Principles of Organometallic Chemistry

Organometallic complexes are commonly used in catalysis. Major industrial processes include hydrogenation, hydrosilylation, hydrocyanation, olefin metathesis, alkene polymerization, alkene oligomerization, hydrocarboxylation, methanol carbonylation, and hydroformylation. Organometallic intermediates are also invoked in many heterogeneous catalysis processes, analogues to those listed above. Additionally, organometallic intermediates are assumed for Fischer-Tropsch process. Organometallic complexes are commonly used in small-scale fine chemical synthesis as well, especially in cross-coupling reactions that form carbon-carbon bonds, e.g. Suzuki-Miyaura coupling, Buchwald-Hartwig amination for producing aryl amines from aryl halides, and Sonogashira coupling, etc.

Category: Tag:

Book Details

Pages

267 Pages

Publisher

Alexis Press

Language

English

ISBN

978-1-64532-031-9

Released

2023

About The Author

John Baker

Organometallic complexes are commonly used in catalysis. Major industrial processes include hydrogenation, hydrosilylation, hydrocyanation, olefin metathesis, alkene polymerization, alkene oligomerization, hydrocarboxylation, methanol carbonylation, and hydroformylation. Organometallic intermediates are also invoked in many heterogeneous catalysis processes, analogues to those listed above. Additionally, organometallic intermediates are assumed for Fischer-Tropsch process. Organometallic complexes are commonly used in small-scale fine chemical synthesis as well, especially in cross-coupling reactions that form carbon-carbon bonds, e.g. Suzuki-Miyaura coupling, Buchwald-Hartwig amination for producing aryl amines from aryl halides, and Sonogashira coupling, etc. Organometallic compounds are very useful as catalysts or reagents in the synthesis of organic compounds, such as pharmaceutical products. One of the major advantages of organometallic compounds, as compared with organic or inorganic compounds, is their high reactivity. Reactions that cannot be carried out with the usual types of organic reagents can sometimes be easily carried out using one of a wide variety of available organometallics. A second advantage is the high reaction selectivity that is often achieved via the use of organometallic catalysts. Organometallic Compounds are chemical compounds which contain at least one bond between a metallic element and a carbon atom belonging to an organic molecule. Even metalloid elements such as silicon, tin, and boron are known to form organometallic compounds which are used in some industrial chemical reactions. Reaction mechanisms are step-by-step descriptions of what occurs on a molecular level in chemical reactions. Each step of the reaction mechanism is known as an elementary process, a term used to describe a moment in the reaction when one or more molecules changes geometry or is perturbed by the addition or omission of another interacting molecule. Collectively, an overall reaction and a reaction mechanism consist of multiple elementary processes. These elementary steps are the basic building blocks of a complex reaction, and cannot be broken down any further. The present book provides an introduction to the principles and general properties of organometallic compounds. It also supplies practical information about reaction mechanisms, along with the descriptions of contemporary applications to organic synthesis, organized by mechanism and kinetic.

Reviews

There are no reviews yet.

Be the first to review “Principles of Organometallic Chemistry”

Your email address will not be published.