A programming approach for solving Markov Decision Processes (MDPs), a kind of sequential
decision issue. The purpose of value iteration is to identify the best value function and, as a result,
the best policy for the MDP. The value function in the context of MDPs is a mapping that assigns
a value to each state, indicating the predicted cumulative reward that may be gained beginning
from that state and then following an optimum strategy. The optimum policy is the approach that
prescribes the action that maximizes the anticipated cumulative benefit for each state. The value
iteration algorithm updates the value function iteratively until it converges to the ideal value
function [1]–[3]. The following are the stages of value iteration:

1. Initialization: For all states s in the MDP, set the initial value function V0 (s) to arbitrary values.

2. Iteration: k = 0, 1, 2, for each iteration. before convergence:

Using the Bellman optimality equation, calculate the value function Vk+1(s) for each state in the
MDP: Vk+1(s) = max [sum (T (s, a, s') * (R (s, a, s') + * Vk (s')] for all actions a and following
states.

160

Artificial Intelligence

T (s, a, s') represents the transition probability from states to states' given action a, R (s, a, s')
represents the immediate reward for migrating from s to s' with action a, and (gamma) represents
the discount factor used to value future benefits compared to immediate rewards.

3. Convergence: Determine if the difference in the value function between successive iterations
is less than a preset threshold. If the values have sufficiently converged, the procedure should be
stopped; otherwise, proceed to the next iteration.

4. Extraction of Policy: Once the value function has converged, the optimum policy may be found
by choosing the action in each state that maximizes the expression within the max operator in the
Bellman optimality equation.

As long as the MDP is finite and the discount factor is smaller than 1 (0 1), value iteration assures
convergence to the optimum value function and optimal policy. It may, however, be
computationally costly, particularly for large state and action spaces. To solve computing
problems, several modifications and approximations exist, such as asynchronous value iteration
and prioritized sweeping algorithms. Value iteration is a key method in reinforcement learning that
is frequently utilized in a variety of applications that need sequential decision-making.

Policy Revisions

Another dynamic programming approach used to solve Markov Decision Processes (MDPs) and
determine the best policy is policy iteration. It is a technique for discovering the optimum policy
for an agent in a sequential decision-making issue, similar to value iteration. The policy iteration
method consists of two major phases that are repeatedly performed until convergence:

1. Policy Evaluation: Given a policy, determine the value function V for each state in the MDP.
The value function V(s) indicates the predicted cumulative reward beginning with state s and
continuing through policy.

The Bellman equation is used to solve the policy assessment step for each state. For the value
function V(s), the Bellman equation is as follows:

V(s) = [T (s, a, s') * (R (s, a, s') + * V(s')] for all actions a and subsequent states s'.

T (s, a, s') is the probability of migrating from states to states' given action a, R (s, a, s') denotes
the immediate reward for transitioning from s to s' with action a, and (gamma) denotes the discount
factor.

2. Policy Improvement: Update the policy based on the current value function V(s) by picking
the action that maximizes the predicted cumulative reward in each state.

'(s) = argmax [[T (s, a, s') * (R(s, a, s') + * V(s')]], for all actions a and subsequent states s'.

The agent chooses the action in the policy improvement step that leads to the state with the largest
predicted cumulative reward from the present state, based on the value function V(s).

These two phases, policy assessment and policy improvement, are repeatedly repeated until the
policy converges to an optimum policy, at which point no more improvement is conceivable. The
best policy is the one that results in the greatest predicted cumulative benefit from any state in the
MDP. Policy iteration will always identify the best policy for an MDP if the MDP is finite and the
agent explores all states and actions. However, for big MDPs, it may be computationally costly,

161

Artificial Intelligence

similar to value iteration. There are policy iteration variants, such as modified policy iteration and
generalized policy iteration, that integrate components of both value and policy iteration, providing
computational benefits in certain cases. Overall, policy iteration is a strong technique for
determining the best policy in MDPs that is frequently utilized in reinforcement learning and
decision-making applications [4]–[6].

MDPs that were only partially seen

Partially Observable Markov Decision Processes (POMDPs) are a Markov Decision Process
(MDP) modification used to simulate decision-making issues when the agent cannot directly view
the underlying state of the environment. Instead, the agent is fed incomplete, noisy, or confusing
information about the genuine condition. POMDPs are employed in a variety of domains where
uncertainty and partial knowledge are prominent, such as robotics, autonomous systems, and
artificial intelligence. In a typical MDP, the agent is aware of the present condition and may take
immediate action based on that knowledge. In a POMDP, on the other hand, the agent maintains a
belief state, which is a probability distribution across the potential underlying states based on the
history of actions and observations. The agent's uncertainty regarding the real condition of the
environment is represented by the belief state. A POMDP's components are comparable to those
of an MDP:

1. States (S): A collection of alternative underlying states that the agent cannot perceive directly.

2. Actions (A): A series of choices that the agent can make.

3. Observations (O): A collection of probable observations received by the agent at each time
step.

The odds of migrating from one state to another given an action are represented by the Transition
Model (T). The possibilities of getting an observation given the real condition are represented by
the Observation Model (Z). The immediate rewards associated with state-action pairings are
denoted by the letter R. The main distinction between MDPs and POMDPs is how actions and
observations are treated. In a POMDP, the agent chooses actions based on its current knowledge
of the underlying state distribution, which is represented by the belief state. Following a successful
action, the agent gets an observation, which is utilized to update the belief state through a process
known as belief update or filtering. To calculate the new belief state, the belief update combines
the previous belief state, the chosen action, the observation received, and the transition and
observation models [7], [8].

Because of the added complexity imposed by the belief state representation and the need for belief
updates, solving POMDPs is computationally more difficult than solving MDPs. Due to the curse
of dimensionality, exact solutions for big POMDPs are often infeasible. partly Observable Monte
Carlo Planning (POMCP), Point-Based Value Iteration, and other reinforcement learning
approaches customized for partly observable settings are often used by researchers. POMDPs are
an excellent framework for simulating real-world settings in which agents must make choices with
limited and noisy information. In robotics and autonomous systems, they are often utilized for
tasks like as navigation, exploration, and decision-making in uncertain and unpredictable settings
[9]–[11].

Game theory is an area of mathematics and economics that investigates the strategic interactions
and decision-making of many agents in game scenarios. It offers a framework for evaluating and

162

Artificial Intelligence

comprehending how people or organizations make choices when the consequences are dependent
on not just their own actions but also the actions of others. Each agent in a game has a collection
of alternative strategies that reflect the actions they may do. Utility functions also known as payout
functions or cost functions represent the agents' preferences over the available outcomes by
assigning numerical values to different outcomes depending on each player's goals. A game's main
components are as follows:

1. Individuals or organizations making choices in the game are referred to as players.
2. The many acts or choices that each player may take.
3. Functions that link the player's strategy combinations to their associated outcomes or

payoffs. Payoff functions represent the participants' preferences for various outcomes.
4. In the case of two-player games, the game can be represented using a payoff matrix, where

the rows correspond to one player's strategies, the columns correspond to the other player's
strategies, and each entry in the matrix represents the payoffs to the players for that
combination of strategies.

In game theory, there are various sorts of games, each with its own set of characteristics:

1. Cooperative Games: In cooperative games, players may create coalitions and collaborate to
accomplish certain goals. The emphasis is on how the aggregate payout may be distributed among
the participants.

2. Non-Cooperative Games: In non-cooperative games, participants make their own choices, with
no explicit agreement or communication. Strategic games are the most popular sort of non-
cooperative game.

3. Strategic Games: In strategic games, participants choose their tactics either concurrently or
sequentially, and they are aware of one other's plans. The Prisoner's Dilemma, Battle of the Sexes,
and the Hawk-Dove game are a few examples.

4. Extensive Form Games: In extensive form games, players make sequential choices, and the
game is represented as a tree-like structure, with each branch representing a potential sequence of
actions. Repeated games contain several rounds of the same game, enabling tactics to be impacted
by previous encounters and encouraging the establishment of cooperation.

5. Bayesian Games: In Bayesian games, players have imperfect knowledge about the game's
underlying state, and they create beliefs about the kinds of other players based on the information
they have.

Game theory offers a collection of tools and ideas for analyzing and forecasting the outcomes of
rational decision-makers' strategic interactions. It is used in a variety of areas, including
economics, political science, biology, computer science, and others. Understanding and making
choices in circumstances where the actions of several individuals impact the overall result need
game theory knowledge.

DISCUSSION

Design of Mechanisms

Mechanism Design is a subfield of economics and game theory concerned with the development
of rules and procedures to accomplish desired results in settings characterized by incomplete or

163

Artificial Intelligence

unequal information, strategic behaviour, and possible conflicts of interest among players. The
basic purpose of mechanism design is to create rules and protocols such that when individuals act
in their self-interest and follow the specified rules, the final outcome is socially optimum or has
particular desired features. This procedure entails matching participants' incentives with the
intended result in order to improve efficiency, fairness, and other desirable features. Mechanism
design issues often include the following components:

1. Individuals or organizations participating in the system, each with their own personal
information, interests, or goals.

2. Participants may have private knowledge that others or the mechanism designer are
unaware of, resulting in an incomplete information environment.

3. Participants' preferences for various outcomes or allocations.
4. Rules, procedures, or methods by which people communicate and make choices.
5. The targeted result or societal purpose that the mechanism designer seeks to attain.

The designer of the mechanism confronts the difficulty of developing rules that encourage
participants to divulge their private information accurately and to behave in a manner that leads to
the intended social result. Mechanism design targets incentive-compatible mechanisms, which
means that participants have no motive to falsify their private information in order to gain better
results for themselves. The following are some well-known examples of mechanism design:

1. Auctions: Mechanism design is widely employed in auction theory, in which bidders with
private values for an item or service engage in an auction. The objective is to create auction
rules that promote honest bidding while also assuring efficient allocation and maximize
income for the auctioneer.

2. Voting Rules: Mechanism design is also important in the research of voting systems, with
the purpose of designing voting rules that meet desired features such as majority rule,
fairness, and strategy-proofness.

3. Resource Allocation: Mechanism design may be used to create protocols that efficiently
assign resources to diverse players in a variety of resource allocation challenges, such as
spectrum allocation, airport landing slot allocation, or kidney exchange.

4. Incentive Mechanisms in companies: Mechanism design ideas are used to create
incentive structures in companies that match workers' interests with the general goals of
the company.

Mechanism design may be used to better understand and shape economic and social interactions.
It is a basic idea in economics with several real-world applications, assisting in the resolution of
issues of allocation, coordination, and incentive alignment across multiple domains.

Games in a Series

In game theory, sequential games are a sort of game in which players make decisions in a certain
order, and the result of each player's decision is dependent not just on their own actions but also
on the actions of other players who have previously made their choices. In contrast to simultaneous
games, in which players pick their tactics simultaneously without knowing what the other players
are doing, sequential games feature a temporal sequence of decision-making, allowing for strategic
exchanges and anticipating others' moves. Sequential games include the following characteristics:

164

Artificial Intelligence

Players make choices in turns, and the sequence in which they move has a substantial impact on
the game's conclusion. Players in certain sequential games have perfect knowledge, which means
they are aware of all past movements and choices made by other players. In games with imperfect
information, players have limited or partial knowledge of previous actions or the game's
underlying state. Backward induction is a crucial notion in evaluating sequential games. It entails
thinking backward from the most recent move to the first move in order to discover the best
strategy for each player at each level of the game. A subgame in a sequential game is any segment
of the game that begins with a certain decision point and includes all subsequent choices made by
the relevant players. A subgame perfect equilibrium is a strategy profile in which every player's
approach creates a Nash equilibrium in all of the game's subgames.

Sequential games

Auctions may be sequential if participants can withdraw from the auction at certain stages, such
as in ascending-bid auctions such as English auctions. Sequential games may be used to simulate
situations in which organizations compete over time, taking turns making strategic choices such
as pricing, advertising, or product development. Because of the extra dimension of time and the
strategic exchanges among participants, analyzing and solving sequential games may be more
difficult than simultaneous games. To comprehend and forecast the outcomes of sequential games,
techniques such as backward induction, extended form representations, and subgame perfect
equilibrium analysis are often utilized. Sequential games are vital for simulating real-world
decision-making settings in which action timing and anticipating others' reactions are key aspects
in obtaining desired results.

They can be addressed by converting to an MDP in the continuous space of belief states methods
for both value iteration and policy iteration have been developed. In POMDPs, optimal behaviour
comprises obtaining knowledge to minimize uncertainty and, as a result, make better judgments in
the future. For POMDP settings, a decision-theoretic agent may be built. To represent the transition
and sensor models, update its belief state, and project various action sequences, the agent use a
dynamic decision network. Game theory explains rational agent behaviour in settings where
numerous agents engage at the same time. Nash equilibria strategy pro files in which no actor has
an incentive to stray from the defined strategy are game solutions. Mechanism design may be used
to define the rules by which agents will interact in order to maximize some global value by using
individually rational agents. There are systems that can accomplish this aim without forcing each
actor to consider the decisions of other agents.

CONCLUSION

This chapter demonstrates how to utilize information about the environment to make judgments
even when the effects of actions are unpredictable and the benefits for acting may not be realized
for a long time. Sequential choice problems in uncertain settings, commonly known as Markov
decision processes, or MDPs, are described by a transition model that specifies the probabilistic
consequences of actions and a reward function that specifies the payoff in each stage. A state
sequence's utility is the total of all the benefits across the sequence, sometimes discounted over
time. An MDP solution is a policy that links a choice with each state that the agent may reach.
When a policy is performed, it optimizes the usefulness of the state sequences encountered. A
state's utility is the predicted utility of the state sequences encountered when an optimum policy is
applied beginning in that state. The value iteration approach for MDPs works by solving the
equations that relate the utility of each state to those of its neighbors repeatedly. Policy iteration

165

Artificial Intelligence

alternates between estimating states' utilities under existing policy and improving current policy
in relation to current utilities. POMDPs, or partially observable MDPs, are substantially more
difficult to solve than MDPs.

REFERENCES:

[1] S. Tremblay, J. F. Gagnon, D. Lafond, H. M. Hodgetts, M. Doiron, and P. P. J. M. H.
Jeuniaux, “A cognitive prosthesis for complex decision-making,” Appl. Ergon., 2017, doi:
10.1016/j.apergo.2016.07.009.

[2] G. Biswas et al., “Multilevel Learner Modeling in Training Environments for Complex
Decision Making,” IEEE Trans. Learn. Technol., 2020, doi: 10.1109/TLT.2019.2923352.

[3] T. McElroy and D. L. Dickinson, “Thinking about complex decisions: How sleep and time-
of-day influence complex choices,” Conscious. Cogn., 2019, doi:
10.1016/j.concog.2019.102824.

[4] M. Vuković and R. Vaculín, “Towards Adaptive Crowdsourcing for Complex Decisions,”
10th Int. Conf. Des. Coop. Syst., 2012.

[5] M. Abadie and L. Waroquier, “Evaluating the Benefits of Conscious and Unconscious
Thought in Complex Decision Making,” Policy Insights from Behav. Brain Sci., 2019, doi:
10.1177/2372732218816998.

[6] J. Jung, C. Concannon, and R. Shroff, “Simple Rules for Complex Decisions,” SSRN

Electron. J., 2017, doi: 10.2139/ssrn.2919024.

[7] H. Qin, P. Liu, L. Cong, and W. Ji, “Triple-Frequency Combining Observation Models and
Performance in Precise Point Positioning Using Real BDS Data,” IEEE Access, 2019, doi:
10.1109/ACCESS.2019.2918987.

[8] F. Hamilton, T. Berry, and T. Sauer, “Correcting observation model error in data
assimilation,” Chaos, 2019, doi: 10.1063/1.5087151.

[9] T. Berry and J. Harlim, “Correcting biased observation model error in data assimilation,”
Mon. Weather Rev., 2017, doi: 10.1175/MWR-D-16-0428.1.

[10] H. W. Yu, J. Y. Moon, and B. H. Lee, “A variational observation model of 3D object for
probabilistic semantic slam,” in Proceedings - IEEE International Conference on Robotics

and Automation, 2019. doi: 10.1109/ICRA.2019.8794111.

[11] N. Akai, L. Y. Morales, T. Hirayama, and H. Murase, “Toward Localization-Based
Automated Driving in Highly Dynamic Environments: Comparison and Discussion of
Observation Models,” in IEEE Conference on Intelligent Transportation Systems,

Proceedings, ITSC, 2018. doi: 10.1109/ITSC.2018.8569967.

166

Artificial Intelligence

CHAPTER 18

LEARNING: THE KEY TO ADAPTIVE INTELLIGENCE

Hina Hashmi, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- hinahashmi170@gmail.com

ABSTRACT:

If an agent improves its performance on subsequent tasks after making observations about the
environment, it is learning. Learning may vary from the basic, such as writing down a phone
number, to the deep, such as Albert Einstein's inference of a new theory of the universe. In this
chapter, we will focus on one kind of learning issue that seems limited but has a wide range of
applications train a function that predicts the outcome for fresh inputs from a collection of input-
output pairs. There are three basic causes behind this. For starters, the designers cannot predict
every conceivable circumstance in which the agent may find itself. A labyrinth-navigating robot,
for example, must learn the layout of each new maze it meets. Second, the designers cannot foresee
all changes over time; a software created to forecast stock market values for tomorrow must learn
to adapt as circumstances shift from boom to collapse. Third, human programmers do not always
know how to provide a solution. For example, most individuals can recognize the faces of family
members, but even the finest programmers cannot build a computer to do so unless they use
learning algorithms. This chapter begins with an introduction of the many types of learning,
followed by a description of one prominent technique, decision tree learning, and a theoretical
study of learning. We examine a variety of learning systems that are utilized in practice, including
linear models, nonlinear models, nonparametric models, and support vector machines. Finally, we
demonstrate how ensembles of models outperform single models.

KEYWORDS:

Data,Decision, Learning, Regression, Tree.

INTRODUCTION

A sort of machine learning paradigm in which an algorithm learns to map input data to the intended
output labels based on a collection of sample input-output pairs is referred to as supervised
learning. In other words, the algorithm is supervised throughout the training phase since it has
access to labelled training data that contains the right output for each input. This is the collection
of data that the algorithm uses as input. The input data in a typical supervised learning scenario
consists of numerous characteristics or qualities that define the input samples. These are the labels
or target values that correspond to each input sample in the training dataset. The purpose of the
method is to learn a mapping between the input characteristics and the appropriate output labels
[1]–[3].

The labelled dataset used to train the supervised learning algorithm is referred to as training data.
It is made up of input-output pairs in which the algorithm learns from the input characteristics and
the proper output labels. The model Hypothesis Function represents the mathematical link between
the input characteristics and the output labels. During the training phase, the algorithm seeks the
best model that matches the training data and can generalize to new, previously unknown data.

167

Artificial Intelligence

The loss function also known as the cost function measures how well the model performs by
comparing its anticipated output to the actual output labelled in the training data. The learning
algorithm's purpose is to minimize the loss function, which displays how far the predictions differ
from the reality. The optimization procedure is used to repeatedly update the model's parameters
in order to minimize the loss function. Gradient descent and its derivatives are common
optimization methods [4]–[6].

Once trained on labelled data, the supervised learning algorithm may be used to generate
predictions on fresh, unseen data when the output labels are not supplied. To produce accurate
predictions on these new inputs, the model generalizes its learning from the training data.
Supervised learning is extensively utilized in a broad range of real-world applications, including
image classification, natural language processing, sentiment analysis, recommendation systems,
and a variety of other tasks in which the aim is to anticipate an output label based on provided
input data.

The Razor of Ockham

Ockham's razor is a philosophical and scientific concept credited to William of Ockham, a 14th-
century English philosopher and theologian. It is also known as the principle of parsimony or
Occam's razor. When there are numerous competing explanations or hypotheses to explain a
phenomena, the principle argues that the simplest one should be selected until further evidence is
offered. In summary, Ockham's razor argues for avoiding needless complications or additional
assumptions while attempting to explain anything.

It indicates that the simplest explanation for the observable facts is more likely to be true and
valuable than excessively complicated answers. While the concept is often connected with
scientific ideas and hypotheses, it is also used in philosophy, problem-solving, and general
thinking. By selecting the simplest and most clear explanation, one might avoid unneeded
complexity and make more accurate predictions or judgments [7]–[9].

It is important to emphasize, however, that Ockham's razor is neither an absolute rule or a
guarantee of truth. It may be used to drive hypothesis selection and model construction, but it does
not ensure that the simplest explanation is always true. More sophisticated explanations may be
required to account for all available information in certain circumstances, particularly when basic
explanations are inadequate or contradictory to the observable facts. The use of Ockham's razor in
science and other areas is part of a wider idea of choosing hypotheses with a high degree of
explanatory power, predictive potential, and consistency with current data. Scientific hypotheses
may be revised or discarded when new information arises, and the use of Ockham's razor may lead
the creation of more accurate and complete explanations [10]–[12].

DISCUSSION

Decision Tree for Learning

A decision tree is a popular and easy-to-use machine learning technique that may be used for
classification and regression problems. It operates by recursively partitioning the dataset into
subsets depending on the values of the input characteristics, resulting in a tree-like structure of
choices that may be used to make predictions. Here's how to learn a decision tree step by step:

168

Artificial Intelligence

1. Preprocessing and data collection

a. Collect the dataset including the characteristics input variables and the associated goal
variable output variables.

b. For improved performance, preprocess the data by addressing missing values, converting
categorical variables to numerical values , and normalizing or scaling features.

2. Choose the Target Variable

Select the variable to be predicted for example, a categorical variable for classification or a
continuous variable for regression.

3. Selecting Splitting Criteria

a. Gini impurity and Entropy, which quantify the purity of subsets in terms of the target
classes, are typical splitting criteria for classification problems.

b. Mean Squared Error (MSE) is a typical splitting criteria for regression problems, measuring
the variation of target values within subsets.

4. Making a Decision Tree

a. The decision tree is formed iteratively by picking the optimal split for each node in the tree
based on the splitting criteria that have been established.

b. The algorithm repeatedly seeks for the feature and its value that minimizes impurity or
error the most, and then divides the data depending on that feature.

5. Criteria for stopping

The recursive splitting procedure continues until a stopping requirement is fulfilled. Stopping
criteria that are often used. To minimize overfitting, limit the depth of the tree. Minimum samples
per leaf. Splitting is halted if a node has less samples than a predefined threshold. Stop splitting if
the impurity improvement falls below a specific level.

6. Optional Pruning

Following the construction of the decision tree, pruning may be used to eliminate branches that do
not contribute substantially to the model's performance. Pruning aids in the reduction of
overfitting.

7. Prediction

After constructing the decision tree, you can use it to generate predictions on fresh data by
traversing the tree based on the input characteristics.

8. Evaluation

On a separate test dataset, evaluate the decision tree model's performance using suitable evaluation
measures accuracy, precision, recall for classification; mean squared error for regression. The
decision tree method is simple to grasp and display, making it a useful tool for learning how
choices are formed based on various variables. However, if the tree is allowed to grow too deep,
it may suffer from overfitting, and it may not capture complicated correlations between data as
efficiently as more sophisticated algorithms such as Random Forests or Gradient Boosting
Machines.

169

Artificial Intelligence

Algorithm of Decision-Tree Learning

The Decision Tree Learning algorithm is a method for constructing a decision tree from a given
dataset. It is most often used for supervised learning tasks like as classification and regression. The
algorithm's goal is to build a tree-like model that recursively divides the data into subsets
depending on the values of input attributes, eventually resulting to a sequence of choices that may
be used to generate predictions. The Decision Tree Learning method is described in broad terms
below. The method accepts a labelled dataset as input, with each data point consisting of a
collection of characteristics and a matching target variable. Determine the decision tree's first node,
also known as the root node. The splitting criteria, such as Gini impurity or Entropy for
classification or Mean Squared Error, are used to make the selection.

Data Segmentation

The algorithm analyses all available features and their values at each node to determine the
optimum feature-value combination that divides the data into the purest subsets. The objective is
to reduce the amount of impurity or inaccuracy in the generated subsets.

Splitting Recursively

Once the best feature and value for the current node are determined, the dataset is divided into two
or more subgroups depending on this selection. Each subset becomes the data for a child node, and
the splitting procedure is applied recursively to each child node. The process of recursive splitting
continues until specified halting requirements are fulfilled. When the stopping requirements for a
node are fulfilled, it becomes a leaf node. In a classification job, the goal value for a leaf node is
often the majority class of the samples in that node. The goal value in a regression job is often the
average of the target values in that node. After generating the whole decision tree, pruning may be
used to eliminate branches that do not substantially add to the model's performance. Pruning
reduces overfitting and improves the generalization capabilities of the tree.

Prediction

To anticipate new data, the decision tree is traversed based on the values of the input
characteristics, following the judgments taken at each node until it reaches a leaf node. The forecast
for the input data is the goal value linked with the leaf node. The Decision Tree Learning method
is simple to learn and interpret, and the decision tree that results may reveal how the model makes
choices. To minimize overfitting, strategies such as pruning or employing ensemble methods like
as Random Forests or Gradient Boosting Machines may assist enhance the model's performance
and generalization.

Increasing the utility of decision trees

Decision trees are a flexible and strong machine learning method that may be used in a variety of
applications. Here are a few ideas for expanding the usefulness of decision trees:

1. Methods of Ensemble

To boost prediction performance, decision trees may be paired with ensemble approaches such as
Random Forests and Gradient Boosting Machines. These methods blend the results of many
decision trees to achieve more accurate predictions and minimize overfitting.

170

Artificial Intelligence

2. Handling Multiple Data Types

Decision trees are capable of handling both numerical and categorical data. Decision trees can
easily handle this variety in datasets with a mix of data kinds without needing costly data
preparation.

3. Missing Data Management

Without the use of imputation methods, decision trees can manage missing values in data. They
may deal with incomplete data and make conclusions based on the characteristics that are
accessible.

4. Tasks with Multiple Outputs

Decision trees may be expanded to handle multi-output jobs with several dimensions or outputs
for the target variable. These are referred to as Multi-Output Decision Trees.

5. Unbalanced Information

In classification problems when the quantity of samples for distinct classes is unequal, decision
trees can manage unbalanced datasets. To solve this problem, they may be paired with approaches
such as class weights or sampling methods.

6. Relationships that are not linear

Non-linear correlations between characteristics and goal variables may be captured using decision
trees. Decision trees may construct complicated decision boundaries by recursively separating the
data.

7. Ranking of Feature Importance

Using decision trees, you may prioritize the value of characteristics in predicting the target
variable. The feature split hierarchy gives insight into the most important features.

8. Analysis of Time Series

By including temporal characteristics or lagged variables into the model, decision trees may be
altered to handle time series data.

9. Detecting Anomalies

By constructing a tree that simulates typical behaviour, decision trees may be utilized to discover
anomalies. Anomalies are outliers that differ greatly from the learnt patterns.

10. Natural Language Processing and Text Processing

By turning textual input into numerical characteristics, decision trees may be used for text
categorization, sentiment analysis, and other natural language processing (NLP) activities.

11. Learning through Reinforcement

Decision trees may be used to make choices in various states or circumstances as part of
reinforcement learning algorithms.

171

Artificial Intelligence

12. Interpretability

The simple and straightforward form of decision trees makes them highly interpretable, making
them useful in situations where understanding the logic behind forecasts is critical. Overall,
decision trees may be changed and integrated with a variety of methodologies to handle a broad
range of machine learning difficulties, making them an important tool in the toolbox of a data
scientist.

The regularization parameter, which sets the trade-off between fitting the data and regularization,
controls the extent of regularization. A higher value of enhances the strength of regularization,
resulting in greater coefficient shrinking. Regularization prevents overfitting by preventing the
model from being too dependent on individual data points and noise in the training data.
Regularization promotes complicated models to generalize better and perform well on unknown
data by punishing them. Regularization methods are particularly effective when working with
high-dimensional datasets with a large number of features, as they may assist prevent the model
from overfitting owing to the higher danger of noise in high-dimensional spaces. Overall,
regularization is a useful technique for improving machine learning models' generalization
performance and dependability in real-world applications.

The Learning Theory

Learning theory is a vast and diverse study that aims to explain how humans and computers gain
information, skills, behaviours, or adapt to their surroundings via experience. It includes
psychology, neurology, cognitive science, artificial intelligence, and machine learning, among
other views and methodologies. Learning theory seeks to explore the fundamental concepts,
mechanisms, and processes involved in learning, as well as to construct models that explain and
predict learning behaviours. Key ideas and theories in learning theory include:

1. Ivan Pavlov developed Classical Conditioning, which describes how organisms combine a
neutral stimulus with an unconditioned stimulus to create a conditioned response. It is often
used to describe involuntary or reflexive behaviours.

2. B.F. proposed Operant Conditioning. Skinner's operant conditioning is concerned with the
outcomes of behaviour. It entails the use of positive or negative reinforcement or
punishment to promote or diminish the occurrence of specified behaviours.

3. Albert Bandura's Social Learning Theory highlights the significance of observation and
imitation in learning. Individuals learn via seeing the behaviours and effects of others,
rather than directly experiencing the repercussions themselves.

4. Cognitive learning theories are concerned with the mental processes involved in learning,
such as attention, memory, problem solving, and information processing. The Information
Processing Theory and the Gestalt Theory of Learning are two examples.

5. According to this learning theory, learners actively develop their understanding and
knowledge by integrating new information with pre-existing mental frameworks or
schemas.

6. Inspired by how the human brain functions, this theory stresses learning as the modification
of link strengths between artificial neurons in a neural network.

7. Reinforcement Learning (RL) is an area of machine learning and artificial intelligence that
includes learning optimum decision-making methods via trial and error with feedback in
the form of incentives or penalties.

172

Artificial Intelligence

8. Deep Learning is a sophisticated subject of machine learning that use neural networks with
numerous layers to learn hierarchical data representations and has had substantial success
in a variety of applications.

This topic investigates how information or abilities gained in one context may be transferred to
different circumstances or domains. A learning paradigm in which learners actively participate in
the learning process, choose what and how to study in order to maximize their learning results.
These are only a handful of the numerous ideas and techniques in learning theory. Understanding
how people and computers learn is critical for creating successful educational techniques, training
algorithms, and intelligent systems that can adapt and develop over time.

Leaner Model Regression and Classification

Regression and classification are two essential kinds of machine learning problems that may both
be tackled using linear models. Linear models are a kind of algorithm that predicts the future based
on linear combinations of input information.

1. Linear Model Regression: The purpose of regression tasks is to predict a continuous numerical
value as the output. Linear regression is a widely used linear model for regression applications.
Linear regression seeks to identify a linear connection between a collection of input features (X)
and matching target values (Y) given a set of input features and target values.

The linear regression model is written as Y = 0 + 1X1 + 2X2 +... + βn*Xn + ε

Where:

 Y represents the expected goal value.

 0 represents the intercept (bias) term.

 The coefficients associated with each input feature are 1, 2,..., n.

 The input features are X1, X2,..., Xn.

 is the incorrect term.

The linear regression model is fitted to the training data by determining the ideal coefficient values
(0, 1,..., n) that minimize the sum of squared errors between the predicted and actual target values.

2. Linear Model Classification: The purpose of classification jobs is to give a label or category to
each input sample. Linear models may be used for binary classification problems with just two
classes, as well as multi-class classification tasks with more than two classes.

A typical linear model used for binary classification is logistic regression. The logistic regression
model calculates the likelihood that an input sample belongs to a certain class. It converts the linear
combination of input characteristics into a probability score using the logistic (sigmoid) function.

P(Y=1|X) = 1 / (1 + exp(-(0 + 1X1 + 2X2 +... + n*Xn))) is the logistic regression model.

Where:

 P(Y=1|X) denotes the likelihood that the sample belongs to class 1 (the positive class).

 The remaining variables are identical to those in the linear regression model.

173

Artificial Intelligence

Linear models with linear kernels or multi-class extensions of logistic regression may be utilized
for multi-class classification. Because of its simplicity, interpretability, and effectiveness,
regression and classification using linear models are commonly employed. However, in cases
where the connections between characteristics and targets are non-linear or complicated, their
performance may be restricted. More complex models, such as polynomial regression, decision
trees, random forests, or neural networks, may be more suited in such instances.

A Synthetic Neural Network

An Artificial Neural Network (ANN) is a computer model that is based on the structure and
operation of the human brain. It refers to a subset of machine learning algorithms that are used for
a variety of tasks such as classification, regression, pattern recognition, and decision-making. The
capacity of ANNs to learn from data and adapt to complicated patterns makes them an effective
tool for tackling a broad variety of issues. The following are the main components of an Artificial
Neural Network:

1. Nodes (Neurons): Neurons are the fundamental components of an ANN. Each neuron
represents a mathematical function that takes in data, processes it, and outputs it. Neurons are
grouped into layers in a basic feedforward neural network: an input layer, one or more hidden
layers, and an output layer.

2. Weighted Connections: The strength of influence between neurons is represented by
connections. Each link has a weight that defines the significance of the information from one
neuron to another. Weights are modified throughout the learning phase to improve the performance
of the network.

3. Function of Activation: The activation function adds nonlinearity to the model by determining
the neuron's output depending on the sum of its weighted inputs. Sigmoid, ReLU (Rectified Linear
Unit), tanh (hyperbolic tangent), and softmax are examples of common activation functions.

4. Propagation via Feedforward: Feedforward propagation is the process of sending input data
across a network in order to generate predictions. The weights are applied to the input data, and
the output is created by running the weighted sum through the activation function.

5. Backpropagation: Backpropagation is the fundamental algorithm for training an ANN. It
entails repeatedly changing the weights of the network's connections in order to reduce the gap
between the expected and actual outputs. Calculus' chain rule is used to calculate gradients, which
define how much each weight should be modified.

6. Function of Loss: The loss function calculates the difference between the expected and actual
output values. The purpose of training is to reduce the loss function in order to enhance the
network's accuracy.

7. Algorithm for Optimization: How the weights are adjusted during backpropagation is
determined by the optimization method. Gradient Descent, Stochastic Gradient Descent (SGD),
Adam, and RMSprop are examples of common optimization techniques.

8. Hyperparameters and Architecture: An ANN's architecture relates to the arrangement of
neurons and layers. The number of hidden layers, the number of neurons in each layer, and other
hyperparameters (learning rate, batch size, and so on) all have a substantial effect on network
performance.

174

Artificial Intelligence

Convolutional Neural Networks (CNNs) for image identification, Recurrent Neural Networks
(RNNs) for sequential data, and Transformers for natural language processing applications are
examples of ANNs that may be expanded and changed to solve particular issues. Artificial Neural
Networks' strength and adaptability have resulted in substantial breakthroughs in a variety of
domains, making them a prominent focus of study and application in the current machine learning
environment.

Structures of Neural Networks

The architecture and organization of artificial neural networks (ANNs) are referred to as neural
network structures. Different neural network topologies are intended to tackle distinct sorts of
issues and exploit different input patterns. Here are some examples of typical neural network
structures:

1. FNN (Feedforward Neural Network): The feedforward neural network is the most basic sort
of neural network, with information flowing from input to output in just one way. It is made up of
three layers: an input layer, one or more hidden layers, and an output layer. Each neuron in one
layer is linked to every neuron in the next layer. FNNs are utilized for classification and regression
problems.

2. CNN (Convolutional Neural Network): CNNs are intended for image and video processing.
Convolutional layers are used to automatically learn local patterns and hierarchical representations
from incoming data. CNNs often incorporate pooling layers for downsampling and spatial
dimension reduction, followed by fully linked layers for classification.

3. RNN (Recurrent Neural Network): RNNs work well with sequential data types such as time
series, natural language, and voice. They include loops that enable information to survive and be
transferred between time steps, allowing them to capture temporal interdependence. Traditional
RNNs, on the other hand, may suffer from disappearing and bursting gradients, making training
on extended sequences challenging.

4. Network using Long Short-Term Memory (LSTM): LSTMs are a kind of RNN that is meant
to solve the vanishing gradient issue. Memory cells and gating mechanisms, for example, may
selectively preserve and update information over time. LSTMs are often utilized in sequence-to-
sequence applications like machine translation and text synthesis.

5. GRU (Gated Recurrent Unit): GRUs are similar to LSTMs in that they handle the vanishing
gradient issue. They feature a simpler design with fewer parameters, which allows them to be more
computationally efficient than LSTMs. GRUs are often used in sequence modelling problems.

6. Autoencoders: Autoencoders are unsupervised learning and feature representation neural
networks. They are made up of an encoder, which compresses the input data into a lower-
dimensional representation, and a decoder, which reconstructs the original input from the latent
representation. Autoencoders are used to perform tasks such as dimension reduction and anomaly
detection.

7. GAN (Generative Adversarial Network): GANs are a sort of generative model that pits two
neural networks against each other, a generator and a discriminator. The generator generates bogus
samples, whereas the discriminator attempts to differentiate between actual and bogus samples.
GANs learn to create realistic data samples, such as pictures or sounds, via adversarial training.

175

Artificial Intelligence

8. Transformers: Transformers are intended for use in sequence-to-sequence activities like
machine translation and language modelling. They employ self-attention processes to analyze
input sequences in parallel, allowing them to learn on extended sequences efficiently. Natural
language processing tasks have shown tremendous success using transformers. These are only a
few examples of neural network designs; there are several additional specialized architectures and
versions designed for certain applications and research fields. The kind of neural network structure
used is determined by the nature of the issue, the type of data, and the desired performance.

Nonparametric and Parametric Models

Nonparametric models and parametric models are two methods for developing statistical models
for data analysis and machine learning. The key difference is in how they represent and learn from
data.

1. Models Parametric: Parametric models make significant assumptions about the data's
underlying distribution or functional structure. These models contain a set number of parameters,
and the purpose is to estimate their values using the training data. After estimating the parameters,
the model structure is defined and the data is deleted. Nonparametric models need more training
data points whereas parametric models are more interpretable. Linear regression, logistic
regression, linear discriminant analysis, and several forms of the Gaussian Naive Bayes classifier
are examples of parametric models.

2. Models that are not parametric: Nonparametric models make fewer assumptions about the
underlying distribution of the data or its functional form. They are more adaptable and can learn
complicated patterns from data without making any assumptions. There is no set number of
parameters in nonparametric models. Instead, the number of parameters increases in proportion to
the magnitude of the training data, enabling them to adapt to different data patterns. Nonparametric
models, which have the potential for great expressiveness and accuracy, often need a large number
of data points to represent the underlying connections. Decision trees, k-nearest neighbours
(KNN), support vector machines with non-linear kernels, random forests, neural networks, and
different deep learning architectures are examples of nonparametric models.

Help Vector Machine

SVM is a sophisticated and frequently used supervised machine learning technique that may be
utilized for both classification and regression applications. SVM is very useful when there are
apparent separations between classes in the data or when the decision boundary is not obvious.
The following are the essential characteristics and ideas of Support Vector Machines:

1. SVM is typically employed as a binary classifier, which means it is meant to split data into
two groups. It may, however, be expanded to handle multi-class classification jobs by using
methods such as one-vs-one or one-vs-all.

2. A hyperplane is a two-dimensional feature space line that divides data from two classes. A
hyperplane is a flat (d-1)-dimensional subspace of a higher-dimensional space that divides
data into multiple classes, where 'd' is the number of features.

3. The distance between the hyperplane and the nearest data points in both classes is defined
as the margin. SVM seeks the hyperplane with the greatest margin, providing a greater
separation between classes.

176

Artificial Intelligence

4. Support vectors are the data points that are closest to the hyperplane and have the greatest
effect on its location. These points establish the decision boundary and help to determine
the best hyperplane.

5. The kernel technique is used to deal with non-linearly separable data. SVM can identify a
hyperplane that linearly separates the modified data even if it was not separable in the
original space by translating the original feature space into a higher-dimensional space.
Kernel functions that are often used include linear, polynomial, radial basis function (RBF),
and sigmoid kernels.

6. The C parameter governs the trade-off between maximizing margin and decreasing
classification error. A bigger C number allows for a smaller margin but may result in better
training data categorization, while a lower C value prioritizes a larger margin but may
accept some misclassification.

7. Soft and hard margins are the two kinds of margins in SVM. A soft margin allows for some
data point misclassification in order to discover a more flexible decision border, which is
useful when dealing with overlapping classes or noisy data. A hard margin, on the other
hand, demands completely separable data and ensures no misclassifications.

SVM offers a number of benefits, including its capacity to effectively handle high-dimensional
data, its resistance to overfitting, and its success with small to medium-sized datasets. However,
because to the computational cost of SVM, its performance may decline with huge datasets.
Overall, SVM is a flexible and effective technique that has a wide range of applications in
classification issues such as image recognition, text categorization, bioinformatics, and regression
tasks.

Methods of Ensemble Learning

Ensemble learning approaches integrate the predictions of numerous separate models base learners
to create more accurate and robust predictions. Ensemble approaches are useful because they may
take use of the variety and complimentary qualities of many models, resulting in increased overall
performance. Among the most prevalent ensemble learning approaches are:

1. Bootstrap Aggregating: Bagging is the process of training numerous instances of the
same model on various subsets of the training data generated via random sampling with
replacement. Individual model predictions are averaged for regression or voted on for
classification to get the final forecast. Random Forest is a common bagging-based
ensemble approach that use decision trees as base learners.

2. Boosting: Boosting techniques prioritize misclassified examples to improve the
performance of weak learners models that perform marginally better than random
guessing. Each model is trained on the preceding models' errors, and their forecasts are
aggregated via weighted voting or averaging. Well-known boosting techniques include
Gradient Boosting Machines (GBM) and AdaBoost.

3. Stacking: Stacking uses a meta-learner, also known as a blender or aggregator, to
integrate predictions from many base learners. The predictions of the basic learners
become new features for the meta-learner, which learns to generate the ultimate prediction
based on these intermediate outcomes. Stacking enables multiple models to concentrate
on certain patterns or sections of the data, and the meta-learner to learn how to combine
their outputs optimally.

177

Artificial Intelligence

4. Voting: Voting is a basic ensemble approach in which numerous models predict the same
input data and the final prediction is selected by majority vote or average. This strategy
is excellent for integrating models with disparate properties or models that perform
similarly but may make various mistakes.

5. Ensembles that are bootstrapped: Bootstrapped ensembles integrate several models
trained on bootstrapped copies of the dataset randomly sampled with replacement. The
weighted forecasts of individual models are combined to generate the final prediction,
which is derived by combining the weighted predictions of individual models.

6. BMA (Bayesian Model Averaging): Using Bayesian inference, BMA integrates many
models, taking into account the uncertainty in each model's predictions. Based on the data
and the models' performance, it gives probability to various models and their forecasts.
Because they generally result in enhanced generalization, less overfitting, and higher
resilience, ensemble learning approaches are commonly utilized in machine learning
competitions and real-world applications. Ensemble approaches offer improved accuracy
and stability by merging numerous models, making them a significant tool in predictive
modelling.

Machine Learning In Action

The application of machine learning methods to real-world situations and the building of models
that can make accurate predictions or judgments based on data is referred to as practical machine
learning. To achieve effective and relevant outcomes, practical machine learning entails a variety
of stages and considerations. Here are some of the most important components of practical
machine learning:

1. Formulation of a Problem: Clearly state the issue you want machine learning to tackle.
Determine if the job is one of classification, regression, clustering, or another kind.
Understand the commercial or scientific goals as well as the measures that will be used
to assess the model's success.

2. Preprocessing and data collection: Collect appropriate data for training and evaluating
the model. Cleaning and preprocessing the data includes dealing with missing values,
eliminating noise, adjusting or scaling features, and transforming categorical variables to
numerical representations.

3. Feature Development: Choose or build acceptable characteristics to feed into the
machine learning model. Feature engineering may have a significant influence on model
performance, and domain expertise is often required for this phase.

4. Model Choice: Select the machine learning algorithm that best suits the issue and data
characteristics. When choosing a model, consider aspects such as interpretability,
complexity, and computing resources.

5. Validation and training: Divide the data into training and validation sets to train and
test the model. Cross-validation approaches may be used to check the model's
generalization capacity and avoid overfitting.

6. Tuning Hyperparameters: Modify the model's hyperparameters to improve its
performance. The model's complexity, learning rate, regularization strength, and the
number of hidden units or layers are all controlled via hyperparameters.

7. Model Assessment: Assess model performance using task-specific measures such as
accuracy, precision, recall, F1-score, mean squared error, or area under the receiver
operating characteristic curve (AUC-ROC).

178

Artificial Intelligence

8. Deployment of the Model: Put the trained model into production, where it may make
predictions on fresh, previously unknown data. For deployment, consider scalability,
latency, and model monitoring.

9. Monitoring and upkeep: Continuously evaluate and update the model's performance to
ensure it stays accurate and relevant over time. Machine learning models may need to be
retrained on a regular basis as new data becomes available.

10. Explainability and interpretability: The interpretability and explainability of the
model's choices are crucial for particular applications. Ascertain that the model or
ensemble of choice is interpretable and can give insights into how predictions are created.
Experimenting, refining, and fine-tuning the model until sufficient performance is
attained is an iterative process in practical machine learning. It also requires a detailed
grasp of the data, the domain, and the underlying assumptions of the algorithms under
consideration. Successful practical machine learning solutions may have a big influence
on a wide range of areas, including healthcare, finance, marketing, and many more.

CONCLUSION

The focus of this chapter has been on inductive learning of functions through examples. The key
principles were as follows: Learning may take different forms, depending on the nature of the
agent, the component to be improved, and the feedback provided. The learning issue is termed
supervised learning if the provided feedback delivers the right response for example inputs. The
assignment is to study the function y = h(x). Learning a discrete-valued function is referred to as
classification, whereas learning a continuous function is referred to as regression. Inductive
learning entails developing a hypothesis that is consistent with the instances. According to
Ockham's razor, the simplest consistent theory should be chosen. The complexity of this problem
is determined on the representation used. All Boolean functions may be represented using decision
trees. The information-gain heuristic is a quick way to find a basic, consistent decision tree. The
learning curve, which depicts the prediction accuracy on the test set as a function of training-set
size, is used to evaluate the performance of a learning algorithm. Cross-validation may be used to
pick a model that will generalize well when there are numerous models to choose from. Not all
mistakes are created equal. A loss function indicates the severity of each mistake; the aim is then
to reduce loss across a validation set.

REFERENCES:

[1] D. Mayerich, R. Sun, and J. Guo, “Deep Learning,” in Microscope Image Processing,

Second Edition, 2022. doi: 10.1016/B978-0-12-821049-9.00015-0.

[2] M. H. Lin, H. C. Chen, and K. S. Liu, “A study of the effects of digital learning on learning
motivation and learning outcome,” Eurasia J. Math. Sci. Technol. Educ., 2017, doi:
10.12973/eurasia.2017.00744a.

[3] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn.,
2020, doi: 10.1007/s10994-019-05855-6.

[4] F. del R. A. Gordón, “From face-to-face learning to virtual learning in pandemic times,”
Estud. Pedagog., 2020, doi: 10.4067/S0718-07052020000300213.

[5] A. Vallee, J. Blacher, A. Cariou, and E. Sorbets, “Blended learning compared to traditional
learning in medical education: Systematic review and meta-analysis,” Journal of Medical

Internet Research. 2020. doi: 10.2196/16504.

179

Artificial Intelligence

[6] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks.
2015. doi: 10.1016/j.neunet.2014.09.003.

[7] Munawaroh, “The influence of problem-based learning model as learning method, and
learning motivation on entrepreneurial attitude,” Int. J. Instr., 2020, doi:
10.29333/iji.2020.13230a.

[8] W. S. Albiladi and K. K. Alshareef, “Blended learning in english teaching and learning: A
review of the current literature,” J. Lang. Teach. Res., 2019, doi: 10.17507/jltr.1002.03.

[9] R. H. Rafiola, P. Setyosari, C. L. Radjah, and M. Ramli, “The effect of learning motivation,
self-efficacy, and blended learning on students’ achievement in the industrial revolution
4.0,” Int. J. Emerg. Technol. Learn., 2020, doi: 10.3991/ijet.v15i08.12525.

[10] A. Maurer, “Ockham’s Razor and Chatton’s Anti-Razor,” Mediaev. Stud., 1984, doi:
10.1484/j.ms.2.306670.

[11] D. Gernert, “Ockham’s Razor and its improper use,” J. Sci. Explor., 2007.

[12] B. Apolloni, A. Esposito, D. Malchiodi, C. Orovas, G. Palmas, and J. G. Taylor, “A general
framework for learning rules from data,” IEEE Trans. Neural Networks, 2004, doi:
10.1109/TNN.2004.836249.

180

Artificial Intelligence

CHAPTER 19

KNOWLEDGE IN LEARNING: BUILDING FOUNDATIONS

FOR INTELLIGENT ADAPTATION

Abhilash Kumar Saxena, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- abhilashkumar21@gmail.com

ABSTRACT:

The goal of all of the learning techniques outlined in the preceding chapter is to build a function
that has the input-output behaviour seen in the data. In each scenario, the learning approaches may
be thought of as searching a hypothesis space for a suitable function, beginning with just a very
basic assumption about the function's shape, such as second-degree polynomial or decision tree,
and sometimes a bias for simpler hypotheses. This is equivalent to stating that in order to learn
anything new, you must first unlearn all you know. In this chapter, we will look at learning
strategies that may make use of past information about the world. In most situations, previous
information is represented as broad first-order logical theories; hence, we bring together work on
knowledge representation and learning for the first time.

KEYWORDS:

Algorithm, Data, Hyphothesis, Inductive, Information.

INTRODUCTION

Pure inductive learning was described in Chapter 18 as the process of developing a hypothesis that
agrees with the observed instances. This term is specialized here for the situation when the hypoth
esis is represented by a collection of logical phrases.

The hypothesis and the example description will both be logical sentences, and a new example
may be categorized by inferring a classification sentence from the hypothesis and the example
description. This method enables for the conceptual building of hypotheses to be increased one
phrase at a time. It also allows for past knowledge, since previously known phrases may aid in the
categorization of new samples. The logical formulation of learning may seem to be a lot of
additional effort at first, yet it turns out to elucidate many learning concerns. It allows us to go
much beyond the rudimentary learning techniques of Chapter 18 by putting the entire force of
logical inference to work for us [1]–[3].

In a logical framework, inductive learning entails developing a hypothesis that appropriately
classifies instances and generalizes well to new ones. Each hypothesis is of the form x Goal (x) Cj
(x), where Cj (x) is an attribute predicat candidate specification. The aim is to locate the proper
hypothesis among all the hypotheses considered by the learning algorithm in the hypothesis space
H = h1,..., hn. Inconsistent assumptions may be ruled out when instances arise. In this application,
consistency implies that a hypothesis should accurately predict the categorization of every example
in the training set. When an example is a false negative or false positive for a hypothesis,
inconsistencies occur. When the hypothesis predicts a negative classification but the example is
positive, this is referred to as a false negative. A false positive, on the other hand, arises when the

181

Artificial Intelligence

hypothesis predicts a positive categorization but the example is negative. Such discrepancies may
be removed logically by using the resolution rule of inference [4]–[6].

Two more efficient ways for discovering consistent hypotheses are proposed to avoid thorough
enumeration of the enormous hypothesis space.

1. Approach from General to Specific

a. Begin with the broadest theory, which covers all potential cases.
b. Refine the hypothesis by removing any contradictory cases false negatives.
c. Specializing the theory gradually by adding additional criteria to account for particular

occurrences until no contradictions remain.

2. Bottom-Up Approach

a. Begin with the most precise hypothesis that excludes all of the instances.
b. Generalize the hypothesis by include criteria that ensure it is compatible with positive

instances to minimize false positives.
c. Continue to extend the hypothesis by include additional instances until there are no

contradictions.
d. Both techniques considerably decrease the search space and strive to efficiently converge

to a coherent hypothesis.

In a nutshell, inductive learning in a logical situation entails finding a hypothesis across a huge
hypothesis space that properly classifies instances and generalizes well to new ones. Eliminating
assumptions that are logically contradictory with the instances achieves consistency. The general-
to-specific and specific-to-general techniques are more efficient procedures for obtaining logically
coherent hypotheses since they avoid exhaustive enumeration. The learning algorithm narrows the
alternatives and arrives at a more accurate hypothesis for the given learning issue by progressively
removing contradicting hypotheses [7]–[9].

Best Hypothesis

Many inductive learning algorithms include the current-best-hypothesis search as a major
component. It refers to the process of improving and updating the hypothesis repeatedly depending
on the available training samples. The objective is to find the optimal hypothesis that fits the
training data and generalizes well to previously unknown data. The search usually begins with a
hypothesis, which might be the most broad encompassing all potential cases or the most particular
covering none of the examples. The hypothesis is adjusted as the algorithm analyses the training
examples to become more accurate and consistent with the data [10], [11]. Depending on the
learning algorithm and the structure of the hypothesis space, the search process may use a variety
of strategies:

1. Search from General to Specific

a. Begin with the broadest theory that encompasses all conceivable cases.
b. Gradually specialize the hypothesis by excluding cases that contradict it.
c. Continue to fine-tune the hypothesis by including additional precise criteria to account for

positive cases.
d. The search is terminated when the hypothesis is found to be consistent with all training

instances or when a stopping requirement is fulfilled.

182

Artificial Intelligence

2. Search from Specific to General

a. Begin with the most specific hypothesis that does not encompass any of the instances.
b. Gradually broaden the hypothesis by include additional criteria to account for good cases.
c. Refine the hypothesis by excluding cases that contradict it .
d. The search is terminated when the hypothesis is found to be consistent with all training

instances or when a stopping requirement is fulfilled.

3. Search for Greed

a. Begin with a candidate hypothesis which might be picked at random or based on past
information.

b. Make local adjustments to the hypothesis iteratively to enhance its consistency with the
instances.

c. Assess the adjustments based on a performance metric for example, accuracy and maintain
the best hypothesis thus far.

d. Keep going until convergence or a halting condition is met.

The algorithm may investigate numerous hypothesis candidates in order to identify the best fit for
the training data during the current-best-hypothesis search, which is an iterative process. The
search seeks to strike a compromise between overfitting fitting the noise in the data and
underfitting missing the underlying patterns. The final hypothesis should be able to generalize to
new data and produce accurate predictions. It is vital to note that the search's efficacy is largely
dependent on the hypothesis space's representational strength and the quality of the training data.
The search process in complicated learning tasks may be computationally costly, and numerous
optimization strategies may be used to increase efficiency.

DISCUSSION

Learning Expertise

In the context of machine learning, knowledge in learning often refers to the information, patterns,
and correlations extracted and used by a machine learning algorithm from input data to produce
predictions or judgments. It is the algorithm's knowledge and insights obtained throughout the
learning process. Machine learning algorithms may learn one of two categories of knowledge:

1. Explicit information: This is information that is presented to the algorithm explicitly, often in
the form of labelled training data. The algorithm in supervised learning is given input-output
pairings and learns to map inputs to related outputs based on these instances. The labelled data
serves as explicit knowledge, and the algorithm attempts to generalize from it to generate
predictions on new, unknown data. In a classification job, for example, explicit knowledge would
include labelled examples with the right class label for each input.

2. Implicit Knowledge: The algorithm learns implicit knowledge by finding patterns and
correlations in the data. The algorithm in unsupervised learning does not contain labelled examples
and instead searches the data to uncover intrinsic structures, clusters, or patterns. Implicit
knowledge includes the links between data points and the distribution of data. Another example is
reinforcement learning, in which the agent learns via trial and error to maximize a reward signal,
and the information obtained is the optimum strategy for getting the best results.

183

Artificial Intelligence

The algorithm refines its knowledge and modifies its internal model or representation throughout
the learning process. The amount and quality of information have a significant impact on the
performance of the learnt model. The algorithm is more likely to generalize effectively to new,
unknown data if it can extract meaningful characteristics, patterns, and correlations from the data.
However, learning is not always ideal, and various obstacles might have an influence on the
algorithm's knowledge acquisition quality. When the algorithm collects noise or unimportant
features from the training data, it overfits, resulting in poor generalization. When the algorithm's
model is too simplistic to capture the underlying patterns in the data, underfitting occurs, resulting
in poor performance even on training data. The capacity of machine learning algorithms to
represent and use meaningful information from data is critical to their success. Researchers and
practitioners are always working to improve algorithms to better harness learning information,
resulting in more accurate, efficient, and resilient machine learning models.

Explanation of Fundamental Learning

The process through which an agent or system gets new information or abilities from its
surroundings or experiences is referred to as basic learning. Basic learning in the context of
machine learning refers to algorithms that may naturally increase their performance on a task via
data exposure without being expressly taught for that goal. The system's purpose is to learn from
examples and experiences in order to make better predictions or judgements in the future. Basic
learning is related with numerous fundamental concepts:

1. Training Data: Basic learning methods need the use of a training dataset, which
consists of input instances accompanied by matching labels or target values in
supervised learning or without labels in unsupervised learning. The training data is
the basis for learning.

2. Model Representation: To capture patterns and connections in data, the learning
algorithm employs a model, which is often represented by mathematical functions
or structures. During the learning phase, the model's parameters are modified to suit
the training data.

3. Learning Algorithm: The learning algorithm repeatedly analyses the training data
to update the parameters of its model. This method entails reducing a loss or error
function that measures the difference between the model's predictions and the
actual targets. The goal is to select the optimal model that minimizes errors.

4. Generalization: One of the fundamental goals of basic learning is to develop
models that can generalize effectively to new, previously unknown data. Rather
than remembering the training instances, the learnt model should capture
underlying patterns. This capacity to generalize guarantees that the model functions
correctly on data that it has never seen before.

5. Supervised Learning: In supervised learning, the algorithm is fed labelled training
data with known outputs. Based on these instances, the algorithm learns to map
inputs to outputs, essentially learning the link between input attributes and target
labels.

6. Unsupervised Learning: In unsupervised learning, the algorithm is given
unlabeled data and is required to detect patterns or structure in the data without
explicit instruction. This form of learning is often employed for tasks such as
clustering, in which the algorithm groups together comparable data points.

184

Artificial Intelligence

7. Reinforcement Learning: Reinforcement learning occurs when an algorithm
interacts with its environment and receives feedback in the form of rewards or
punishments. The objective is to devise a policy that maximizes the cumulative
reward over time.

Computer vision, natural language processing, robotics, and other industries have been
transformed by basic learning. Image recognition, voice synthesis, recommendation systems, and
autonomous driving are just a few of the tasks that machine learning models have excelled at.
Basic learning is a useful tool for tackling complicated real-world issues because of its capacity to
learn from data and adapt to changing settings.

Learning Via Explanation

EBL is a machine learning technique that blends deductive reasoning with empirical learning from
examples. It seeks to increase learning efficiency and effectiveness by using previous information
and general norms to guide the learning process. The basic concept underlying explanation-based
learning is to utilize a domain-specific theory or set of rules to provide explanations or
justifications for why individual instances are categorized in the way they are. When compared to
raw data, thse explanations are often given in a more abstract, symbolic manner. After that, the
learning algorithm generalizes from these explanations to provide a more compact and higher-
level representation of the learnt information. The explanation-based learning process may be
divided into the following steps:

1. The learning algorithm employs a domain-specific theory or prior knowledge to provide
explanations for the specified training instances. These explanations are logical or
symbolic representations of the data's important properties or patterns.

2. Explanations often involve high-level principles or abstractions that capture common
patterns across several cases. These abstractions are used by the learning process to
produce a more generic representation of the information that can be applied to new,
previously unseen cases.

3. The abstract generalizations acquired via explanations serve as the learnt model's
hypothesis. The computer then refines and updates this hypothesis by testing it on further
training cases and, if required, including new explanations.

4. Using explanations helps the learning system to bypass needless calculations and
concentrate on essential information. Because the abstracted representations eliminate the
need to handle individual data instances, the learning process becomes more efficient.

There are various benefits to explanation-based learning. Learning may be more efficient and
quicker than classic brute-force approaches by using existing domain knowledge and concentrating
on key explanations. Abstract generalizations derived from explanations lead to higher-level
knowledge representations, allowing for more effective generalization to new, unseen cases. EBL
often provides better interpretable models since the learnt information is expressed in a symbolic
manner that domain experts can understand and confirm. However, EBL has significant
drawbacks. It depends largely on the availability of domain-specific ideas as well as the capacity
to produce relevant explanations. Furthermore, the process of creating explanations and
generalizations may be difficult and may need substantial computing resources. Overall,
explanation-based learning is a useful strategy that blends deductive reasoning with empirical
learning to increase the efficiency and efficacy of machine learning algorithms, especially in areas
where prior knowledge and general principles are important.

185

Artificial Intelligence

Using Relevant Knowledge To Learn

Learning using relevance information is a machine learning strategy in which the algorithm
considers the relevance or significance of certain characteristics or samples throughout the learning
process. The objective is to concentrate on the most important information and prioritize certain
data points or features in order to increase the learning algorithm's efficiency and effectiveness.
Relevance information may be used in machine learning in numerous ways:

1. Relevance information may aid in the selection of the most informative characteristics or
variables from the incoming data. The learning algorithm may minimize the dimensionality
of the issue, prevent noise or useless information, and enhance the model's generalization
by recognizing and employing just the important characteristics.

2. Different weights may be provided to instances or data points in various learning
algorithms depending on their importance to the learning job. More relevant instances may
be assigned larger weights, reflecting their relevance in developing the model.

3. Active learning is a semi-supervised or query-based learning strategy in which the
algorithm actively selects which samples to query for labels. Relevance information aids
in the selection of examples that are most likely to be instructive in terms of increasing the
model's performance.

4. In cost-sensitive learning, the learning algorithm considers the importance or cost of
misclassifying certain classes. The algorithm's decision bounds may be adjusted to
emphasize lowering the cost of misclassification for certain classes.

5. Some machine learning algorithms, such as decision trees and random forests, offer feature
importance ratings that show how important each feature is in creating predictions. These
ratings may be used to influence feature selection and comprehend the model's behaviour.

6. In some learning contexts, the algorithm may get input on the relevance of predictions or
conclusions from users or domain experts. This input may be used to enhance the model's
performance throughout the learning phase.

The use of relevant information may lead to numerous advantages in machine learning By
concentrating on important characteristics or instances, the learning algorithm may minimize
computing complexity and training time, resulting in a more efficient learning procedure.
Prioritizing important information might result in better interpretable models since the chosen
characteristics or instances are often simpler to grasp and explain. By removing noise and
irrelevant data, the model's generalization to new, previously unknown data may be enhanced.
Including relevant information might result in more accurate and effective models since the
algorithm focuses on the most useful components of the data. However, getting relevant
information is not always simple, and the quality of relevance measurements may have a
substantial influence on the learning process. To successfully use relevance information in
machine learning, careful study and subject knowledge are often necessary.

Programming Logic Inductively

ILP (Inductive Logic Programming) is a machine learning area that blends inductive reasoning
with logic programming. Its goal is to learn logical principles or programs via examples portrayed
in a mix of logic-based language and previous knowledge. The learning task in ILP generally
consists of three major components:

186

Artificial Intelligence

1. This reflects the domain's existing logical knowledge. It consists of facts, rules, and
restrictions written in a logic-based language, most often in the form of first-order logic or
Prolog-like phrases.

2. ILP needs a collection of positive examples instances that belong to the target idea and
negative examples instances that do not belong to the target concept. These examples are
usually provided in a logical order that corresponds to the prior information.

3. The hypothesis space in ILP is made up of logical rules or programs that may be used to
construct predictions or classifications based on prior information and instances.

Language bias is defined by ILP algorithms, and it describes the shape and complexity of the
logical rules that may be considered during learning. This bias aids in narrowing the search field
and directing the learning process. ILP algorithms explore the hypothesis space for logical rules
or programs that are compatible with positive instances while avoiding contradictions with
negative examples or background information. The goal of the search is to uncover the most
precise and broad rules that may describe the data. The proposed rules or programs are examined
for consistency with the provided positive and negative examples. To adjust the rules and enhance
their consistency, the algorithm may use techniques such as generalization and specialization.

ILP algorithms often use pruning strategies to delete rules that are excessively complicated or
irrelevant. To develop more compact and accurate representations, the rules might be tweaked or
merged. Metrics like as accuracy, precision, and recall are used to assess the learnt rules. The
objective is to evaluate the model's performance on previously unknown data and guarantee that it
generalizes successfully. Natural language processing, bioinformatics, relational databases, and
knowledge representation have all benefited from Inductive Logic Programming. Its logic-based
nature makes it ideal for jobs requiring symbolic thinking and organized data. However, ILP has
obstacles such as a vast search area, hypothesis combinatorial explosion, and scalability concerns.
To solve these issues and increase the speed and efficacy of learning logical rules from instances,
many ILP algorithms and extensions have been created. Top-down inductive learning techniques
and inverse deduction inductive learning methods.

To acquire logical principles from examples, top-down inductive learning techniques and
Inductive Learning with Inverse Deduction (ILID) are two ways used in Inductive Logic
Programming (ILP). Both methodologies use inductive reasoning and logic programming, but their
search tactics and problem-solving procedures vary. Top-down inductive learning is a broad phrase
that refers to a class of ILP algorithms that use a systematic, top-down search across the hypothesis
space. These algorithms begin with a broad hypothesis typically a combination of atomic
predicates and iteratively modify it to fit positive cases while avoiding negative examples. Begin
with a broad theory and narrow it down to become more precise and exact. Evaluating the
hypothesis on the training examples iteratively and revising it depending on discrepancies. Using
prior information to steer the search and narrow the hypothesis space. FOIL (First-Order Inductive
Learner) is a popular top-down ILP algorithm. FOIL searches the hypothesis space using a beam
search and then investigates specialized and more specific hypotheses based on the good instances.

Inductive Learning with Inverse Deduction (ILID) is a subset of Inductive Logic Programming
that focuses on learning logical rules via inverse deduction. The method of reasoning from
particular facts to more general logical norms is known as inverse deduction. ILID leverages
inverse deduction, which includes backward-chaining inference, rather to the typical forward-
chaining reasoning employed in most ILP algorithms. Begin with particular positive instances and

187

Artificial Intelligence

generalize them repeatedly to develop more broad logical principles. Applying inverse deduction
to develop rules that are compatible with instances and prior knowledge. Allowing for more
expressive and flexible rule representations capable of capturing complex patterns and
connections. By concentrating on positive instances and generalizing them to generate more
general principles, ILID may efficiently explore the hypothesis space. It takes use of inverse
deduction's backward-chaining nature, which may result in more compact and interpretable rule
representations. Inductive Logic Programming employs two approaches: top-down inductive
learning techniques and Inductive Learning with Inverse Deduction. ILID begins with particular
instances and generalizes them through inverse deduction, while top-down approaches begin with
a broad premise then specialize it. Both techniques seek to acquire logical principles from
examples and prior information in order to develop accurate and broad models for domain
reasoning and prediction.

CONCLUSION

This chapter has looked at how past knowledge may assist an agent in learning from new
encounters. We have also examined systems that enable learning of relational models since most
past information is represented in terms of relational models rather than attribute-based models.
The utilization of past information in learning results in a picture of cumulative learning, in which
learning agents enhance their learning capacity as they gain more knowledge. Prior knowledge
facilitates learning by removing otherwise coherent hypotheses and filling in the explanation of
instances, allowing for shorter hypotheses. These contributions often lead to quicker learning with
fewer instances. Understanding the many logical roles that past information plays, as described by
entailment restrictions, aids in the design of a range of learning approaches. Explanation-based
learning (EBL) derives general principles from single instances by explaining them and
generalizing the explanation. It offers a logical technique for transforming first-principles
knowledge into practical, efficient, and specific-purpose expertise. Relevance-based learning
(RBL) employs past information in the form of determinations to identify relevant features,
resulting in a smaller hypothesis space and faster learning. Deductive generalizations from single
cases are also possible with RBL. Using prior information, knowledge-based inductive learning
(KBIL) discovers inductive hypotheses that explain sets of observations. Inductive logic
programming (ILP) approaches use first-order logic to conduct KBIL on knowledge. ILP
approaches may gain relational information that attribute-based systems cannot represent. ILP may
be done from the top down by refining a very broad rule or from the bottom up by reversing the
deductive process. ILP approaches produce new predicates naturally, allowing for the expression
of compact new theories, and they show promise as general-purpose scientific theory building
systems.

REFERENCES:

[1] M. Franco and L. Esteves, “Inter-clustering as a network of knowledge and learning:
Multiple case studies,” J. Innov. Knowl., 2020, doi: 10.1016/j.jik.2018.11.001.

[2] J. Lei, D. Ouyang, and Y. Liu, “Adversarial Knowledge Representation Learning Without
External Model,” IEEE Access, 2019, doi: 10.1109/ACCESS.2018.2889481.

[3] A. Setyawan, N. Aznam, Paidi, T. Citrawati, and Kusdianto, “Effects of the Google meet
assisted method of learning on building student knowledge and learning outcomes,”
Univers. J. Educ. Res., 2020, doi: 10.13189/ujer.2020.080917.

188

Artificial Intelligence

[4] W. Chen, “Knowledge-aware learning analytics for smart learning,” in Procedia Computer

Science, 2019. doi: 10.1016/j.procs.2019.09.368.

[5] W. Choi and H. Lee, “Inference of Biomedical Relations among Chemicals, Genes,
Diseases, and Symptoms Using Knowledge Representation Learning,” IEEE Access, 2019,
doi: 10.1109/ACCESS.2019.2957812.

[6] J. C. Casillas, J. L. Barbero, and H. J. Sapienza, “Knowledge acquisition, learning, and the
initial pace of internationalization,” Int. Bus. Rev., 2015, doi:
10.1016/j.ibusrev.2014.06.005.

[7] S. Z. Waleligni, M. R. Nielsen, and J. B. Jacobsen, “Roads and livelihood activity choices
in the greater serengeti ecosystem, Tanzania,” PLoS One, 2019, doi:
10.1371/journal.pone.0213089.

[8] E. Herrmann, J. Call, M. V. Hernández-Lloreda, B. Hare, and M. Tomasello, “Humans have
evolved specialized skills of social cognition: The cultural intelligence hypothesis,” Science

(80-.)., 2007, doi: 10.1126/science.1146282.

[9] E. Nederhof and M. V. Schmidt, “Mismatch or cumulative stress: Toward an integrated
hypothesis of programming effects,” Physiology and Behavior. 2012. doi:
10.1016/j.physbeh.2011.12.008.

[10] T. Rottmann, C. Fritz, N. Sauer, and R. Stadler, “Glucose uptake via STP transporters
inhibits in vitro pollen tube growth in a hexokinase1-dependent manner in arabidopsis
Thaliana,” Plant Cell, 2018, doi: 10.1105/tpc.18.00356.

[11] Y. Haile-Selassie, S. M. Melillo, A. Vazzana, S. Benazzi, and T. M. Ryan, “A 3.8-million-
year-old hominin cranium from Woranso-Mille, Ethiopia,” Nature, 2019, doi:
10.1038/s41586-019-1513-8.

189

Artificial Intelligence

CHAPTER 20

LEARNING PROBABILISTIC MODELS:

ENHANCING INTELLIGENCE WITH UNCERTAINTY

Ajay Chakravarty, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- ajay.chakravarty1@gmail.com

ABSTRACT:

Clearly emphasized the presence of uncertainty in actual contexts. Agents may deal with
uncertainty by using probability and decision theory approaches, but they must first acquire their
probabilistic models of the world via experience. This chapter describes how they may accomplish
so by modelling the learning job as a probabilistic inference process. We shall demonstrate that a
Bayesian approach to learning is incredibly powerful, giving generic answers to noise, overfitting,
and optimum prediction issues. It also considers the reality that a less-than-omniscient agent can
never be positive which theory of the world is accurate, but must nevertheless make choices based
on some theory of the world. We present Bayesian network-based strategies for learning
probability models. This chapter has some pretty mathematical information, although the overall
concepts may be comprehended without delving into the intricacies.

KEYWORDS:

Data, Learning, Model, Probability, Statistical.

INTRODUCTION

Statistical learning, also known as statistical machine learning, is a branch of artificial intelligence
and machine learning that focuses on constructing algorithms and models to make data-driven
predictions and judgments. The core concept of statistical learning is to employ statistical tools
and procedures to uncover patterns and correlations from data, allowing the model to generalize
and make accurate predictions on new, previously unknown data [1]–[3]. The basic objective of
statistical learning is to learn from data in order to understand the underlying structure and
connections within the data. Several critical stages are involved in the process:

1. Data Collection: Collecting relevant data from a variety of sources, which may include
structured datasets, unstructured text, photos, or audio.

2. Data Preprocessing: Cleaning and manipulating data to eliminate noise, manage missing
values, and turn it into an analysis-ready format.

3. Feature Extraction: Finding the appropriate features to feed into the learning process.
This phase is critical since it has a large influence on the model's performance.

4. Model Selection: Choosing the best model or technique for the issue and data at hand.
Linear regression, decision trees, support vector machines, neural networks, and other
popular models are examples.

5. Model Training: The process of training the chosen model using the supplied data. The
model modifies its internal parameters during training in order to minimize the error or
cost function, which quantifies the difference between anticipated and actual values.

190

Artificial Intelligence

6. Model Evaluation: Using different evaluation metrics and validation approaches, like as
cross-validation, to predict how well the model will perform on fresh, unknown data.

7. Model Deployment: After obtaining an acceptable model, it may be used in real-world
applications to make predictions or judgments based on fresh input data.

Finance, healthcare, marketing, natural language processing, computer vision, and other sectors
rely heavily on statistical learning. Statistical learning algorithms allow robots to learn from data
and make educated judgments by using the power of statistics and mathematics, leading to
improvements in many sectors [4], [5].

Bayesian Learning

Bayesian learning, often known as Bayesian inference or Bayesian statistics, is a popular statistical
learning technique based on Bayes' theorem principles. The Bayes theorem, named after Reverend
Thomas Bayes, is a key notion in probability theory that enables us to update our opinions about
an event or hypothesis when new information or data becomes available. Based on observable data
and previous information or assumptions, the purpose of Bayesian learning is to draw probabilistic
judgments about unknown parameters or quantities of interest. The following are the essential
components of Bayesian learning:

1. Prior Probability: Before witnessing any data, the initial assumption or
knowledge about the parameters. The prior is often stated as a probability
distribution and is based on expert judgments or previous data.

2. Likelihood: The likelihood of witnessing the provided data given the parameter
values. The likelihood function is defined by the statistical model or assumption
used to generate the data.

3. Posterior Probability: The parameters' revised probability distribution after taking
into account the observed data. Through Bayes' theorem, which mathematically
expresses the updating process, the posterior combines the prior and probability [6],
[7].

The Bayesian learning process is given below:

1. Based on current information or data, form previous opinions about the parameters.
2. Take note of fresh information.
3. Using Bayes' theorem, update the prior beliefs to produce the posterior distribution.
4. Make probabilistic conclusions about the parameters or quantities of interest using the

posterior distribution.

Bayesian learning provides a number of benefits, including the capacity to integrate previous
information, successfully manage small sample sizes, and give uncertainty estimates in the form
of probability distributions. Bayesian approaches, on the other hand, may be computationally
intensive, particularly when working with sophisticated models or high-dimensional data [8]–[10].

Bayesian learning is utilized in a wide range of applications, including but not limited to:

1. Parameter Estimation: Using observable data to infer unknown parameters in a model.
2. Bayesian Regression: Conducting regression analysis while accounting for uncertainty in

estimations.

191

Artificial Intelligence

3. Bayesian Classification: predicting and categorizing data items with associated
probability.

4. Bayesian Model Selection: comparing many models and choosing the best one based on
evidence and prior assumptions.

Overall, Bayesian learning is an effective paradigm for generating informed judgments and
predictions in the face of uncertainty.

 DISCUSSION

Complete Data Learning

The process of training a machine learning model using full data occurs when all of the essential
input characteristics and matching target labels are accessible for each data point in the dataset. In
other words, the dataset has no missing values and all relevant information is there and accessible.
In this case, the learning process is quite simple and consists of the following steps:

1. Data Collection: Compile a comprehensive dataset with all of the relevant characteristics
and labels.

2. Data Preprocessing: Clean, normalize, or alter the data as needed to ensure it is in a format
acceptable for the selected learning method.

3. Feature Selection: Determine which features will be utilized as input to the learning
algorithm. This stage is critical in determining the performance and efficiency of the model.

4. Model Selection: Select the best machine learning model or method for the task at hand
and the data characteristics.

5. Model Training: Train the specified model using the whole dataset. The model will alter
its internal parameters during training to minimize the error or cost function and understand
the underlying patterns and connections in the data.

6. Model Evaluation: Use multiple evaluation metrics and validation procedures to assess
how well the model will generalize to new, unexplored data.

7. Model Implementation: Once a suitable model has been developed, it may be used in
real-world applications to make predictions or judgments based on fresh input data.

Learning using entire data is useful for many machine learning applications because it enables
models to exploit all available information, resulting in more accurate and dependable predictions.
In reality, however, it is typical to come across datasets with missing values or insufficient
information. To tackle the incompleteness and enhance the model's performance, several strategies
such as imputation, data augmentation, or specific algorithms intended to handle missing data may
be used.

The EM algorithm for learning with hidden variables

In statistical modelling and machine learning, learning with hidden variables is a situation in which
part of the data is unobservable or absent, and there are latent or hidden factors that impact the
observed data. In such cases, the Expectation-Maximization (EM) algorithm is a strong iterative
approach for estimating the parameters of probabilistic models. The EM approach is especially
beneficial for dealing with issues that include missing values or latent variables, making classic
methods like straight maximum likelihood estimation difficult to employ. It allows you to deal
with inadequate data and estimate model parameters in the presence of hidden variables. The
following is a high-level summary of the EM algorithm:

192

Artificial Intelligence

1. E-Step (Expectation)

a. The algorithm begins the E-step with initial estimations of the model parameters.
b. Given the observed data and the current parameter estimations, it computes the expected

values of the hidden variables the missing data.
c. In the E-step, the word expectation refers to calculating the expected values of the hidden

variables.

2. Maximization Step (M-Step)

a. In the M-step, the algorithm updates the model parameters based on the expected values of
the hidden variables determined in the E-step.

b. The objective is to optimize the log-likelihood function given the model parameters.
c. This stage entails determining which parameter values maximize the anticipated log-

likelihood.

3. Iteration

The E-step and M-step are repeatedly repeated until the method achieves a preset number of
iterations or the change in parameter estimations becomes modest enough. The EM method gives
a logical technique to dealing with incomplete data, and it assures that the probability of the
observed data increases with each iteration, resulting in higher parameter estimations. However, it
is important to remember that the EM method may converge to local optima, requiring many
initializations to obtain the global optimum. Clustering, Gaussian mixture models, hidden Markov
models, missing data imputation, and other applications use the EM technique. It is a key technique
in statistical learning and is critical in scenarios with hidden variables and insufficient data.
Statistical learning techniques span from basic average computation to the development of
complicated models such as Bayesian networks. They have applications in computer science,
engineering, computational biology, neurology, psychology, and physics, among other fields. This
chapter has covered some of the fundamental notions as well as a taste of the mathematical
underpinnings. Bayesian learning approaches define learning as a kind of probabilistic reasoning
in which observations are used to update a prior distribution across hypotheses. This method is
effective for implementing Ockham's razor, but it rapidly becomes intractable for complicated
hypothesis spaces. Maximum a posteriori (MAP) learning chooses the most probable hypothesis
based on the evidence. The hypothesis prior is still employed, and the approach is often easier to
implement than complete Bayesian learning.

CONCLUSION

Maximum-likelihood learning simply chooses the hypothesis that maximizes the data's
probability; it is similar to MAP learning with a uniform prior. Maximum-likelihood solutions are
readily discovered in closed form in basic applications such as linear regression and fully visible
Bayesian networks. Naive Bayes learning is a very powerful and scalable approach. When certain
variables are concealed, the EM method may be used to find local maximum probability solutions.
Clustering using Gaussian mixtures, learning Bayesian networks, and learning hidden Markov
models are some of the applications. Model selection may be seen in the learning of the structure
of Bayesian networks. This generally entails a discrete search in the structure space. A mechanism
for balancing model complexity and degree of fit is needed. Nonparametric models use a group
of data points to describe a distribution. As a result, the number of parameters increases as the

193

Artificial Intelligence

training set rises. Kernel techniques construct a distance-weighted mixture of all the instances,
while nearest-neighbors approaches look at the examples closest to the place in issue. Statistical
learning is still a highly active field of study. Massive advances have been achieved in both theory
and practice, to the point that practically any model for which accurate or approximate inference
is conceivable may now be learned.

REFERENCES:

[1] C. Friedman and S. Sandow, “Learning probabilistic models: An expected utility
maximization approach,” J. Mach. Learn. Res., 2004, doi: 10.1162/153244304773633816.

[2] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning probabilistic models of link
structure,” J. Mach. Learn. Res., 2003.

[3] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning probabilistic models of
relational structure,” Icml, 2001.

[4] W. Wang, P. M. Barnaghi, and A. Bargiela, “Probabilistic topic models for learning
terminological ontologies,” IEEE Trans. Knowl. Data Eng., 2010, doi:
10.1109/TKDE.2009.122.

[5] S. Kamthe and M. P. Deisenroth, “Data-efficient reinforcement learning with probabilistic
model predictive control,” in International Conference on Artificial Intelligence and

Statistics, AISTATS 2018, 2018.

[6] D. Barber and D. Barber, “Lecture 15: Learning probabilistic models,” Bayesian Reason.

Mach. Learn., 2012.

[7] X. Ren, C. C. Fowlkes, and J. Malik, “Learning probabilistic models for contour completion
in natural images,” Int. J. Comput. Vis., 2008, doi: 10.1007/s11263-007-0092-6.

[8] B. J. Frey and N. Jojic, “A comparison of algorithms for inference and learning in
probabilistic graphical models,” IEEE Transactions on Pattern Analysis and Machine

Intelligence. 2005. doi: 10.1109/TPAMI.2005.169.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., 2013, doi:
10.1109/TPAMI.2013.50.

[10] C. D. McKinnon and A. P. Schoellig, “Learning probabilistic models for safe predictive
control in unknown environments,” in 2019 18th European Control Conference, ECC 2019,
2019. doi: 10.23919/ECC.2019.8796295.

194

Artificial Intelligence

CHAPTER 21

REINFORCEMENT LEARNING: TRAINING INTELLIGENT

AGENTS THROUGH TRIAL AND ERROR

Rohaila Naaz, Assistant Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- rohailanaaz2@gmail.com

ABSTRACT:

Reinforcement learning is centres on a digital agent that is placed in a particular learning
environment. The agent is presented with a game-like setting and must make a series of options in
order to reach the desired conclusion. Because it does not need labelled data or a training set,
reinforcement learning is neither supervised nor unsupervised. It is dependent on the capacity to
monitor the learning agent's reaction to its activities. Reinforcement learning, which is widely
utilized in gaming, robotics, and many other industries, employs a learning agent. It improves the
power and frequency of the behaviour and has a beneficial influence on the agent's activity. This
sort of Reinforcement enables you to optimize performance and maintain change over a longer
length of time.

KEYWORDS:

Agent, Environment, Learning, Passive, Reinforcement.

INTRODUCTION

Reinforcement Learning is a machine learning paradigm in the area of artificial intelligence that
deals with teaching agents to make choices in a given environment in order to accomplish
particular objectives. The core principle of RL is to let an agent to learn by interacting with its
surroundings and getting feedback in the form of rewards or penalties. An RL system that interacts
with its surroundings and makes choices depending on what it observes. The environment in which
the agent works. It might be a virtual environment or a real-world system. A snapshot of the
environment at a certain point in time. It comprises all of the pertinent information that the agent
needs to make judgments [1]–[3].

The options for the agent to engage with the environment. These activities have an impact on the
state and may result in a variety of consequences. A monetary value received by the agent from
the environment as a result of an activity. It displays how well the agent is doing in relation to the
aim. The approach or rule that the agent uses to choose which actions to do depending on the
current condition. The Value Function (V) assesses the predicted cumulative benefit an agent may
earn from a certain state while pursuing a specific policy. Like the value function, it calculates the
anticipated cumulative reward of doing a specified action in a given state and according to a
specific policy. The ultimate objective of RL is to identify the best policy that maximizes the
cumulative benefit of the agent over time. The agent learns via trial and error, examining its
surroundings and altering its policy depending on the rewards it receives. To train agents
effectively, RL techniques like as Q-Learning, Deep Q-Networks (DQNs), Proximal Policy
Optimization (PPO), and many more are utilized [4], [5].

195

Artificial Intelligence

RL has found applications in a wide range of fields, including robotics, gaming, recommendation
systems, finance, and others. It has the potential to be a useful tool for training agents to undertake
complicated tasks when standard rule-based techniques may be difficult or impossible. Keep in
mind that Reinforcement Learning is a continually changing discipline, with academics constantly
investigating new algorithms and strategies to improve agent learning and performance. The
typical Reinforcement Learning (RL) scenario is simplified in Passive Reinforcement Learning
(Passive RL). The agent's major emphasis in Passive RL is on monitoring and learning from data
rather than actively engaging with the environment to better its decision-making process. Offline
RL and Batch RL are two more names for it. In traditional RL, the agent interacts with the world,
makes actions, gets rewards, and learns from these encounters in a sequential and online fashion.
In Passive RL, however, the agent is given a predetermined dataset of experiences created by other
sources, such as data acquired through expert demonstrations or historical records [6]–[8].

Key features of Passive Reinforcement Learning. The agent does not actively explore the
environment and produce its own data in Passive RL. Instead, it learns from a predefined dataset
that is provided to it ahead of time. No engagement with the environment. During the learning
process, the agent does not make choices or perform actions in the environment. Because the agent
learns from a batch of data without additional involvement, passive RL is sometimes seen as a
batch learning issue. The agent's fixed dataset may include expert demonstrations in which an
experienced agent or human shows the expected behaviour for various states. The primary goal of
Passive RL is to assess or learn the value of various policies based on the available information.
Passive RL provides various benefits, including data economy and safety.

Because the dataset is stable and pre-collected, it may be properly curated and contain useful
information from specialists. It also removes the need for investigation, which may be difficult
and time-consuming in real-world circumstances. Passive RL, on the other hand, has restrictions.
For example, if the dataset supplied is restricted or biased, the agent's learning may be limited and
may not transfer well to new scenarios. Furthermore, it may not be appropriate for learning in
dynamic or changing situations. Passive Reinforcement Learning is a field of current study that
finds applicability in settings where gathering real-time data or online interactions is too expensive,
unsafe, or impossible, making the use of pre-collected data a more realistic choice. Passive RL
algorithms' performance and applicability are being improved by researchers [9], [10].

Learning via Active Reinforcement

The usual setting of Reinforcement Learning (RL) is Active Reinforcement Learning (Active RL),
in which the agent learns by actively interacting with the environment. The agent in Active RL
conducts activities, gets feedback in the form of incentives, and learns from these experiences in
an online and sequential fashion. In contrast to Passive RL, the agent creates its own data by
exploring the surroundings. Key features of Active Reinforcement Learning. The agent interacts
with the environment by acting and seeing the results of those activities. The environment reacts
to the agent's behaviour by introducing new states and rewards. In active RL, there is a trade-off
between exploration trying out new actions to uncover possibly superior methods and exploitation
choosing actions with known high rewards based on prior experience.

To attain its purpose, the agent takes a series of choices, each of which influences subsequent states
and future rewards. The agent learns from feedback received in the form of incentives after each
action. The objective is to determine the best policy that maximizes the total reward over time.
The agent refines its policy and modifies its decision-making technique via trial and error to attain

196

Artificial Intelligence

better performance in the environment. To properly balance exploration and exploitation, many
exploration strategies such as -greedy, Upper Confidence Bound (UCB), Thompson sampling, and
others are used.

Active RL is often employed in settings requiring real-time decision-making because it enables
the agent to adapt to changing contexts and learn from new experiences. The agent gains
knowledge from both successes and mistakes, allowing it to devise optimum or near-optimal
tactics for the job at hand. Active Reinforcement Learning has applications in robotics,
autonomous vehicles, game playing, recommendation systems, and a variety of other fields where
decision-making and adaptability to dynamic surroundings are critical. It is crucial to highlight
that Active RL has a number of issues, including exploration-exploitation trade-offs, dealing with
high-dimensional state and action spaces, and maintaining sample efficiency. Researchers are
continuing to develop algorithms and ways to overcome these issues and increase the performance
and efficiency of Active RL agents.

DISCUSSION

Reinforcement Learning Generlization

Generalization in Reinforcement Learning (RL) refers to an RL agent's capacity to apply
previously acquired information from one set of states or tasks to other, previously unknown
situations or tasks. In other words, it is the agent's capacity to generalize its learnt policy and
perform effectively in scenarios that it did not experience during the training process. For RL
agents to be practical and successful in real-world applications, generalization is required. In RL,
there are two major features of generalization:

1. State Generalization is concerned with the agent's capacity to generalize its learnt policy
across states. In RL, the agent often learns from a small number of states in the training
environment. The actual world or test environment, on the other hand, may have a
significantly bigger and more diversified collection of states. A well-generalizing agent
may perform pretty well and make decent judgments in various unseen states without
needing explicit instruction in each unique condition.

2. Task Generalization refers to the agent's capacity to generalize across various tasks or
objectives. The agent may be exposed to a specified set of activities or goals during
training. However, in practice, the agent may be required to undertake new tasks or variants
on old activities. Generalization allows the agent to apply its knowledge and policies to
new tasks without having to start from scratch.

Overfitting and Underfitting in RL

Understanding two typical phenomena known as overfitting and underfitting is critical in the
context of generalization:

1. Overfitting occurs when an RL agent gets too specialized in the training environment and
fails to generalize successfully to new, previously unknown states or tasks. Essentially, the
agent memorizes the training data's individual states and actions without understanding the
underlying patterns essential for effective generalization.

2. Underfitting occurs when the learnt policy of the RL agent is too simple or lacks the
essential complexity to operate successfully even in the training environment. As a
consequence, it performs poorly in both training data and fresh, untested circumstances.

197

Artificial Intelligence

To achieve good generalization, RL agents must strike a balance between exploration trying out
different actions to gather diverse experiences and exploitation selecting actions based on current
knowledge to maximize immediate rewards. Exploration enables the agent to collect enough data
from various states and tasks, while exploitation allows the agent to adjust its strategy depending
on the observed rewards. To promote generalization and counteract overfitting, RL algorithms
such as Deep Q-Networks (DQNs), Proximal Policy Optimization (PPO), and Actor-Critic
approaches use strategies such as experience replay, data augmentation, regularization, and
transfer learning. Generalization in RL is still an active research topic, and building agents with
improved generalization skills is critical to making RL usable and successful in a broad variety of
real-world activities.

Policy Investigation

Policy search is a kind of reinforcement learning (RL) method that optimizes an agent's policy to
enhance its performance in a given task. Rather of learning value functions or action-value
functions, as in some other RL techniques, policy search methods seek the optimal policy, which
is a mapping from states to actions that maximizes the cumulative reward over time. The core
concept of policy search is to repeatedly update the policy parameters in order to identify the
optimum or near-optimal policy that leads to larger rewards. Typically, this approach entails
running a series of experiments in the environment and utilizing the results to change the policy
settings. There are numerous methods for doing policy searches, some of which are as follows:

1. Gradient-based approaches. These methods direct the optimization process by using the
gradient of the policy's performance with respect to its parameters. Policy gradients use
approaches such as stochastic gradient ascent and descent to determine the best policy
parameters that result in better rewards.

2. Evolutionary techniques approach policy parameters as genes, and they use natural
selection principles and genetic algorithms to develop and enhance the policy across
generations.

3. The Cross-Entropy Method is a sampling-based optimization approach that creates many
candidate policies and changes the parameters depending on the best performers.

4. TRPO optimizes the policy while guaranteeing that changes in policy parameters are
constrained to a trust area, limiting significant policy updates that might lead to instability.

5. Proximal Policy Optimization (PPO) improves on TRPO by utilizing a more stable goal
function and cutting policy updates to overcome some of its drawbacks.

Methods for finding policies have various advantages:

1. They can efficiently handle high-dimensional and continuous action areas.
2. They may discover stochastic rules that might be useful in exploration and dealing with

uncertainty.
3. They may directly optimize for policies that are non-differentiable or complicated.

However, policy search approaches have certain drawbacks:

1. The optimization procedure is computationally intensive and may need a large quantity of
data and processing.

2. They may experience policy convergence to suboptimal policies or get stranded in local
optima.

198

Artificial Intelligence

3. Despite these obstacles, policy search approaches have been used effectively in a variety
of disciplines, including robotics, autonomous vehicles, and natural language processing.
Researchers are working to improve the efficiency and efficacy of policy search algorithms
so that they may be used in real-world RL applications.

Reforemnet Learning Application

Reinforcement Learning (RL) has several applications in a variety of fields. Its capacity to educate
agents to make judgments and learn through interactions with the environment makes it an
effective tool for handling difficult tasks. Here are some prominent Reinforcement Learning
applications:

1. Robotics: In robotics, RL is frequently utilized to help robots to learn and adapt to their
surroundings. It enables robots to learn locomotion, manipulation, grasping, and navigation
in realistic environments.

2. Game Playing: RL has shown extraordinary performance in a variety of games, including
board games such as chess and Go, video games, and multiplayer games. AlphaGo,
AlphaZero, and OpenAI's Dota 2 AI are a few examples.

3. Autonomous Vehicles: RL is critical in teaching self-driving vehicles to manage traffic,
make safe judgments, and adapt to a variety of driving scenarios. Personalized
recommendation systems employ RL to improve the sequence of suggestions depending
on user interactions and preferences.

4. Finance: RL may be used to train agents to make optimum financial choices in algorithmic
trading, portfolio management, and risk assessment. RL is used in healthcare for improving
treatment programs, drug discovery, and customized healthcare, among other things.

5. Natural Language Processing (NLP): Natural language processing (RL) is used in
conversation systems, machine translation, and text summarization, where agents learn to
provide natural language answers.

6. Energy Management: RL may be used in smart grids to optimize energy usage, lowering
energy expenditures and increasing efficiency.

7. Control Systems: RL is used to optimize control policies for a wide range of systems,
including industrial processes, airplanes, and satellites.

8. Education: RL may be used in educational technology to tailor learning materials and
activities to the specific requirements of each pupils.

9. Internet of Things (IoT): RL can increase efficiency and performance by optimizing the
behaviour of networked IoT devices and systems.

10. Inventory Management, Distribution, and Logistics: RL may be used to optimize
inventory management, distribution, and logistics.

These are only a few examples, and as academics and practitioners investigate new fields and
develop RL algorithms, the possible applications of Reinforcement Learning continue to increase.
Because of its adaptability, RL is a viable solution for handling complicated decision-making
issues in a variety of domains. The reinforcement learning topic has been investigated in this
chapter: how an agent may become skilled in an unfamiliar environment using just its percepts and
periodic rewards. Reinforcement learning may be seen of as a microcosm for the broader AI issue,
yet it is researched in a variety of simpler contexts to aid development. The kind of information
that must be learnt is determined by the overall agent design.

199

Artificial Intelligence

CONCLUSION

We examined three primary designs the model-based design, which uses a model P and a utility
function U the model-free design, which uses an action-utility function Q and the reflex design,
which uses a policy. There are three techniques to learning utilities. The total observed reward-to-
go for a particular condition is used as direct evidence for learning its usefulness in direct utility
estimate. ADP develops a model and a reward function from observations and then utilizes value
or policy iteration to get the utility or optimum policy. ADP makes the best use of the
neighbourhood structure of the environment's local limits on state utilities. Utility estimates are
updated using temporal-difference (TD) approaches to match those of suc cessor states. They are
basic approximations to the ADP technique that can learn without the need for a transition model.
However, using a learnt model to generate pseudoexperiences may result in quicker learning.
Action-utility functions, also known as Q-functions, may be learnt using either an ADP or a TD
method. Q-learning does not need a model in the learning or action selection phases when using
TD.

This simplifies the learning issue but may limit the agent's capacity to learn in complicated contexts
since it cannot mimic the outcomes of alternative courses of action. When the learning agent is in
charge of choosing actions during learning, it must weigh the anticipated value of those activities
against the possibility of acquiring relevant new knowledge. An perfect solution to the exploration
issue is impossible, but some basic heuristics work well enough. In order to generalize across states
in vast state spaces, reinforcement learning algorithms must employ an approximation functional
representation. The temporal-difference signal may be utilized to update parameters in
representations like neural networks directly. Policy-search approaches work directly on a policy
representation, seeking to enhance it based on observed performance. Variation in performance is
a severe issue in a stochastic domain; for simulated environments, this may be solved by fixing
the randomness in advance.

REFERENCES:

[1] M. Khushi and T. L. Meng, “Reinforcement learning in financial markets,” Data. 2019. doi:
10.3390/data4030110.

[2] N. V. Varghese and Q. H. Mahmoud, “A survey of multi-task deep reinforcement learning,”
Electronics (Switzerland). 2020. doi: 10.3390/electronics9091363.

[3] A. Barreto, S. Hou, D. Borsa, D. Silver, and D. Precup, “Fast reinforcement learning with
generalized policy updates,” Proc. Natl. Acad. Sci. U. S. A., 2020, doi:
10.1073/pnas.1907370117.

[4] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power system
applications: An overview,” CSEE Journal of Power and Energy Systems. 2020. doi:
10.17775/CSEEJPES.2019.00920.

[5] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curriculum
learning for reinforcement learning domains: A framework and survey,” J. Mach. Learn.

Res., 2020.

[6] K. Hitomi, T. Shibata, Y. Nakamura, and S. Ishii, “Reinforcement learning for quasi-passive
dynamic walking of an unstable biped robot,” Rob. Auton. Syst., 2006, doi:
10.1016/j.robot.2006.05.014.

200

Artificial Intelligence

[7] G. Bingjing, H. Jianhai, L. Xiangpan, and Y. Lin, “Human–robot interactive control based
on reinforcement learning for gait rehabilitation training robot,” Int. J. Adv. Robot. Syst.,
2019, doi: 10.1177/1729881419839584.

[8] N. Mandairon et al., “Opposite regulation of inhibition by adult- born granule cells during
implicit versus explicit olfactory learning,” Elife, 2018, doi: 10.7554/eLife.34976.

[9] E. C. Finger et al., “Disrupted reinforcement signaling in the orbitofrontal cortex and
caudate in youths with conduct disorder or oppositional defiant disorder and a high level of
psychopathic traits,” Am. J. Psychiatry, 2011, doi: 10.1176/appi.ajp.2010.10010129.

[10] S. Baee, E. Pakdamanian, V. Ordonez, I. Kim, L. Feng, and L. Barnes, “Eyecar: Modeling
the visual attention allocation of drivers in semi-autonomous vehicles,” arXiv. 2019.

201

Artificial Intelligence

CHAPTER 22

NATURAL LANGUAGE PROCESSING: UNLEASHING

THE POWER OF AI IN HUMAN LANGUAGE

Ramesh Chandra Tripathi, Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- rctripathig@gmail.com

ABSTRACT:

The ability to communicate sets Homo sapiens unique from other species. Humans learnt to talk
around 100,000 years ago, and to write approximately 7,000 years ago. Although chimps, dolphins,
and other animals have shown vocabularies of hundreds of signs, only humans are capable of
consistently communicating an infinite number of qualitatively diverse messages on any subject
using discrete signals. Of course, other characteristics distinguish humans: no other animal wears
clothing, develops representational art, or consumes three hours of television every day. However,
when Alan Turing presented his Turing Test, he based it on language rather than art or television.
We want our computer agents to be able to understand natural languages for two reasons: first, to
converse with people, which we discuss in Chapter 23, and second, to gain knowledge from written
language, which is the emphasis of this chapter. The Web has about a trillion pages of information,
virtually all of it in natural language. An AI that wishes to undertake knowledge acquisition must
grasp the confusing, jumbled languages that people utilize. We look at the issue via the lens of
three information-seeking tasks: text categorization, information retrieval, and information
extraction.

KEYWORDS:

Data, Extraction, Information, Models, Text.

INTRODUCTION

Language models are artificial intelligence (AI) models that are meant to comprehend and create
human language. These models are trained on massive volumes of text data and using deep
learning methods to estimate the likelihood of the next word in a sequence based on the context of
preceding words. Transformer architectures are used by the most advanced language models, such
as GPT-3, to achieve outstanding language comprehension and creation capabilities. Here are
some essential characteristics of language models. Language models are trained using enormous
datasets including text from a variety of sources, such as books, papers, websites, social media,
and more. The training data is utilized to learn language patterns, structures, and meanings [1]–
[3].

Transformer is a deep learning architecture that has considerably improved language model
performance. It employs self-attention processes to analyze incoming data in parallel, enabling the
model to capture long-term dependencies and word associations. Language models may be used
to accomplish tasks such as sentiment analysis, language translation, question answering, and
more. Language models may also be employed for natural language generation, which produces
human-like writing in response to prompts. This capability allows content production, chatbots,
and creative writing applications. One of the key benefits of language models is their capacity to

202

Artificial Intelligence

transfer information from one activity or domain to another. Language models that have been pre-
trained may be fine-tuned on particular tasks with smaller datasets, making them adaptive and
versatile.

Language models have shown tremendous powers, but they also have limits. They may
occasionally provide inaccurate or illogical outputs, and if not managed appropriately, they can
produce biased or hazardous material [4], [5].

As language models get more powerful, there are questions about how they may be abused, such
as distributing disinformation, creating harmful material, or compromising privacy. Researchers
and developers must keep these ethical issues in mind as they move toward responsible AI
deployment.

Customer service, language translation, content production, healthcare, and other sectors have
found use for language models. They are still evolving and will play an important role in
determining the future of natural language processing and AI technology.

Natural Language

Natural language refers to how people interact with one another via the use of spoken or written
language. It is the principal means of human communication and covers the huge number of
languages spoken and written around the globe. Natural language's key properties include:

1. Natural languages are very adaptable, enabling speakers to communicate a diverse variety
of ideas, emotions, and intentions. The same word or phrase may have many distinct
meanings depending on the situation.

2. Ambiguous expressions are common in natural languages, where a statement or phrase
may have several meanings. Usually, further contextual information is required to resolve
this discrepancy.

3. In natural language, the meaning of a word or phrase is often dependent on the surrounding
words or the general context of the discourse.

4. Because natural languages allow speakers to construct totally new sentences and express
innovative ideas, human communication is immensely creative and dynamic.

5. Natural language speakers may construct an endless number of distinct phrases with a very
restricted collection of words and grammatical rules.

6. Recursion is used in natural languages, enabling speakers to embed clauses inside clauses
and build complicated phrase patterns.

7. Natural languages aren't usually exact or rational. Grammatical mistakes, regional variants,
slang, and colloquialisms may be present [6]–[8].

Linguists study natural languages to get a better understanding of their structure, syntax, grammar,
semantics, and evolution. Natural language processing (NLP) is a branch of artificial intelligence
that seeks to enable robots to comprehend, interpret, and produce human language. Language
models, such as this one, are the result of NLP study and development. Language translation,
sentiment analysis, voice recognition, chatbots, and other applications have been made possible
by NLP technology. It is fast advancing, bridging the gap between people and robots and allowing
for more natural and efficient interactions with technology [9], [10].

203

Artificial Intelligence

DISCUSSION

Text Categorization

Text classification is a natural language processing (NLP) activity that involves training a machine
learning model to classify text data into predetermined groups or categories. Text categorization
seeks to assign the best relevant label or category to a given input text based on its content and
context. Text categorization generally consists of the following steps:

1. Data collection is the process of gathering a big dataset of text documents with their
associated labels or categories. The dataset should be varied and representative of the
classes that the model is expected to predict.

2. Data Preprocessing is the process of cleaning and preparing text data for training.
Tokenization dividing the text into individual words or subwords, eliminating punctuation,
changing text to lowercase, and dealing with stopwords are sometimes included in this
phase.

3. The process of converting processed text input into numerical features that machine
learning algorithms may use. Bag-of-words representation, TF-IDF (Term Frequency-
Inverse Document Frequency), word embeddings like Word2Vec or GloVe, and more
complex transformer-based embeddings like BERT are also common techniques.

4. Using the preprocessed text data and labels, a machine learning model Support Vector
Machine, Naive Bayes, Logistic Regression, or deep learning models is trained to discover
patterns and correlations between text characteristics and their associated classes.

5. Evaluating the trained model's performance using a different test dataset. Text
categorization assessment measures often used include accuracy, precision, recall, F1
score, and confusion matrix.

6. Adjusting the parameters of the machine learning model to discover the ideal configuration
that delivers optimal performance is known as hyperparameter tuning.

7. Once the model has been successfully trained and assessed, it may be used to generate
predictions on fresh, previously unknown text data.

Text classification has a variety of real-world applications, including sentiment analysis
determining the sentiment represented in a piece of text, spam email detection, news article subject
categorization, intent classification in chatbots, and more. It is a basic and necessary activity in
NLP, serving as a foundation for more complicated natural language processing tasks.

Information Extraction

The process of collecting relevant information from a huge collection of data in response to a user's
query or information demand is known as information retrieval (IR). It is an essential component
of search engines and many other systems aimed at assisting users in quickly and effectively
locating specified information. The purpose of information retrieval is to return the documents or
resources that are most relevant to the user's search query. The following is a typical information
retrieval process:

1. A database is used to index and store a big collection of documents or data. These
documents might be web pages, articles, books, emails, photos, or any other kind of data.

2. An indexing phase is conducted prior to the retrieval procedure. The texts are evaluated
during indexing, and essential terms or keywords are extracted and stored in a data structure

204

Artificial Intelligence

known as an index. During the retrieval process, the index allows you to rapidly find
relevant documents.

3. When a user enters a search query, the system analyses it to determine the user's
information needs. The inquiry might be as simple as a single word, a phrase, or a more
sophisticated enquiry.

4. The index is then used by the system to retrieve relevant documents that match the user's
query. This entails locating papers that include the query's keywords and ranking them
based on their relevance to the user's information demand.

5. Typically, the retrieved documents are ranked according to their relevancy to the user's
query. To decide the order, several ranking algorithms are applied, with more relevant
content ranking higher.

6. The user is shown the top-ranked documents, which are generally displayed in the form of
a list of search results. The user may then access the complete document or resource by
clicking on a certain result.

7. In certain systems, user interactions and feedback are utilized to enhance future search
results. User clicks on search results, for example, or dwell time on sites, might be utilized
to refine document ranking.

Search engines such as Google, Bing, and others depend significantly on information retrieval
algorithms to provide consumers with relevant search results. Furthermore, information retrieval
is employed in a wide range of additional applications, including document retrieval in databases,
digital libraries, and business search systems. The area of information retrieval is still evolving,
with developments in natural language processing and machine learning being used to increase the
accuracy and efficiency of obtaining information from big databases.

IR Scoring Methods

Scoring functions, also known as ranking functions or similarity functions in information retrieval
(IR), are critical in identifying the relevance of documents to a user's query. These routines
consider a variety of parameters and provide a numerical score to each page in the collection based
on its resemblance to the query. The papers are then ordered in decreasing order of their scores,
and the top-ranked documents are shown as search results to the user. Here are some examples of
typical IR scoring functions:

1. TF-IDF (Term Frequency-Inverse Document Frequency): TF-IDF is a well-known
weighting technique in information retrieval. It takes into account the term frequency (TF),
which measures how often a word occurs in a document, as well as the inverse document
frequency (IDF), which evaluates the phrase's rarity over the whole document collection.
The product of a term's TF and IDF values yields the TF-IDF score for that term in a
document. Documents with better TF-IDF scores for query phrases are prioritized.

2. BM25: BM25 is a well-known ranking algorithm that is a TF-IDF extension. It takes word
frequency into consideration while compensating for document length. BM25 adds two
parameters, k1 and b, to govern term frequency saturation and document length
normalization. It has been discovered to perform effectively in a variety of information
retrieval tasks.

3. Cosine Similarity: Cosine similarity calculates the cosine of the angle in term space
between the query vector and the document vector. It computes the dot product of the

205

Artificial Intelligence

query's and document's TF-IDF-weighted vectors. Cosine similarity is measured from -1
to 1, with higher values indicating more similarity.

4. Okapi BM25: Okapi BM25 is a modification of the original BM25 formula, similar to
BM25. It improves retrieval performance by introducing extra term frequency
normalization and parameter adjustment.

5. Language Models: Language models such as BERT, GPT, and others have been employed
in recent IR systems as scoring functions. These algorithms may capture complicated word
associations and deliver context-aware similarity ratings.

6. Vector Space Models: Vector space models, such as Latent Semantic Indexing (LSI) or
Latent Semantic Analysis (LSA), use dimensionality reduction techniques to represent
documents and queries in a lower-dimensional space, from which similarity scores are
computed. Divergence from randomly (DFR) models measure the divergence between the
term distribution in a text and an idealized distribution while taking term occurrence
randomly into account.

The scoring function used is determined by the particular IR job, the size of the document
collection, and the data characteristics. Designing effective scoring functions is a current research
topic, and the field of information retrieval is always looking for new ways to increase retrieval
accuracy and user satisfaction.

HITS is an algorithm

The HITS algorithm, also known as the Hubs and Authorities algorithm, is a link analysis method
that ranks web sites based on their authority and hub ratings. Jon Kleinberg invented it in 1999 as
a technique to identify key web sites in a network of linked pages like the World Wide Web. The
HITS algorithm is based on the premise that essential web sites may be divided into two categories:

1. Hubs are online sites that connect to a large number of other related pages. They serve as
directories or portals to other relevant online resources.

2. Authorities are online sites that are regarded as useful and authoritative on a certain topic
or subject. They are pages that are regularly referred by other sites and are regarded as
trustworthy information sources.

To determine the hub and authority ratings for web sites, the HITS algorithm employs an iterative
technique. A high-level summary of the algorithm is provided below. To begin, assign an initial
hub score and authority score to each web page in the network. In most cases, all scores are set to
1. For each web page, compute its hub score by adding the authority scores of the sites to which
it connects. Calculate the authority score for each web page based on the total of the hub scores of
the sites that connect to it. Normalize the hub and authority scores after each iteration to avoid
them from becoming excessively huge or too tiny. Continue the iterative procedure until the hub
and authority scores settle, which means they no longer vary considerably across iterations. Sort
the web sites by final hub and authority ratings. Pages with high hub scores are useful hubs,
whereas pages with high authority ratings are valuable authorities. The strength of the HITS
algorithm is its ability to identify key web sites that operate as hubs and authority in a network,
which is especially valuable for search engine ranking and information retrieval activities. It does,
however, have significant limitations, such as not taking into account the content of web sites or
the significance of connections, which led to the creation of more powerful link analysis
algorithms, such as PageRank, which is used by Google's search engine.

206

Artificial Intelligence

Extraction of Data

Natural language processing (NLP) job of information extraction (IE) involves autonomously
extracting structured information or knowledge from unstructured text material. Information
extraction seeks to convert free-form text into a structured format that can be readily processed,
evaluated, and stored in a database or knowledge base. IE focuses on extracting particular bits of
information from a text corpus, such as entities, relationships, events, or facts. The following are
the essential components of information extraction:

1. NER is the process of detecting and categorizing named entities in text, such as human
names, organizations, places, dates, monetary values, and so on. This stage is critical for
determining which entities the information extraction system should concentrate on.

2. Following the identification of named entities, the system tries to find and extract
connections between these entities. In a news item, for example, the system may extract
the connection X acquired Y from the statement Company X acquired Company Y.

3. Going a step further, event extraction identifies and extracts events or activities stated in
the text. For example, if the phrase John married Mary, the algorithm would extract the
event marriage with the participants John and Mary.

4. Some information extraction algorithms extract particular sorts of information from text
using predetermined templates. These templates define the structure of the extracted data
and serve as a guide for the extraction process.

5. The job of recognizing which references in the text correspond to the same item is known
as coreference resolution. Coreference resolution, for example, would connect Apple and
It to refer to the same corporation in the line Apple announced a new product; it will be
available next month.

6. After extracting information from text, post-processing techniques may be used to clean
and enhance the collected data, assuring correctness and consistency.

Extraction of information is utilized in a variety of applications, including Knowledge Graph
Construction: Creating knowledge graphs from unstructured text data to reflect organized
knowledge. Question-Answering Systems. Obtaining pertinent information in order to respond to
user inquiries. Automated Content Summarization. extracting crucial information from lengthy
texts to provide short summaries. The extraction of business-critical information from papers and
reports. Recognizing and monitoring occurrences in news stories and on social media. Information
extraction is a difficult problem in NLP since it entails dealing with language ambiguity,
complicated phrase structures, and a wide range of data domains. Deep learning and transformer-
based models, for example, have shown considerable gains in information extraction accuracy and
efficiency.

CONCLUSION

Probabilistic language models based on n-grams retrieve a surprising amount of information about
a language. They excel at tasks like as language identification, spelling correction, genre
categorization, and named-entity recognition. Because these language models might include
millions of characteristics, feature selection and data preprocessing to decrease noise are critical.
Text classification may be accomplished using naive Bayes n-gram models or any of the
previously stated classification techniques. Classification is also an issue in data compression.
Information retrieval systems employ a very basic language model based on bags of words and
nonetheless perform well in terms of recall and accuracy on extremely huge text corpora. Link-

207

Artificial Intelligence

analysis methods increase performance on Web corpora. For questions with many answers in the
corpus, a strategy based on information retrieval may be used to manage question answering.
When there are more answers in the corpus, we may utilize approaches that stress accuracy over
recall. Information-extraction systems use a more complicated model with restricted syntax and
semantic no tions in the form of templates. They may be learnt from examples and created using
finite state automata, HMMs, or conditional random fields. When developing a statistical language
system, it is essential to design a model that can make excellent use of existing data, even if it
seems unduly basic.

REFERENCES:

[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural
language processing (almost) from scratch,” J. Mach. Learn. Res., 2011.

[2] X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, and X. J. Huang, “Pre-trained models
for natural language processing: A survey,” Science China Technological Sciences. 2020.
doi: 10.1007/s11431-020-1647-3.

[3] V. K. Pandey and P. Rajput, “Review on natural language processing,” Journal of Critical

Reviews. 2020. doi: 10.31838/jcr.07.10.230.

[4] Y. Wang et al., “A comparison of word embeddings for the biomedical natural language
processing,” J. Biomed. Inform., 2018, doi: 10.1016/j.jbi.2018.09.008.

[5] M. Perovšek, J. Kranjc, T. Erjavec, B. Cestnik, and N. Lavrač, “TextFlows: A visual
programming platform for text mining and natural language processing,” Sci. Comput.

Program., 2016, doi: 10.1016/j.scico.2016.01.001.

[6] A. Névéol, H. Dalianis, S. Velupillai, G. Savova, and P. Zweigenbaum, “Clinical Natural
Language Processing in languages other than English: Opportunities and challenges,”
Journal of Biomedical Semantics. 2018. doi: 10.1186/s13326-018-0179-8.

[7] D. Demner-Fushman, W. W. Chapman, and C. J. McDonald, “What can natural language
processing do for clinical decision support?,” Journal of Biomedical Informatics. 2009. doi:
10.1016/j.jbi.2009.08.007.

[8] M. Yeomans, A. Kantor, and D. Tingley, “The politeness package: Detecting politeness in
natural language,” R J., 2019, doi: 10.32614/RJ-2018-079.

[9] M. D. Abram, K. T. Mancini, and R. D. Parker, “Methods to Integrate Natural Language
Processing Into Qualitative Research,” Int. J. Qual. Methods, 2020, doi:
10.1177/1609406920984608.

[10] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language processing:
An introduction,” Journal of the American Medical Informatics Association. 2011. doi:
10.1136/amiajnl-2011-000464.

208

Artificial Intelligence

CHAPTER 23

NATURAL LANGUAGE FOR COMMUNICATION:

BRIDGING THE GAP BETWEEN HUMANS AND AI

Gaurav Kumar Rajput, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
Email Id- gauravrajput31@gmail.com

ABSTRACT:

Communication is the deliberate flow of information caused by the creation and perception of
signals taken from a common system of conventional signs. Most animals employ signals to
convey vital information such as food here, predator nearby, approach, withdraw, and let's mate.
Communication may help agents succeed in a partly visible environment because it allows them
to learn information seen or inferred by others.

Humans are the most talkative of all animals, and if computer agents are to be useful, they must
master the language. This chapter examines communication language models. Deep
comprehension of a discussion requires more complicated models than basic models intended at,
example, spam categorization. We begin with grammatical models of sentence phrase structure,
then add semantics to the model before applying it to machine translation and voice recognition.

KEYWORDS:

Grammer, Model, Machine, Parsing, Translation.

INTRODUCTION

A Phrase Structure Grammar is a collection of rules that specify how sentences in a language might
be created. Symbols and production rules are common components of these regulations. The
symbols represent linguistic categories like nouns, verbs, adjectives, and so forth, while the
production rules define how these symbols might be joined to generate legitimate sentences. PSGs
construct sentences by recursively applying production rules, resulting in a hierarchical structure
represented by a syntax tree.

Each node in the tree represents a linguistic category, and the branches show how the categories
are mixed based on the production rules. Non-terminal symbols also known as syntactic categories
and terminal symbols are the two sorts of symbols in a PSG. Terminal symbols indicate specific
words or components in the language, while non-terminal symbols may be further developed using
production rules [1]–[3].

Because there are various methods to generate a sentence, phrase structure grammars may
occasionally result in unclear interpretations. Solving ambiguity in natural language
comprehension and parsing is a critical problem.

Parsing is the process of processing a sentence using a grammar in order to create the appropriate
syntax tree. Natural language processing activities such as part-of-speech tagging, syntactic
parsing, and machine translation rely on this process. Phrase Structure Grammars are a
fundamental idea in linguistic theory and are used extensively in many natural language processing

209

Artificial Intelligence

applications. They give an organized method of interpreting language grammar, allowing
computers to analyze and synthesize human language more efficiently.

Parsing

Parsing is the process of studying a series of symbols or a text using formal grammar rules to find
its underlying structure. Parsing in natural language processing (NLP) is the process of evaluating
sentences or phrases in a natural language to comprehend their syntactic structure and word
connections. Depending on the complexity of the language and the required degree of analysis,
many kinds of parsers are employed in NLP [4]–[6]. Some examples of frequent forms of parsing
are:

1. Syntactic parsing is the process of breaking down a sentence into its component elements,
such as noun phrases, verb phrases, and so on, using a formal grammar such as a Phrase
Structure Grammar (PSG) or a Context-Free Grammar (CFG). A syntax tree or parse tree
is a tree structure that represents the output of a syntactic parser.

2. Rather than concentrating on phrase structures, dependency parsing seeks to uncover
grammatical links between words in a sentence. These connections are represented as
directed linkages between words, with one word acting as the head or governor and the
other as a dependant. The ultimate result is a dependency tree.

3. Semantic parsing extends beyond syntax to extract a sentence's meaning or semantics. To
grasp the purpose or information communicated by the phrase, it translates natural
language expressions to formal representations such as logical forms or inquiries.

4. To predict the most probable parse for a given text, probabilistic parsing algorithms provide
probability to distinct parse trees or structures, sometimes utilizing statistical models.

Parsing is an important stage in natural language processing because it enables computers to
deduce the hierarchical structure of sentences, comprehend grammatical rules, and extract meaning
from text. It is useful for a variety of NLP tasks, including machine translation, question answering,
sentiment analysis, and information extraction. To enhance accuracy and efficiently manage the
complexity of natural languages, advanced parsing approaches often require the use of machine
learning algorithms and massive annotated datasets.

Agenda Setting

The function of Agenda Setting is an important topic in media studies and communication. The
phrase Agenda Setting refers to the process through which media sources impact the public's view
of events, problems, and themes by emphasizing some concerns while downplaying or ignoring
others. It highlights the media's capacity to shape public opinion and priorities by selecting which
subjects are deemed essential or noteworthy. Here are some significant issues to consider in the
chapter The Role of Agenda Setting:

1. Introduction to Agenda Setting: Give an introduction of agenda-setting theory and
explain its importance in the area of media studies. Discuss the theory's roots and the main
academics who contributed to its development.

2. Investigate: Examine the function of media institutions, such as newspapers, television,
radio, and internet platforms, as major agenda setters. Investigate how they choose,
structure, and deliver news articles, which determines what the public believes to be
essential.

210

Artificial Intelligence

3. Gatekeeping and News Selection: Discuss the gatekeeping process, in which media
professionals determine which news items to cover and which to ignore. Highlight
elements such as newsroom procedures, news values, and audience preferences that
influence news selection.

4. The influence of Media Agenda Setting on Public Opinion: Investigate the influence of
media agenda setting on public opinion and attitudes. Present factual facts and research
that indicate how media coverage of political, social, and environmental concerns may
impact public attitudes.

5. Agenda Setting in Political Communication: Examine the function of agenda setting in
political campaigns, elections, and government administration. Examine how politicians
and political parties utilize the media to develop agendas and promote certain causes.
Investigate how media coverage promotes public understanding and involvement on social
problems such as climate change, gender equality, racial justice, and others. Discuss how
media attention has resulted in social and policy changes.

6. Agenda Setting and Media Framing: Investigate the link between agenda setting and
media framing. Describe how media framing affects the public's knowledge and
interpretation of news stories.

7. Agenda Setting and Digital Media: Discuss the influence of digital media platforms,
social media, and algorithms on agenda setting. Examine how tailored news feeds and echo
chambers might influence people's views of reality.

8. Agenda Setting in Global Media: Investigate the role of agenda setting in global news
coverage and international media organizations. Discuss the difficulties and consequences
of agenda shaping in the age of global communication.

9. Agenda Shaping and Public Policy: Look at how media agenda shaping affects
policymaking. Talk about how politicians and governments react to media coverage and
public opinion.

10. Limitations and Criticisms: Present critical viewpoints and discussions on agenda-setting
theory. Address possible biases, media concentration, and concerns about media
manipulation.

11. The Future of Agenda Setting: Conclude the chapter by analyzing the changing nature
of agenda setting in the digital era, as well as probable future trends in media impact on
public opinion.

The chapter on The Role of Agenda Setting would provide readers a thorough grasp of how the
media shape public discourse, affect public opinion, and influence the social agenda. It emphasizes
media organizations' duties and develops awareness of the role media play in moulding our image
of the world around us. A notion used in the study of formal languages and grammars is enhanced
grammar [7]–[9]. I'll divide the subject into various parts to offer a thorough explanation of
augmented grammars, their relevance, and applications:

1. Formal Grammars are mathematical constructs that are used to characterize the syntax of
formal languages. They are made up of a collection of rules that produce valid sentences
in a language. These rules describe the syntax of the language and govern how sentences
are built from its fundamental constituents, such as symbols and terminal symbols.

2. Augmented Grammars Definition An augmented grammar is an augmentation of a
conventional formal grammar that adds extra parts. There is usually a start symbol, non-
terminal symbols, terminal symbols, and production rules in a standard grammar. To aid

211

Artificial Intelligence

parsing and language recognition algorithms, an enhanced grammar provides a new start
symbol that does not appear on the right side of any production rule.

3. Augmented Grammars are typically employed in the context of parsing, which is the
process of studying a string of symbols to discover its syntactic structure. The enhanced
start symbol tells parsers whether a supplied string belongs to the grammar-generated
language. It aids in the distinction of valid and incorrect input strings and in the
construction of syntax trees.

4. In order to transform a standard grammar into an augmented grammar, a new start symbol
is added, and the previous start symbol is replaced with a production rule that has the new
start symbol as the right-hand side. This guarantees that the new start sign may be deduced
from the old one. If S is the original start symbol, for example, the enhanced grammar will
have a production rule like S' -> S.
Let's look at a basic context-free grammar (CFG) with the following production rules: S -
> A | B A -> apple B -> banana. To build an enhanced grammar, we substitute a new start
symbol, say S', for the original start symbol S: S' -> S S -> A | B A -> apple B -> banana.
S' is now the starting sign of the modified grammar.

5. Applications Augmented grammars have practical applications in computer science,
notably compiler design and natural language processing. Augmented grammars are used
in compiler design to create parsers that verify programming language syntax. Parsers
based on augmented grammars may identify syntax mistakes in source code and give
developers with understandable error signals.

6. Augmented grammars are used in natural language processing for syntactic analysis, such
as parsing sentences. They are critical in the development of language comprehension
systems, syntactic parsers, and information extraction algorithms.

7. Augmented Grammar Parsing Algorithms Augmented grammars allow the construction of
parsing algorithms such as the Earley parser and the LR parser. These methods identify
acceptable strings and generate syntax trees using dynamic programming approaches. The
enlarged start symbol aids in tracking parsing progress and guarantees that the whole input
string is covered.

8. While enhanced grammars are valuable for parsing and language recognition, they may
provide extra complexity to grammars. The existence of the enhanced start symbol has an
effect on the derivation process, and parser implementations must handle it correctly.
Parsing techniques for augmented grammars may have greater time and space complexity
than ordinary grammars in certain instances.

9. Augmented grammars are crucial concepts in the study of formal languages because they
play an important role in language recognition and parsing systems. Their use spans many
fields of computer science, assisting in the creation of efficient compilers and natural
language processing systems.

DISCUSSION

Interpretation Based On Semantics

Semantic interpretation is the process of interpreting and attributing meaning to language
utterances, most notably in natural language processing (NLP) and computational linguistics. It
entails converting natural language text into formal representations that computers can understand
and reason about. Semantic interpretation is an important step in allowing robots to grasp human
language and properly execute numerous language-related activities. Semantic interpretation is the

212

Artificial Intelligence

process of translating ambiguous and context-dependent human language into a more organized
and unambiguous representation of meaning. This formal representation may take the shape of
logical forms, semantic graphs, knowledge graphs, or any other appropriate representation.
Syntactic analysis is concerned with the grammatical structure of sentences, with an emphasis on
parsing and comprehending the syntactic connections between words. Semantic interpretation, on
the other hand, goes beyond syntax to grasp the true meaning provided by the statement.

Semantic interpretation is a critical stage in natural language processing activities such as
sentiment analysis, machine translation, question answering, information extraction, and chatbots.
These apps would struggle to offer correct and meaningful replies without semantic knowledge.
One key problem in semantic interpretation is word sense disambiguation, which requires
determining the right meaning of a word depending on its context. For example, bank may apply
to both a financial organization and the bank side of a river. The meaning of individual words and
how they interact with other words in a phrase are the focus of this part of semantic interpretation.
The study of synonyms, antonyms, hyponyms, hypernyms, and other lexical interactions is
referred to as lexical semantics. Compositional Semantics is concerned with comprehending the
meaning of sentences or phrases by integrating the meanings of its component words.
Understanding how word meanings interact and compose to portray the total meaning is required.

Semantic parsing is a subset of natural language processing that entails translating natural language
text into a formal representation, such as a logical form or a structured query, for further processing
and analysis. To improve the comprehension of linguistic expressions, semantic interpretation
often depends on external information sources such as ontologies and knowledge graphs. These
knowledge sources give context and background information to text interpretation. Deep learning
models and other machine learning methods are extensively employed in semantic interpretation
jobs. They aid in the capturing of complex patterns and connections in language, allowing for more
precise semantic analysis. To summarize, semantic interpretation is an important component of
natural language comprehension because it allows computers to go beyond surface-level text
analysis and comprehend the underlying meaning of linguistic expressions. It is essential in many
NLP applications and remains an active topic of study and development in the field of computer
linguistics.

Translation by a Machine

Machine translation (MT) is a subsection of natural language processing (NLP) in which computer
techniques are used to automatically translate text or voice from one language to another. The
purpose of machine translation is to break down language barriers and allow individuals who speak
different languages to communicate effectively. The following are the most important components
of machine translation:

1. History and Evolution: Machine translation has been around since the 1950s. Earlier
techniques relied on rule-based procedures, with linguists developing translation rules and
dictionaries. Statistical approaches, and more recently, neural machine translation (NMT),
have risen to prominence over the years.

2. Statistical Machine Translation (SMT): SMT uses statistical models to determine the
most likely translation from massive parallel corpora of translated phrases in different
languages. Techniques such as phrase-based translation and alignment models are used.

213

Artificial Intelligence

3. Neural Machine Translation (NMT): NMT is a new advancement in machine translation
that uses deep learning neural networks to learn translation patterns directly from data.
NMT models have significantly outperformed classic SMT techniques and are now
commonly utilized.

4. Machine Translation Obstacles: There are various obstacles in machine translation, such
as dealing with ambiguity, translating idiomatic phrases, dealing with morphological and
syntactic variations, and adapting to low-resource languages.

5. Evaluation Metrics: Evaluation metrics such as BLEU (Bilingual Evaluation
Understudy), METEOR (Metric for Evaluation of Translation with Explicit ORdering),
and TER (Translation Edit Rate) are used to examine the quality of machine translation.

6. Machine Translation: Machine translation may be tailored to specialized fields such as
medical, legal, or technical translation. Because they concentrate on domain-specific
linguistic patterns, domain-specific translation models often provide superior outcomes.

7. Multilingual Machine Translation Models: Multilingual machine translation models
may translate across several languages without the need for language-specific models for
each pair. These models take use of transfer learning and can manage translation across
languages that were not explicitly encountered during training.

8. NMT Architectures: NMT architectures usually use an encoder-decoder structure, with
the encoder processing the input text and the decoder generating the translation. NMT
performance has been considerably improved by transformer-based models, such as the
popular Attention Is All You Need model. Some systems combine the benefits of rule-
based, statistical, and neural machine translation approaches to increase translation quality,
particularly for difficult language pairings or domains.

Machine translation has a wide range of applications, including cross-border communication,
website localization, worldwide commerce, international diplomacy, language acquisition, and
access to multilingual information. Machine translation poses ethical problems about data privacy,
biases in training data, and retaining cultural subtleties during translation. Finally, machine
translation is a game-changing technology that is breaking down language barriers and promoting
communication across varied linguistic groups. While there are obstacles to overcome, recent
research and breakthroughs in deep learning provide great potential to enhance machine translation
system accuracy and usability.

Machine Translation Programs

Machine translation systems are computer-based technologies that translate text or voice from one
language to another automatically. These systems evaluate and interpret the source language and
create the matching translation in the target language using different algorithms and models.
Machine translation systems are classified into various varieties, each with its unique approach
and methodology. Translating a phrase entails assessing its grammatical structure, applying
syntactic and semantic rules, and translating words using a bilingual lexicon. RBMT systems need
extensive human effort and are often incapable of dealing with complicated language structures.

Based on the patterns seen in the training data, the system employs probabilistic methods to select
the most probable translation. Prior to the development of neural machine translation, SMT was
extensively employed and was the dominating technique. It uses an encoder-decoder architecture
with attention methods to accommodate lengthier phrases and better capture context. NMT models
have significantly outperformed conventional SMT in terms of fluency and accuracy. Transformer

214

Artificial Intelligence

models are a sort of NMT design that was first described in the article Attention Is All You Need.
Transformers record associations between words using self-attention processes, making them
more efficient for longer sequences. Machine translation systems that can translate between several
languages do not need different models for each language pair. To handle translation for languages
not observed during training, these systems use transfer learning and shared representations. Some
machine translation systems are domain-specific, such as medical, legal, or technical translation.
Because these domain-specific models are trained on specialist corpora and vocabulary, they
perform better in their particular fields.

To increase translation quality, hybrid machine translation systems combine the strengths of many
methodologies such as rule-based, statistical, and neural methods. Machine translation systems
may be implemented online, with real-time translations, or offline, with translations conducted
using pre-trained models. Commercial machine translation systems are available from firms, as
are open-source systems for developers and academics. Finally, machine translation systems are
crucial in breaking down language barriers and promoting worldwide communication. Advances
in neural machine translation and transformer-based models have considerably improved
translation quality, making machine translation an indispensable tool in a variety of fields ranging
from international commerce to language acquisition and beyond.

Machine Translation Using Statistics

SMT (Statistical Machine Translation) is a machine translation paradigm that uses statistical
models and algorithms to mechanically translate text from one language to another. It rose to
popularity in the early 2000s and was the dominant technique prior to the introduction of neural
machine translation. The goal of SMT is to learn translation patterns from huge bilingual corpora,
which are collections of translated phrases. Statistical Machine Translation's main features and
components are as follows. SMT is a corpus-based approach in which massive parallel corpora of
texts in two or more languages are used to learn translation probabilities and patterns.
Corresponding sentences in the source and target languages are aligned to construct these corpora.

The translation process in classical SMT is often phrase-based. Instead of translating sentences
word for word, the system divides them into smaller components called sentences and translates
them independently. This method provides additional flexibility in dealing with linguistic
variances. Alignment models are used to connect words or phrases in one language to their
translations in another. Based on the alignments detected in the parallel corpora, these models
assist in identifying probable translations of a certain word or phrase. SMT translation models
evaluate the likelihood of translating a phrase in the source language to a certain phrase in the
destination language. The parallel corpora are used to learn these probabilities. Language models
are used to assess the likelihood of a certain sequence of words appearing in the target language.
They contribute to the resulting translations being fluent and grammatically accurate.

SMT systems utilize decoding algorithms throughout the translation process to determine the most
probable translation for a particular source phrase based on the translation and language models.
BLEU (Bilingual assessment Understudy) is a popular assessment measure for assessing the
quality of translations produced by SMT systems. It compares machine-generated translations
against human reference translations and computes a similarity score. SMT has various drawbacks,
including the requirement for a large quantity of parallel data for training, trouble with unusual or
unknown words, and problems in identifying long-distance connections between words in a
phrase. While neural machine translation (NMT) has essentially supplanted SMT as the primary

215

Artificial Intelligence

technique, some hybrid systems use the capabilities of both approaches to increase translation
quality and efficiency. Several open-source SMT frameworks, such as OpenNMT and Moses, have
been created, enabling academics and developers to experiment with and adapt statistical machine
translation models. The emphasis has switched in recent years to neural machine translation, which
has demonstrated considerable increases in translation quality, particularly for complicated and
lengthy words. Statistical machine translation, however, remains a significant historical milestone
in the area of machine translation and is still researched and employed in certain applications and
research settings.

Recognition of Speech

Speech recognition is a technique that turns spoken language into written text. It is also known as
automated speech recognition (ASR) or speech-to-text (STT). It is a branch of natural language
processing (NLP) with several applications in different sectors and fields. Speech recognition
systems seek to enable machines to comprehend and interpret human speech, allowing people and
computers to communicate seamlessly via spoken language. The following are the key components
and properties of voice recognition:

Acoustic Modelling: Acoustic modelling is the initial phase in speech recognition, in which the
system analyzes the audio input to determine the acoustic features of speech sounds and phonemes.
To model the audio signal, approaches such as Hidden Markov Models (HMMs) or deep learning
neural networks are used.

Language Modelling: Following acoustic modelling, language modelling is used. Given the audio
input, language models assist the system in predicting the most likely sequence of words. To
improve recognition accuracy, these models use statistical information on word probability and
grammatical rules.

Vocabulary and Lexicon: Typically, speech recognition systems are built with a predetermined
vocabulary and lexicon that contains the set of words and phrases that the system can recognize.
Systems with bigger vocabularies are capable of handling a broader variety of applications, but
they may need more training data and processing resources. Large volumes of labelled audio data
are necessary for training in order to construct accurate speech recognition algorithms. These
datasets are made up of transcribed voice recordings that have been aligned with their matching
text representations.

Speaker Adaptation: Techniques for adjusting the system's recognition capabilities to specific
speakers are available. This is especially true when dealing with diverse dialects, speech patterns,
or differences in speaking style.

Discrete vs. Continuous Speech Recognition: Speech recognition systems may be built for
continuous speech where users talk normally without interruptions or discrete speech where users
speak in tiny segments or phrases with gaps between them.

Speech Recognition in Real-Time vs. Batch Processing: Depending on the application, speech
recognition may be conducted in real-time, delivering rapid replies, or in batch mode, processing
a collection of audio data at the same time.

Programs: Virtual assistants Siri, Google Assistant transcription services, voice-controlled
devices, speech-to-text programs, voice commands in autos, and voice dictation for writing are all

216

Artificial Intelligence

examples of speech recognition applications. Handling background noise, coping with varied
accents and dialects, detecting spontaneous speech, and managing voice disfluencies hesitations,
repeats are all issues in speech recognition.

Recent advances in deep learning, notably the use of neural networks such as Recurrent Neural
Networks (RNNs) and Transformer-based models, have considerably increased voice recognition
accuracy and made it more practical for real-world applications. Finally, voice recognition is an
important technology that has changed the way people communicate with computers. Its uses are
many, making voice-based interfaces an essential aspect of contemporary technology and
everyday life. Advances in artificial intelligence and deep learning are projected to improve the
accuracy and capabilities of voice recognition systems as the field evolves. One of the most
significant subfields in AI is natural language comprehension.

Natural language comprehension, unlike most other fields of AI, requires an empirical analysis of
real human behaviour, which turns out to be difficult and fascinating. Formal language theory and
phrase structure grammars may help with certain parts of natural language. The PCFG formalism
is commonly utilized. A chart parser such as the CYK algorithm, which needs grammar rules to
be in Chomsky Normal Form, may parse sentences in a context-free language time. A treebank
may help you learn grammar. A grammar may also be learned from an unparsed corpus of
sentences, although this is less effective. A lexicalized PCFG enables us to show that certain word-
to-word connections are more prevalent than others. It is handy to supplement a grammar to deal
with issues like subject-verb agreement and pronoun case. The formalism of definite clause
grammar (DCG) allows for augmentations. With DCG, logical inference may be used for parsing,
semantic interpretation, and even creation.

CONCLUSION

An extended grammar may also handle semantic interpretation. Ambiguity is a major issue in
natural language comprehension most sentences have several meanings, but generally only one is
correct. Disam biguation is based on knowledge of the world, the present circumstances, and
language use. A variety of strategies have been used to construct machine translation systems,
ranging from thorough syntactic and semantic analysis to statistical techniques based on phrase
frequencies. Statistical models are now the most popular and successful. Statistical concepts are
also at the heart of speech recognition systems. Speech recognition systems are popular and
helpful, although flawed. Machine translation and voice recognition are two of natural language
technology's major accomplishments. One reason the models perform well is the availability of
big corporaboth translation and speech are jobs that individuals undertake in the wild every day.
Parsing sentences, on the other hand, has proven less successful, in part because there are no huge
corpora of parsed sentences accessible in the wild and in part because parsing is not valuable in
and of itself.

REFERENCES:

[1] Y. Bisk, D. Yuret, and D. Marcu, “Natural language communication with robots,” in 2016

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL HLT 2016 - Proceedings of the

Conference, 2016. doi: 10.18653/v1/n16-1089.

217

Artificial Intelligence

[2] B. J. Grosz, “Utterance and Objective: Issues in Natural Language Communication,” AI

Mag., 2017, doi: 10.1609/aimag.v1i1.86.

[3] J. Weizenbaum, “ELIZA—A Computer Program For the Study of Natural Language
Communication Between Man And Machine,” Commun. ACM, 1983, doi:
10.1145/357980.357991.

[4] K. C. Berridge and T. E. Robinson, “Parsing reward,” Trends in Neurosciences. 2003. doi:
10.1016/S0166-2236(03)00233-9.

[5] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2017, 2017. doi: 10.1109/CVPR.2017.660.

[6] S. Kübler, R. McDonald, and J. Nivre, “Dependency parsing,” Synth. Lect. Hum. Lang.

Technol., 2009, doi: 10.2200/S00169ED1V01Y200901HLT002.

[7] X. Liang et al., “Deep Human Parsing with Active Template Regression,” IEEE Trans.

Pattern Anal. Mach. Intell., 2015, doi: 10.1109/TPAMI.2015.2408360.

[8] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametric image parsing with
superpixels,” Int. J. Comput. Vis., 2013, doi: 10.1007/s11263-012-0574-z.

[9] J. Nivre, “Algorithms for deterministic incremental dependency parsing,” Comput.

Linguist., 2008, doi: 10.1162/coli.07-056-R1-07-027.

218

Artificial Intelligence

CHAPTER 24

PERCEPTION: UNRAVELING THE SENSES

IN ARTIFICIAL INTELLIGENCE

Aaditya Jain, Assistant Professor
College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- jain.aaditya58@gmail.com

ABSTRACT:

Perception offers information on the world to actors by understanding sensor SENSOR responses.
A sensor monitors some feature of the environment in a way that an agent software may utilize as
input. The sensor might be as basic as a switch that outputs one bit indicating whether it is turned
on or off, or as sophisticated as the eye. Artificial agents have access to a wide range of sensory
modalities. Vision, hearing, and touch are among the senses they share with humans. Radio,
infrared, GPS, and wireless transmissions are examples of non-human-accessible modalities.
Some robots use active sensing, which means they send out a signal, such as radar or ultrasound,
and detect the reflected signal from the surroundings. Rather than attempting to cover all of them,
this chapter will focus on one in particular vision.

KEYWORDS:

Image, Information, Picture, Processing, Objective.

INTRODUCTION

An object model explains the objects that occupy the visual world people, buildings, trees,
automobiles, and so on. The object model might be a precise 3D geometric model extracted from
a computer-aided design (CAD) system, or it could be a set of broad limitations, such as the fact
that human eyes are typically 5 to 7 cm apart. A rendering model outlines the physical, geometric,
and statistical processes that generate the world's input. Although rendering models are quite
realistic, they are ambiguous. A white item in low light, for example, may seem the same colour
as a black one in high light. A little local item may seem identical to a huge distant one. We can't
determine whether the image filling the screen is a toy Godzilla or a genuine monster without
further proof. Ambiguity may be controlled by past knowledge we know Godzilla isn't real,
therefore the picture must be a toy or by choosing to disregard the ambiguity selectively. For
example, an autonomous car's visual system may be unable to comprehend things in the distance,
but the agent might opt to overlook the issue since it is unlikely to collide with an item that is
kilometres away [1]–[3].

Vision sensors may be used in architectures other than decision-theoretic agents. Fruit flies, for
example, are reflex agents in part because they have cervical giant fibres that establish a direct
channel from their visual system to the wing muscles that trigger an escape response an abrupt,
unplanned reaction. To land on an item, flies and other flying creatures employ a closed-loop
control system. The optical system estimates the distance to the target, and the control system
adjusts the wing muscles appropriately, allowing for extremely quick direction adjustments
without the need for a comprehensive representation of the item. When compared to data from
other sensors, ocular observations are incredibly rich, both in terms of the information they may

219

Artificial Intelligence

disclose and the sheer volume of data they generate. A video camera for robotic applications might
generate a million 24-bit pixels at 60 frames per second, or 10 GB every minute. The difficulty for
a vision-capable agent is determining which components of the rich visual stimulation should be
addressed to assist the agent in making appropriate action choices, and which should be discarded.
Vision, like all perception, works to promote the agent's aims rather than as an end in itself.

Three major approaches to the issue may be identified. Drosophila's feature extraction technique
stresses simple calculations done directly to the sensor data. In the recognition technique, an agent
uses visual and other information to distinguish between things it meets. Recognition might
include labelling each picture with a yes or no as to whether it contains foraged food or Grandma's
face. Finally, an agent in the reconstruction technique constructs a geometric model of the world
from an image or group of pictures. Over the past thirty years of study, strong tools and strategies
for tackling these approaches have been developed. knowledge these strategies requires a
knowledge of the mechanisms that produce pictures. As a result, we will now discuss the physical
and statistical events that occur during the generation of a picture [4], [5].

Formation of an Image

Image formation is the process of creating or capturing an image and making it visible to our eyes
or sensors. It entails converting light or electromagnetic radiation into a visual representation that
may be seen on a screen, printed on paper, or recorded by digital equipment like as cameras. Image
generation starts with a light source that produces or reflects light. The dominant light source in
natural environments is generally the sun, however in artificial settings, it might be artificial
lighting. When light reaches an item or surface, it interacts with it in a variety of ways. Some of
the light is absorbed, while the remainder is reflected off the surfaces of the objects. Image
production includes the employment of optical devices such as lenses or mirrors. These optical
components are critical in concentrating light rays onto a surface in order to generate a crisp and
well-defined picture [6], [7].

Image creation in lenses happens at the focal point, where parallel light rays converge after passing
through the lens. Projection is the capture and projection of a focussed picture created on a surface
onto a photosensitive medium or a digital sensor. When creating a digital picture, recorded light
intensities are transformed into discrete pixel values that represent distinct colours or grayscale
shades. Colour sensors or colour filters are employed in the generation of colour images to record
the intensity values for distinct colour channels, resulting in a full-color representation. After
capturing a picture, it may be further processed using different image processing methods to
improve its quality, rectify distortions, or extract important information. Once the picture has been
recorded and processed, it may be exhibited on a variety of devices, including computer displays,
mobile phones, and physical medium such as paper or canvas [8]–[10].

Image Formation in Computer Vision. Image formation refers to the process of modelling how
pictures might be acquired from virtual settings using computer graphics methods in the context
of computer vision. This is often used to test and evaluate computer vision algorithms. Image
generation is a key idea in photography, computer vision, and a variety of other domains where
pictures are important. Understanding the fundamentals of image generation aids in picture quality
improvement, the development of sophisticated imaging systems, and the enhancement of
computer vision applications such as object identification, image analysis, and medical imaging.

220

Artificial Intelligence

DISCUSSION

Image Processing in the Early Stages

Early image processing refers to the early phases of image processing development, which include
the editing and analysis of pictures using computer techniques. Image processing has a long
history, extending back to the mid-twentieth century, when researchers started investigating
approaches for digitally enhancing, analyzing, and interpreting pictures.

Early Image Processing Approaches and Milestones

Before the digital era, image processing was done using analogue methods such as optical filters
and chemical processes in photography. These techniques had limited capabilities and sometimes
required personal intervention. The introduction of digital computers in the 1950s and 1960s
cleared the door for digital image processing. The initial digital image processing studies were
converting pictures into matrices of pixel values and manipulating them using fundamental
mathematical operations. Early approaches concentrated on point operations, in which pixel values
were adjusted individually based on basic arithmetic operations such as contrast stretching,
brightness correction, and thresholding. Convolution filters were invented to allow for the
application of local picture alterations. Filters such as the Sobel operator and the Gaussian filter
were employed for edge detection and picture smoothing.

Researchers investigated the use of Fourier transforms to evaluate frequency domain pictures.
Image denoising and compression were possible because to frequency-based processing. Early
image processing applications included picture enhancement for photography, satellite image
analysis, medical imaging, and early computer vision research. Early image compression methods
were created by researchers to minimize the size of image data for storage and transmission. Run-
Length Encoding (RLE) and Huffman coding were used. Early image processing encountered
hurdles owing to early computers' limited computing power and memory. Large picture processing
took time, and real-time applications were often impracticable. Researchers worked on a variety
of algorithms and approaches for feature extraction, picture segmentation, pattern recognition, and
image comprehension. With the creation of journals and conferences devoted to image processing
research, the area of image processing began to receive respect in the scientific world.

While early image processing set the groundwork for the area, it was restricted in scope compared
to the powerful methods accessible today. Because of advances in processing power, digital image
technology, and complex algorithms, the area has advanced greatly since then. Modern image
processing techniques include deep learning-based algorithms, 3D image processing, and real-time
applications in domains as disparate as robotics, autonomous cars, and medical imaging, among
others. The practice of identifying or recognizing objects, persons, or patterns based on their visual
appearance utilizing computer vision and image processing methods is referred to as objective
identification by appearance. In contrast to subjective recognition, which is based on human
interpretation and judgment, objective recognition seeks to accomplish automatic and exact
identification without the need of humans. Algorithms for computer vision are used to process and
evaluate visual data such as photos and videos. Various image processing processes, feature
extraction, and pattern recognition algorithms are used in these approaches. In objective
recognition, important features from visual input are extracted to represent objects or patterns of
interest. Colour, texture, form, edges, and other visual qualities are examples of these traits. Deep
learning and machine learning models are often used to discover patterns and representations from

221

Artificial Intelligence

labelled training data. These models may then be used to recognize objects in previously unknown
data. Object detection is a subset of objective recognition that includes identifying and categorizing
several items of interest inside an image or video frame. The act of giving a name or category to
an individual item inside a picture is known as object classification. Recognizing diverse items in
a scenario as cat, dog, car, and so on. Face recognition is a subset of objective recognition in which
algorithms detect and verify human faces in photos or videos. Security, access management, and
personal identity all benefit from this technology. For objective identification and authentication,
biometric recognition employs unique physical or behavioural traits such as fingerprints, iris
patterns, or gait.

Pattern matching techniques compare extracted characteristics from incoming data with templates
or models to discover matches and recognize recognized patterns. Real-time objective recognition
entails analyzing and identifying objects or patterns in real-time, which enables applications in
robotics, augmented reality, and autonomous vehicles. Object detection and tracking in
surveillance systems, face recognition in smartphones, character recognition in optical character
recognition (OCR) systems, and image-based search engines are just a few of the uses for objective
identification by appearance. Variations in appearance, occlusions, changes in lighting and
perspective, and managing large-scale datasets for training and testing are all challenges in
objective recognition. Objective appearance recognition has transformed a wide range of industries
and applications by delivering automated and accurate solutions for jobs that were previously
labor-intensive and error-prone. Continuous advances in computer vision, machine learning, and
deep learning improve the accuracy and capability of objective recognition systems, making them
vital tools in today's technological world.

3D World Reconstruction

The act of producing a three-dimensional representation of the real-world environment or objects
from a series of two-dimensional photographs or sensor data is known as reconstructing the 3D
world. This is an important topic in computer vision, robotics, and augmented reality, and it entails
using multiple algorithms to infer 3D structure from 2D observations. Stereo Vision is the use of
several cameras or sensors to record pictures of the same subject from slightly different
perspectives. It is feasible to triangulate the depth information and rebuild the 3D picture by
examining the discrepancies between matching spots in these photographs. Structure from Motion
(SfM) is a method for reconstructing 3D structures from a sequence of 2D photographs recorded
from various views. It entails concurrently estimating camera postures and 3D point locations in
order to generate a sparse or dense 3D point cloud representation of the scene. Depth sensors, such
as LiDAR (Light Detection and Ranging) and Time-of-Flight cameras, detect the distance between
points in the scene directly. These sensors give rich depth data and may be utilized to do precise
3D reconstruction. SLAM is a robotics and augmented reality approach that builds a map of the
environment while simultaneously localizing the robot or camera inside that map. For real-time
3D reconstruction, SLAM algorithms use sensor data such as visual odometry and depth
measurements. 3D reconstruction often yields point cloud representations, which are collections
of 3D points with associated colours or intensities. These point clouds may then be processed
further to generate 3D meshes, which are surfaces made up of linked triangles. The act of aligning
and integrating different 3D point clouds or models to generate a uniform and comprehensive 3D
representation of the scene is known as registration.

Once the 3D environment has been rebuilt, it may be rendered and seen from various perspectives,
or it can be utilized for further analysis, simulation, or augmented reality applications. Dealing

222

Artificial Intelligence

with occlusions, processing noisy sensor data, accounting for illumination fluctuations, and
attaining correct registration when integrating several perspectives are all obstacles when
reconstructing the 3D environment. Autonomous navigation for robots and drones, virtual reality
content generation, 3D mapping for urban planning and infrastructure, cultural heritage protection,
and medical imaging are just a few of the practical uses of 3D world reconstruction. Advances in
computer vision, sensor technology, and machine learning have substantially increased the
accuracy and efficiency of 3D world reconstruction, allowing applications in a wide range of
businesses and areas. Reconstructing the three-dimensional environment is a difficult and diverse
effort that requires the use of methods from computer vision, robotics, graphics, and sensor
technologies. The capacity to produce realistic and complex 3D representations of the actual world
has opened up intriguing opportunities in a variety of sectors, ranging from entertainment and
gaming to scientific research and industrial uses.

Recognizability based on Structural Information

The technique of automatically identifying or recognizing objects or patterns based on their
underlying structural properties, such as shape, arrangement, or composition, is referred to as
objective recognition from structural information. Objective in this case indicates that the
recognition is conducted without human interference or subjective assessment. Shape analysis is
the extraction and representation of the geometrical forms of objects or patterns in an image. This
may be accomplished via the use of methods such as contour detection, edge detection, and
skeletonization. Structural information is often represented by extracting relevant features from
the input data. These characteristics may include size, direction, curvature, and other shape-related
characteristics. Structural descriptors are concise representations of structural information that may
be utilized for comparison and matching. Fourier descriptors, shape context, and scale-invariant
feature transform (SIFT) are a few examples.

Pattern matching algorithms compare incoming data structure descriptors to a database of
recognized patterns or templates. For recognition, the closest match is chosen. Template matching
is the process of comparing a tiny template picture to various parts of an input image in order to
locate instances of the template. This is widely used for detecting and localizing objects. Structural
information may be represented as graphs, where nodes indicate pieces or components and edges
express spatial connections. Graph-based approaches are used to examine and compare object
structure. A prominent approach for defining the distribution of point characteristics surrounding
each point on an object's border is shape context. It is helpful for form identification and matching.
Once structural information has been collected and represented, object identification methods such
as support vector machines (SVM) or deep learning models may be employed. Objective
identification using structural information often necessitates strategies to address scale and rotation
changes in the input data. Object identification using structural information is used in a variety of
domains, including image recognition, character recognition in optical character recognition
(OCR) systems, fingerprint recognition, and medical picture analysis. Handling occlusions, coping
with fluctuations in object appearance, and ensuring resilience to noise and clutter are key
challenges in objective identification from structural information. Computer vision and pattern
recognition systems rely on objective recognition from structural information. These approaches
allow automatic and accurate identification without the need for human interpretation by
concentrating on the underlying structure of objects and patterns, making them important tools in
a variety of real-world applications.

223

Artificial Intelligence

CONCLUSION

Perception seems to be a simple process for humans, yet it requires a large amount of complex
calculation. Vision's purpose is to extract information required for activities including
manipulation, navigation, and object identification. The geometric and physical components of
picture creation are well established. We can simply construct an image of a three-dimensional
scene from any random camera location given a description of it. It is more difficult to reverse the
process by moving from a picture to a description of the scenario. Intermediate representations
must be built in order to retrieve the visual information required for manipulation, navigation, and
recognition tasks. Image-processing methods for early vision extract rudimentary characteristics
from images, such as edges and areas. Motion, stereopsis, texture, shading, and contour analysis
are among the picture cues that allow one to gain three-dimensional information about the scene.
To deliver almost clear interpretations, each of these signals depends on preexisting assumptions
about physical situations. Object identification in its broadest sense is a difficult task. We spoke
about brightness-based and feature-based techniques. We also proposed a basic posture estimation
technique. There are other options.

REFERENCES:

[1] S. Dryhurst et al., “Risk perceptions of COVID-19 around the world,” J. Risk Res., 2020,
doi: 10.1080/13669877.2020.1758193.

[2] M. Portillo and J. Fernández-Baena, “Social self-perception in adolescents: Accuracy and
bias in their perceptions of acceptance/rejection,” Psicol. Educ., 2020, doi:
10.5093/PSED2019A12.

[3] O. U. Qiong, “A Brief Introduction to Perception,” Stud. Lit. Lang., 2017, doi:
10.3968/10055.

[4] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Auton. Robots,
2018, doi: 10.1007/s10514-017-9615-3.

[5] R. Paricio-Montesinos et al., “The Sensory Coding of Warm Perception,” Neuron, 2020,
doi: 10.1016/j.neuron.2020.02.035.

[6] M. Fritsche, P. Mostert, and F. P. de Lange, “Opposite Effects of Recent History on
Perception and Decision,” Curr. Biol., 2017, doi: 10.1016/j.cub.2017.01.006.

[7] K. C. Margot and T. Kettler, “Teachers’ perception of STEM integration and education: a
systematic literature review,” International Journal of STEM Education. 2019. doi:
10.1186/s40594-018-0151-2.

[8] A. Samoggia and B. Riedel, “Consumers’ perceptions of coffee health benefits and motives
for coffee consumption and purchasing,” Nutrients, 2019, doi: 10.3390/nu11030653.

[9] F. Martin and D. U. Bolliger, “Engagement matters: Student perceptions on the importance
of engagement strategies in the online learning environment,” Online Learn. J., 2018, doi:
10.24059/olj.v22i1.1092.

[10] H. Bicen and S. Kocakoyun, “Perceptions of students for gamification approach: Kahoot as
a case study,” Int. J. Emerg. Technol. Learn., 2018, doi: 10.3991/ijet.v13i02.7467.

224

Artificial Intelligence

CHAPTER 25

ROBOTICS: ADVANCING AUTOMATION

AND INTELLIGENCE IN THE PHYSICAL WORLD

Harjinder Singh, Assistant Professor
 College of Computing Science and Information Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India
 Email Id- harjinder.mca07@gmail.com

ABSTRACT:

Robots are physical agents that manipulate the physical environment to fulfill tasks. To do this,
they have effectors such as legs, wheels, joints, and grippers. Effectors serve a single purpose: to
exert physical pressures on their surroundings. Robots are also outfitted with sensors that enable
them to sense their surroundings. Modern robotics includes a wide range of sensors, including
cameras and lasers for measuring the surroundings and gyroscopes and accelerometers for
measuring the robot's own motion. The majority of today's robots fit into one of three groups.
Manipulators, also known as robot arms are physically attached to their work environment, such
as a factory assembly line or the International Space Station. Manipulator motion typically
incorporates a series of programmable joints, allowing such robots to position their effectors
wherever in the workspace. With nearly one million units deployed globally, manipulators are by
far the most popular form of industrial robot. In hospitals, certain mobile manipulators are used to
aid surgeons. Few automakers could thrive without robotic manipulators, and some have even been
used to create artistic artwork. The mobile robot is the second category. Mobile robots travel about
their surroundings by employing wheels, legs, or other similar systems.

KEYWORDS:

Environment, Intelligent, Motion, Physical, Robots.

INTRODUCTION

Prosthetic devices , intelligent settings such as a full home outfitted with sensors and effectors, and
multibody systems, in which robotic action is done by swarms of tiny cooperative robots, are also
included in the discipline of robotics. Real robots must deal with partly observable, stochastic,
dynamic, and continuous surroundings. Many robot settings are both sequential and multiagent.
Dealing with a huge, complex environment results in partial observability and stochasticity. Robot
cameras are unable to see around corners, and motion orders are vulnerable to ambiguity owing to
gear slippage, friction, and other factors. Furthermore, the actual world steadfastly refuses to move
faster than real time [1]–[3]. In a simulated environment, basic algorithms may learn from millions
of trials in a few CPU hours. In a real-world setting, these trials may take years to complete.
Furthermore, unlike simulated wrecks, genuine crashes are very painful. To learn rapidly and
securely, practical robotic systems must include past information about the robot, its physical
surroundings, and the tasks that the robot will execute. Many of the ideas discussed previously in
the book are combined in robotics, including probabilistic state estimation, perception, planning,
unsupervised learning, and reinforcement learning. Robotics is a tough example application for
several of these topics. Other notions are introduced in the continuous version of methods that
were previously only seen in the discrete situation [4]–[6].

225

Artificial Intelligence

Software Architecture For Robotics

The design and arrangement of the software components that manage and coordinate the actions
of a robot are referred to as robotics software architecture. It entails organizing the software in
such a manner that the robot can do its duties effectively, reliably, and autonomously. The software
architecture is an important feature of robotics development since it describes how the various
software modules interact with each other and the robot's physical components [7]–[9]. The
following are the key components and factors in robotics software architecture:

1. Modularity: A modular software design divides the functioning of the robot into discrete,
independent components. Each module is in charge of a different activity, such as
perception, planning, control, or communication. Software components that are modular
may be easily maintained, tested, and reused.

2. Middleware: Middleware serves as a communication layer between the robot's many
software components. It provides easy data transmission and module coordination, as well
as the integration of diverse functions.

3. Perception Module: The perception module interprets the robot's surroundings by
processing data from sensors cameras, LIDAR, IMU. It comprises methods for computer
vision, sensor fusion, and object identification.

4. Planning and Decision-Making: The planning module uses perception module inputs to
construct a series of activities to meet the robot's goals. It may contain algorithms for route
planning, task planning, and decision-making. The control module performs the actions
created by the planning module in order to operate the robot's actuators motors and servos.
It guarantees that the motions of the robot are accurate and safe.

5. Localization and Mapping: Localization and mapping algorithms allow the robot to
determine its location and construct a map of its surroundings. For this reason, techniques
such as SLAM (Simultaneous Localization and Mapping) are often utilized.

6. Human-Robot Interaction (HRI): If the robot interacts with people, the HRI module
manages communication and interaction, offering a user-friendly interface for control and
feedback.

7. Real-Time Performance: Real-time performance is often prioritized in robotics software
design to guarantee that the robot can react to its surroundings fast and correctly.

8. Safety and Redundancy: In robots, safety is a vital factor. To avoid accidents and
safeguard the robot and its surroundings, the software design may contain redundancy and
fail-safe methods.

9. Scalability and Flexibility: A suitable software architecture should be scalable in order to
accommodate different robot platforms and configurations, as well as adaptable in order to
adapt to changing needs and tasks.

10. Open-Source Frameworks: Many robotics developers utilize open-source robotics
frameworks such as ROS (Robot Operating System) or ROS 2, which offer a
comprehensive collection of libraries, tools, and communication protocols to aid in the
creation of robotics software.

226

Artificial Intelligence

Testing and Simulation: To check and debug the robot's behaviour without the requirement for
physical testing, the software design should incorporate capabilities for testing and simulation.

An effective robotics software architecture allows for the smooth integration of diverse software
components, hence speeding the development process and allowing the production of sophisticated
and intelligent robots capable of completing complicated tasks in real-world contexts.

DISCUSSION

Domains of User Application

Application domains are specialized regions or sectors in which a certain technology, product, or
solution is used to solve specific difficulties or satisfy specific demands. There are different
application fields in robotics where robots are utilized to perform various activities and offer
significant services. Some of the most important robotics application domains are:

Manufacturing: Robots are widely utilized in the manufacturing industry for operations such as
assembling, welding, painting, material handling, and quality checking. In manufacturing
operations, industrial robots boost efficiency, precision, and productivity.

Logistics and Warehousing: In logistics and warehousing, robots are used to automate material
handling, sorting, and inventory management duties. Autonomous mobile robots can roam
warehouses and distribution centres, allowing logistics processes to be optimized.

Healthcare: Robots play an important role in supporting physicians, nurses, and caretakers in the
healthcare industry. They are utilized in surgeries, rehabilitation, medicine administration, patient
monitoring, and medical research.

Agriculture: Agricultural robots, also known as agribots or agri-drones, are used for precision
farming, planting, harvesting, and crop health monitoring. They aid in increasing agricultural
yields and reducing labor-intensive duties. Robots are being used on construction sites to help with
operations such as bricklaying, concrete pouring, and excavation. They have the potential to
improve construction efficiency and safety.

Service and hospitality: In the service business, robots are utilized for jobs like as customer
service, cleaning, and food delivery in restaurants, hotels, and airports.

Robotics plays an important part in space exploration, with robots employed for planetary rovers,
satellite maintenance, and investigating hazardous regions. Robots are employed in a variety of
fields for environmental monitoring, including underwater robots for marine research and aerial
drones for mapping and monitoring terrestrial ecosystems. Robots are employed in educational
settings to teach programming, engineering ideas, and problem-solving abilities. They are also
important in robotics research and development. During catastrophes and disasters, robots are used
to reach dangerous regions, identify survivors, and distribute supplies. Robots are utilized as
interactive attractions and performers in the entertainment business, including theme parks and
performances. Military and defence applications employ robots for reconnaissance, bomb
disposal, and other activities to keep personnel safe in hostile settings. For transportation and
logistics, robotics technology is used in autonomous vehicles such as self-driving cars, trucks, and
drones.

227

Artificial Intelligence

Consumer robots, such as robot vacuums, robotic lawn mowers, and social robots, are intended for
household usage and personal support. These are only a few of the numerous robotics application
fields. As robots technology advances, we may anticipate even more inventive uses in a variety of
sectors, boosting efficiency, safety, and overall quality of life. Robotics is the study of intelligent
agents that control the physical environment. We learnt the following fundamentals of robot
hardware and software in this chapter. Robots are outfitted with sensors to perceive their
surroundings and effectors to exert physical forces on their surroundings. The majority of robots
are either manipulators that are fixed in place or mobile robots that can move. The goal of robotic
perception is to estimate decision-relevant values from sensor inputs. To do this, we need an
internal representation as well as a technique for changing this internal representation over time.
Localization, mapping, and object identification are common examples of challenging perceptual
tasks. For robot perception, probabilistic filtering methods such as Kalman filters and particle
filters are helpful. These methods preserve the belief state, which is a posterior distribution over
state variables. Robot motion is often planned in configuration space, where each point describes
the robot's position, orientation, and joint angles.

CONCLUSION

Cell decomposition methods, which divide the space of all configurations into finitely many cells,
and skeletonization techniques, which project configuration spaces onto lower-dimensional
manifolds, are examples of configuration space search algorithms. The search through these
smaller structures is then used to solve the motion planning issue. A route discovered by a search
algorithm may be used as the reference trajectory for a PID controller. In robotics, controllers are
required to manage minor disturbances route planning alone is frequently inadequate. Potential
field approaches guide robots using potential functions defined by the distance between obstacles
and the objective location. Potential field approaches may get trapped in local minima, yet they
may immediately produce motion without the requirement for route planning. Specifying a robot
controller explicitly, rather than deriving a route from an explicit representation of the
environment, is sometimes simpler. These controllers are often written as simple finite state
machines. There are several software design architectures. Programmers may use the subsumption
architecture to build robot controllers out of linked finite state machines. Three-layer architectures
are popular frameworks for designing robot software that include deliberation, subgoal
sequencing, and control. The linked pipeline design parallelizes data processing via a series of
modules that correspond to perception, modelling, planning, control, and robot interfaces.

REFERENCES:

[1] N. Sünderhauf et al., “The limits and potentials of deep learning for robotics,” Int. J. Rob.

Res., 2018, doi: 10.1177/0278364918770733.

[2] S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: A bioinspired evolution in robotics,”
Trends in Biotechnology. 2013. doi: 10.1016/j.tibtech.2013.03.002.

[3] G. M. Whitesides, “Soft Robotics,” Angewandte Chemie - International Edition. 2018. doi:
10.1002/anie.201800907.

[4] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft Robotic Grippers,” Advanced

Materials. 2018. doi: 10.1002/adma.201707035.

228

Artificial Intelligence

[5] G. Ciuti et al., “Frontiers of robotic colonoscopy: A comprehensive review of robotic
colonoscopes and technologies,” Journal of Clinical Medicine. 2020. doi:
10.3390/jcm9061648.

[6] M. Runciman, A. Darzi, and G. P. Mylonas, “Soft Robotics in Minimally Invasive Surgery,”
Soft Robot., 2019, doi: 10.1089/soro.2018.0136.

[7] C. Wu et al., “Eye-Tracking Metrics Predict Perceived Workload in Robotic Surgical Skills
Training,” Hum. Factors, 2020, doi: 10.1177/0018720819874544.

[8] A. N. Sridhar, T. P. Briggs, J. D. Kelly, and S. Nathan, “Training in Robotic Surgery—an
Overview,” Current Urology Reports. 2017. doi: 10.1007/s11934-017-0710-y.

[9] Y. Lee, W. J. Song, and J. Y. Sun, “Hydrogel soft robotics,” Materials Today Physics. 2020.
doi: 10.1016/j.mtphys.2020.100258.

	CONTENTS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15
	CHAPTER 16
	CHAPTER 17
	CHAPTER 18
	CHAPTER 19
	CHAPTER 20
	CHAPTER 21
	CHAPTER 22
	CHAPTER 23
	CHAPTER 24
	CHAPTER 25
	Artificial Intelligence cover.pdf
	Page 2

