
ALEXIS

Neural
etworksN

D R . S H I L P A M E H T A
D R . D U R G E S H W A D H W A

J E R S E Y C I T Y, U S A

NEURAL NETWORKS

NEURAL NETWORKS

Dr. Shilpa Mehta

Dr. Durgesh Wadhwa

First Published 2022

This book contains information obtained from highly regarded resources.
Copyright for individual contents remains with the authors.

A wide variety of references are listed. Reasonable efforts have been made
to publish reliable data and information, but the author and the publisher

cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means,

now known or hereinafter invented, including photocopying,
microfilming and recording, or any information storage or retrieval system,

without permission from the publishers.

For permission to photocopy or use material electronically
from this work please access alexispress.us

© RESERVED

ALEXIS PRESS

Published by: Alexis Press, LLC, Jersey City, USA
www.alexispress.us

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data

Includes bibliographical references and index.

ISBN 978-1-64532-876-6

Neural Networks by Dr. Shilpa Mehta, Dr. Durgesh Wadhwa

CONTENTS

Chapter 1. Exploring the Power of Neural Networks: An Investigation into Deep
Learning Techniques and Applications ... 1

— Dr. Shilpa Mehta

Chapter 2. A Comprehensive Study of Neural Network Architecture and Functionality 10

— Dr. Shilpa Mehta

Chapter 3. Unraveling the Complexity of the Human Brain: A Multidisciplinary Approach
to Understanding Neural Mechanisms ... 19

— Mr. Kiran Kale

Chapter 4. An Overview of Network Architectures for Deep Learning: A Comparative Study
of Convolutional and Transformer Networks ... 31

— Mr. Tirumala Vasu G

Chapter 5. Briefly Explanation of Neural Networks with Nervous System ... 42

— Mrs. G Swetha

Chapter 6. Life Cycle Neural Networks Model .. 52

— Mrs. Samreen Fiza

Chapter 7. Introduction to Neural Networks Algorithm.. 60

— Dr. Durgesh Wadhwa

Chapter 8. The Last Mean Square Algorithm ... 69

— Mrs. Ashwini B

Chapter 9. Role of Neural Networks in Artificial Neural Networks ... 79

— Mrs. Aruna M

Chapter 10. Multi-Layer Perceptron: Exploring the Evolution and Applications of the
Foundational Neural Network Model .. 91

— Dr. Abhishek Kumar Sharma

Chapter 11. Heuristics for Making the Back-Propagation Algorithm Perform Better 100

— Dr. Shilpa Mehta

Chapter 12. Optimal Annealing and Adaptive Control of the Learning Rate .. 108

— Dr. Govind Singh

Chapter 13. Cover’s Theorem on the Reparability of Patterns... 118

— Dr. Arvind Kumar Pal

Chapter 14. A Comparative Analysis of Nonlinear Regression Techniques for
Predictive Modeling and Data Analysis .. 126

— Vishal Sharma

Chapter 15. Hybrid Learning Procedure for RBF Networks .. 135

— Dr. Deepanshu Singh

Chapter 16. Regularization Theory: Balancing Model Complexity and Generalization Performance 144

— Mrs. Samreen Fiza

Chapter 17. Semi-Supervised Learning: Leveraging Unlabeled Data for Improved Machine
Learning and Deep Learning Performance.. 154

— Mrs. Ashwini B

Chapter 18. Generalized Regularization Theory: A Comprehensive Framework for
Addressing Over Fitting and Improving Generalization ... 164

— Mrs. Samreen Fiza

Chapter 19. Laplacian Regularized Least-Squares Algorithm ... 173

— Mrs. G Swetha

Chapter 20. Principle Component Analysis .. 182

— Mr. Kiran Kale

Chapter 21. Self-Organizing Maps: An Exploration of Unsupervised Learning Techniques
for Clustering and Visualization in Neural Networks ... 192

— Dr. Shilpa Mehta

1 Neural Networks

CHAPTER 1

EXPLORING THE POWER OF NEURAL NETWORKS: AN

INVESTIGATION INTO DEEP LEARNING TECHNIQUES AND

APPLICATIONS
Dr. Shilpa Mehta, Prof, DEAN Academics

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-shilpamehta@presidencyuniversity.in

ABSTRACT:

Neural networks are a type of machine learning algorithm that are modeled after the structure
and function of the human brain. They are composed of interconnected nodes, called neurons
that work together to process information and make predictions based on patterns and
relationships in data.

KEYWORDS:

Human Brains, Machine Learning, Neural Networks, Nodes, Software Components.

INTRODUCTION

Using a technique that mimics how the human brain works, a neural network is a group of
algorithms that seeks to find hidden connections in a set of data. In this sense, neural networks
are collections of neurons that might have a synthetic or organic origin. Since neural networks
can adjust to changing input, the network can provide the best result without altering the output
criteria. Neural networks, an artificial intelligence concept, are increasingly gaining popularity in
the development of trading systems [1].

The functioning of the human brain has an impact on neural network architecture. The neurons
that make up the human brain communicate with one another via electrical impulses to aid with
information interpretation. Similar to this, artificial neurons are used to build a problem-solving
artificial neural network. Artificial neural networks are software applications or algorithms that
use computer systems to carry out mathematical calculations at their core. Nodes are software
components that act as artificial neurons.

SIMPLE NEURAL NETWORK ARCHITECTURE:

Artificial neurons are linked in three layers of a simple neural network:

INPUT LAYER:

The input layer is where data from the outside world enters an artificial neural network. Data is
processed by input nodes, who also classify or analyze it before sending it to the next layer.

HIDDEN LAYER:

For hidden layers, the input might be another hidden layer or the input layer itself. A large
number of hidden layers is conceivable in artificial neural networks. The output from each
hidden layer is examined, put through further processing, and then sent on to the next layer.

2 Neural Networks

OUTPUT LAYER:

The total results of the data processing by the artificial neural network are shown on the output
layer. There might be one or many nodes in it. One output node in the output layer will show
whether the result is 1 or 0, for example, if the classification job is binary (yes/no). However, if
our classification problem includes several classes, the output layer can contain a large number
of output nodes. In the field of finance, neural networks have enabled the development of
processes such as time-series forecasting, algorithmic trading, securities classification, credit risk
modeling, and the production of bespoke indicators and price derivatives. A neural network
works similarly to how the human brain does. A "neuron" in a neural network is a mathematical
function that accumulates and organizes input into categories in accordance with a predetermined
design. The network and statistical methods like regression analysis and curve fitting are
extremely comparable. A neural network is composed of layers of connected nodes.

HISTORY:

Despite popular belief, neural networks have been around for far longer. The concept of "a
machine that thinks" dates back to the Ancient Greeks, but we'll concentrate on the major turning
points in the development of this theory, which has fluctuated in popularity throughout time:

1943: A logical calculus of the concepts inherent in nerve activity (PDF, 1 MB) (link sits
outside IBM) was published by Warren S. McCulloch and Walter Pitts. This study aimed to
comprehend how the human brain could generate complex patterns via interconnected brain
cells, or neurons. One of the primary concepts that came out of this study was the comparison of
neurons with a binary threshold to Boolean logic (i.e. 0/1 or true/false propositions).

1958: In this study "The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain" (PDF, 1.6 MB), Frank Rosenblatt is credited with creating the
perceptron (link resides outside IBM). He extends the research of McCulloch and Pitt by include
weights in the equation. Rosenblatt was able to train a computer to discriminate between cards
labelled on the left and right using an IBM 704.

1974: Paul Werbos was the first researcher in the US to mention backpropagation's use in neural
networks in his PhD thesis (PDF, 8.1 MB), despite the fact that many researchers contributed to
the notion (link resides outside IBM).

1989: In a study (PDF, 5.7 MB; link outside IBM), Yann LeCun demonstrates how the inclusion
of restrictions into backpropagation and neural network design may be utilized to train
algorithms. This study used a neural network to correctly identify hand-written zip code digits
supplied by the US. Postal service[2], [3].

Neural networks allow computer programs to recognize patterns and address common problems
in the disciplines of AI, machine learning, and deep learning by emulating the actions of the
human brain. A perceptron, which resembles a multiple linear regression, is a network with
every node. The perceptron feeds the signal from the multiple linear regression into a possibly
nonlinear activation function. A neural network is a kind of artificial intelligence that gives
computers instructions on how to interpret data in a way that is similar to how the human brain

3 Neural Networks

does it. In order to simulate the human brain, deep learning uses connected neurons or nodes in a
layered structure. Computers may use this to build an adaptive system that allows them to
continuously learn from mistakes and become better. Artificial neural networks are trying to
handle complicated problems more effectively, including summarizing papers or recognizing
faces. Neural networks, a type of machine learning that are often referred to as artificial neural
networks (ANNs) or simulated neural networks (SNNs), are the foundation of deep learning
approaches. They mimic the nomenclature and architecture of the human brain by taking clues
from how actual neurons interact with one another.

DISCUSSION

Neural networks can be used for a wide range of tasks, from image and speech recognition to
natural language processing and predictive modeling. They are especially useful for tasks that
involve complex, non-linear relationships between inputs and outputs, such as recognizing
handwritten digits or predicting stock prices. The basic structure of a neural network consists of
one or more layers of neurons. The first layer, called the input layer, receives data from the
outside world, such as an image or a sentence. The output layer, on the other hand, produces the
final prediction or output of the network. In between the input and output layers, there can be one
or more hidden layers, which process and transform the input data before passing it on to the
output layer[4].Each neuron in a neural network receives input from other neurons, processes
that input using an activation function, and produces an output that is passed on to other neurons
in the next layer. The strength of the connections between neurons, called weights, are learned
during training using an optimization algorithm such as gradient descent.During training, the
network is presented with a set of labeled examples, called a training set, and adjusts its weights
to minimize the difference between its predicted outputs and the true labels of the examples. This
process is repeated over multiple iterations, called epochs, until the network’s performance on a
separate set of validation data starts to deteriorate. At this point, the network is said to have
overfit the training data, and the training process is stopped.Once the network has been trained, it
can be used to make predictions on new, unseen data by feeding the data through the network
and observing the output of the final layer. The quality of the network’s predictions on this new
data is a measure of its generalization performance.Neural networks can be constructed using
various architectures, depending on the specific task at hand. Some common architectures
include:

a) Feedforward neural networks: These are the simplest type of neural network, where the
data flows in one direction from the input layer to the output layer, without any loops or
feedback. They are useful for tasks where the input is fixed and the output is a function of
the input only, such as image classification or speech recognition[5].

b) Convolutional neural networks (CNNs): These are a type of feedforward neural network
that are designed to process images and other grid-like data, such as audio spectrograms
or text embeddings. They use specialized layers called convolutional layers, which apply
a set of learnable filters to the input and produce feature maps that capture local patterns
and relationships in the data.

4 Neural Networks

c) Recurrent neural networks (RNNs): These are a type of neural network that are designed
to process sequences of data, such as time series, text, or speech. They use feedback
connections to pass information from one time step to the next, allowing them to capture
long-term dependencies and temporal patterns in the data.

d) Long short-term memory networks (LSTMs): These are a type of RNN that are designed
to address the problem of vanishing gradients, which can occur when the network tries to
propagate errors back through many time steps. LSTMs use a more sophisticated memory
cell that can selectively remember or forget information over time, allowing them to
capture longer-term dependencies in the data.

Neural networks have been used with great success in many applications, including computer
vision, speech recognition, natural language processing, and predictive modeling. They have also
been used to create new forms of art, music, and literature, by training on large datasets of
existing works and generating new ones based on learned patterns and [6] Neural networks have
become increasingly popular in recent years, due to advancements in hardware, software, and
data availability. Some of the key advantages of neural networks include:

a) Ability to learn complex, non-linear relationships: Neural networks are well-suited for
tasks that involve complex, non-linear relationships between inputs and outputs, which
can be difficult to model using traditional algorithms.

b) Adaptability and flexibility: Neural networks can be trained to perform a wide range of
tasks, and can be adapted to new tasks with minimal modifications to the architecture or
the training process.

c) Robustness to noise and variability: Neural networks can tolerate noisy or incomplete
data, and can generalize well to new examples that are similar to the training data.

Despite these advantages, neural networks also have some limitations and challenges:

a) Need for large amounts of data: Neural networks require large amounts of labeled data to
be trained effectively, which can be a bottleneck in some applications.

b) Need for computational resources: Training neural networks can be computationally
expensive, especially for large datasets and complex architectures. Specialized hardware,
such as graphics processing units (GPUs) and tensor processing units (TPUs), can help
accelerate the training process.

c) Lack of interpretability: Neural networks can be difficult to interpret and explain,
especially for complex architectures and high-dimensional data. This can make it
challenging to understand how the network arrived at a particular prediction or decision.

In recent years, researchers have been exploring ways to address these limitations and improve
the performance and interpretability of neural networks. Some of the key areas of research
include:

5 Neural Networks

a) Deep reinforcement learning: This is a combination of deep learning and reinforcement
learning, which involves training neural networks to learn optimal policies for decision-
making tasks in complex environments.

b) Explainable AI: This is a subfield of AI that aims to develop models and techniques for
making AI systems more transparent and interpretable to humans.

c) Adversarial machine learning: This involves studying the vulnerability of neural
networks to adversarial attacks, and developing defenses against such attacks.

d) Federated learning: This is a distributed machine learning approach that allows multiple
parties to train a shared model without sharing their data directly.

Neural networks represent a powerful and versatile tool for solving a wide range of machine
learning tasks. As research continues to advance in this area, we can expect to see even more
applications and innovations in the field of AI. Figure 1 illustrate the simple neural network
structure.

Figure 1: Illustrate the simple neural network structure.

The basic building block of a neural network is the artificial neuron, or perceptron. A perceptron
receives one or more input values, multiplies each input by a weight, and sums up the results. It
then applies an activation function to the sum to produce an output value. The output value is
usually passed on to other neurons in the network, forming a complex network of interconnected
nodes.

Neural networks can be organized into layers. The input layer receives input data and passes it
on to one or more hidden layers. Each hidden layer consists of multiple neurons that process the
input data in parallel. The output layer produces the final output of the neural network. [7]
Training a neural network involves adjusting the weights and biases of the neurons to minimize
the error between the predicted output and the actual output. This is typically done using an
optimization algorithm, such as gradient descent. During training, the network is shown a set of
labeled examples and adjusts its weights and biases to improve its predictions.

6 Neural Networks

There are many types of neural networks, each designed for specific tasks and applications. Here
are a few examples:

1. Feedforward neural networks: These are the simplest type of neural network, consisting
of input, hidden, and output layers. They are often used for tasks such as image
classification and speech recognition.

2. Convolutional neural networks (CNNs): CNNs are designed to process and analyze
images and other types of data with a grid-like structure, such as audio spectrograms.
They use specialized layers, such as convolutional layers and pooling layers, to extract
features from the input data.

3. Recurrent neural networks (RNNs): RNNs are designed to process sequences of data,
such as time series data or natural language text. They use feedback loops to maintain a
memory of past inputs and produce outputs that depend on the entire input sequence.

4. Long short-term memory networks (LSTMs): LSTMs are a type of RNN that are designed
to handle long sequences of data by selectively remembering and forgetting information
over time. They are often used for tasks such as speech recognition and language
translation.

5. Generative adversarial networks (GANs): GANs are a type of neural network that can
generate new data samples that are similar to a given set of training examples. They
consist of two networks: a generator network that produces new samples, and a
discriminator network that tries to distinguish between real and fake samples.

Neural networks have a wide range of applications in fields such as computer vision, natural
language processing, speech recognition, and robotics. They are used for tasks such as image
classification, object detection, speech synthesis, language translation, and autonomous
navigation.

One of the main strengths of neural networks is their ability to learn from large amounts of data
and generalize to new, unseen data. This makes them well-suited for tasks that are difficult to
program manually, such as recognizing objects in images or understanding natural language.
However, they also have some limitations and challenges, such as the need for large amounts of
labeled training data, the potential for overfitting, and the difficulty of interpreting their
decisions.

Despite these challenges, neural networks have made significant advances in recent years, thanks
to improvements in computing power, data availability, and algorithmic innovations. They
continue to be an active area of research and development, with the potential to revolutionize
many aspects of our lives.

 One of the terms that is transmitted to the summer is formed by multiplying the scalar input by
the scalar weight. Before being sent to, the other input is multiplied by a bias in the summer. The
scalar neuron output is created by a transfer function using the summer output, also known as the
net input. The weight of this straightforward model equates to the synapse strength of the

7 Neural Networks

biological neuron the summation and transfer functions stand in for the cell body, and the neuron
output equates to the signal on the axon.The transfer function is typically specified by the
designer, followed by the parameters, which are then changed by some learning rule to make the
neuron input/output connection match a certain objective. We have many transfer functions for
various reasons, which are discussed in more detail in the section that follows.

To meet a precise specification of the issue that the neuron is aiming to resolve, a specific
transfer function is selected. In this book, many transfer functions are presented. The next section
discusses three of the most frequently utilised functions. The output of the neuron is set to 0 by
the hard limit transfer function, which is seen on the left side or to if the function argument is
higher than or equal to 0. This feature will be used to build neurons that categorise inputs into
two different groups. Chapter 4 will make heavy use of it.Here, we can see how the weight and
bias have an impact. Between the two numbers, you'll see an icon for the hard limit transfer
feature. In network diagrams, these icons will take the place of the generic to indicate the
specific transfer function in use [8].

A linear transfer function's output is equal to its input, or the ADALINE networks, which are
covered neurons having this transfer function are used, the output vs input characteristic of a
single-input linear neuron with a bias. Since it is differentiable, the log-sigmoid transfer function
is often employed in multilayer networks that are trained using the back propagation process.

Use the Neural Network Design Demonstration One-Input Neuron nnd2n1 to do experiments
using single-input neurons. Thankfully, matrices may often be used to describe neural networks.
Throughout the book, this form of matrix expression will be employed. Don't worry if your
knowledge of matrix and vector operations is rusty, we will examine these subjects and detail the
methods with a tone of examples and issues that have been handled.

For the purpose of allocating the indices to the components of the weight matrix, we have chosen
a certain convention. Indicated by the first index is the specific neuron destination for that
weight. The source of the signal given to the neuron is indicated by the second index. As a result,
according to the indices, this weight indicates the link from the second source to the first and sole
neuron. Of course, if there are several neurons, as there will be later in this chapter, this
convention is more beneficial.

Drawing networks with several neurons, each with a number of inputs, is what we want to do.
Also, we would want to have additional layers of neurons. You can envision how intricate a
network might seem if all the lines were drawn. It would need a lot of ink, be difficult to read,
and the amount of detail might hide the key points. Thus, we'll utilise a condensed notation.The
variable's dimensions are shown as and the input is a single vector of items, as shown by the.
These inputs are sent to the weight matrix, which in the case of a single neuron contains columns
but only one row. A scalar bias is amplified by a constant input of 1 into the neuron. The bias
and the product are added to provide the net input to the transfer function, which is. In this
instance, the neuron's output is a scalar. The output of the network would be a vector if there
were more than one neuron.

8 Neural Networks

These shortened notation figures will always show the dimensions of the variables so that you
can determine if we are referring to a scalar, vector, or matrix right away. You won't need to
make an educated estimate as to the variable's type or size. It should be noted that the problem's
external requirements determine the network's input capacity. Three inputs would be required if,
for example, you wanted to create a neural network that would forecast kite-flying conditions
and the inputs were air temperature, wind speed, and humidity. The layer consists of the output
vector, bias vector, transfer function boxes, summers, and weight matrix. While some writers
refer to the inputs as an additional layer, we won't in this context[9], [10].

CONCLUSION

Neural networks are a powerful tool for machine learning and have been used in a wide range of
applications. They are inspired by the structure and function of the human brain, and consist of
interconnected nodes that process and analyze input data. Neural networks can be trained using
optimization algorithms to minimize the error between predicted and actual output, and can
generalize to new, unseen data. Although neural networks have some limitations and challenges,
they continue to be an active area of research and development, with the potential to
revolutionize many aspects of our lives.

REFERENCES

[1] X. Li et al., “Power-efficient neural network with artificial dendrites,” Nat. Nanotechnol.,
2020, doi: 10.1038/s41565-020-0722-5.

[2] M. Krakovsky, “Artificial (emotional) intelligence,” Commun. ACM, 2018, doi:
10.1145/3185521.

[3] W. Lee, K. Kim, J. Park, J. Kim, and Y. Kim, “Forecasting solar power using long-short
term memory and convolutional neural networks,” IEEE Access, 2018, doi:
10.1109/ACCESS.2018.2883330.

[4] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Prediction in photovoltaic power by
neural networks,” Energies, 2017, doi: 10.3390/en10071003.

[5] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of neural networks: A
view from the width,” in Advances in Neural Information Processing Systems, 2017.

[6] A. Saberian, H. Hizam, M. A. M. Radzi, M. Z. A. Ab Kadir, and M. Mirzaei, “Modelling
and prediction of photovoltaic power output using artificial neural networks,” Int. J.

Photoenergy, 2014, doi: 10.1155/2014/469701.

[7] N. Bianchi and M. Dai Pre, “Active power filter control using neural network
technologies,” IEE Proceedings-Electric Power Appl., 2003, doi: 10.1049/ip-epa.

[8] M. Lonardi et al., “Optical Nonlinearity Monitoring and Launch Power Optimization by
Artificial Neural Networks,” J. Light. Technol., 2020, doi: 10.1109/JLT.2020.2985779.

[9] K. Bong, S. Choi, C. Kim, D. Han, and H. J. Yoo, “A Low-Power Convolutional Neural
Network Face Recognition Processor and a CIS Integrated with Always-on Face
Detector,” IEEE J. Solid-State Circuits, 2018, doi: 10.1109/JSSC.2017.2767705.

9 Neural Networks

[10] S. Alawnah and A. Sagahyroon, “Modeling of smartphones’ power using neural
networks,” Eurasip J. Embed. Syst., 2017, doi: 10.1186/s13639-017-0070-1.

10 Neural Networks

CHAPTER 2

A COMPREHENSIVE STUDY OF NEURAL NETWORK

ARCHITECTURE AND FUNCTIONALITY
Dr. Shilpa Mehta, PROF, DEAN Academics

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-shilpamehta@presidencyuniversity.in

ABSTRACT:

Neural networks are a type of machine learning algorithm inspired by the structure and function
of the human brain. They consist of interconnected nodes, or neurons, organized into layers that
process input data to produce an output. During training, the weights of the connections between
neurons are adjusted to minimize the difference between the network's predicted output and the
true output, using optimization techniques such as gradient descent. Neural networks have
achieved remarkable success in a wide range of applications, from image and speech recognition
to natural language processing and robotics.

KEYWORDS:

Image, Speech Recognition, Optimization, Neuron, Nodes.

INTRODUCTION

A neural network is a device created to mimic the functions of the human brain. Although quite
straightforward, it is a part of everyday life. A neural network is a computer model with a
network design, which is a complicated definition. Artificial neurons make up this architecture.
This structure contains certain characteristics that may be changed to do particular functions.
Artificial neural networks (ANNs) and simulated neural networks are other common names for
neural networks (SNNs). A branch of artificial intelligence called machine learning includes this
emerging technology.

This technology gets its name from how much it resembles the human brain and attempts to
imitate the organic neuron impulses that exist in our bodies. A neural network is, to put it simply,
a collection of algorithms created to find patterns or connections in a given dataset. In essence,
these deep neural networks are computer systems created to replicate how the human brain
processes and analyzes data. A neural network is made up of neurons that are linked together like
a web and do the calculations necessary for categorization in accordance with a particular set of
rules. Let's talk about how these artificial neural networks function and their use in the real world
via this lesson.

Numerous layers make up a neural network. Every layer has a distinct purpose, and the more
levels there are, the more complicated the network is. Because of this, a neural network is often
referred to as a multi-layer perceptron. You must be acquainted with the components of neural
networks before delving further into the process of how they operate[1], [2]. Figure 1 shows the
three layers that make up the node layer, the most basic kind of neural network:

11 Neural Networks

i. The input layer

ii. The hidden layer

iii. The output layer

Each of these strata has a particular function, as their names imply. Nodes comprise these tiers.
Depending on the needs, a neural network may include many hidden layers. The following layer
receives the input signals that are picked up by the input layer and transmits them. It collects
information from the outside environment. Given that each node in a neural network may be
compared to a different linear regression model, it will be much simpler for you to comprehend
how a neural network works if you are acquainted with the linear regression model. All of the
calculation's back-end duties are carried out by the hidden layer. Even no hidden layers are
possible in a network. A neural network does, however, include at least one hidden layer. The
calculation's ultimate outcome from the hidden layer is sent via the output layer.

In the human brain, a neuron serves as the model for a node. Nodes behave similarly to neurons
in that they become active when input or stimulus levels are high enough. As a result of this
network-wide activation, the network responds to the stimuli (output). These artificial neurons'
connections function as straightforward synapses that allow signals to be sent from one to the
other. Layer-by-layer processing of signals as they go from the first input to the final output
layer. The neurons do mathematical computations to determine if there is enough information to
pass on to the next neuron when presented with a request or a problem to solve. Simply said,
they analyze all the data to determine the locations with the greatest correlations. In the most
basic sort of network, data inputs are added up, and if the total exceeds a certain threshold, the
neuron "fires," activating the neurons to which it is connected[3], [4].

Deep neural networks are created when a neural network's hidden layer count rises. Simple
neural networks are advanced by deep learning designs. These layers allow data scientists to
create their own deep learning networks, which facilitate machine learning, which teaches a
computer to precisely replicate human activities like voice recognition, picture recognition, and
prediction making. Another crucial capability is that the computer can educate itself by
identifying patterns in several levels of processing.

Let's apply this definition by doing something. A neural network receives data via its input layer,
which then transmits it to its hidden layers. Through a network of weighted connections,
processing occurs in the hidden layers. The data from the input layer is then combined with a set
of coefficients by nodes in the hidden layer, and the inputs are then given the proper weights.
The total of these input-weight products follows. The total is transmitted via a node's activation
function, which chooses how far a signal must go through the network before it has an impact on
the output. The output layer is where the outputs are retrieved, and the hidden layers connect to
it. Neural networks may resolve issues that have long stumped conventional methods. Their
seeming simplicity masks their underlying complexity, as we've seen. Forward propagation of
inputs, weights, and biases is how neural networks operate. However, the network really learns
by figuring out the precise weight and bias modifications to make in order to create an accurate
output during the reverse phase of back propagation.

The neurons in a neural network are represented as nodes in a weighted graph, and the
connections are shown by edges with weights. It is indicated by x and receives information from
the outside world (n). The weights associated with each input are multiplied by each input before

12 Neural Networks

being added. If the weighted total equals zero, bias which is entered as 1 with weight b—is
applied. The activation function receives this weighted sum next. The neuron's output amplitude
is limited by the activation function. There are several activation functions, including the
Sigmoid, Piecewise linear, and Threshold functions.

DISCUSSION

Neural networks are a type of machine learning algorithm that mimic the way the human brain
works. They are designed to learn from data and make predictions or decisions based on that
data. In this article, we'll discuss the basics of how neural networks work.

Neural Network

A neural network is a type of machine learning algorithm that is inspired by the structure and
function of the human brain. It consists of layers of interconnected nodes or neurons that process
information and make decisions based on that information.

The basic building block of a neural network is the neuron. Each neuron takes input from other
neurons or from the outside world, processes that input, and produces an output. The output of
one neuron becomes the input of other neurons, allowing information to flow through the
network.

A neural network consists of multiple layers of neurons. The input layer takes in the raw data,
such as an image or a set of numerical values. The output layer produces the final output of the
network, such as a prediction or a decision. The layers in between the input and output layers are
called hidden layers.

How do neural networks learn?

Neural networks learn by adjusting the strength of connections between neurons. The strength of
a connection is represented by a weight, which determines how much influence the output of one
neuron has on the input of another neuron.

During the training process, the neural network is presented with a set of examples, each
consisting of input data and a corresponding target output. The network produces an output for
each example, and the difference between the predicted output and the target output is measured
using a loss function.

The goal of training is to minimize the loss function by adjusting the weights of the connections
between neurons. This is done using a process called back propagation. Back propagation
calculates the gradient of the loss function with respect to each weight, and updates the weights
in the direction that reduces the loss.

Training a neural network involves repeating this process over many iterations or epochs, until
the network has learned to produce accurate predictions or decisions for the given inputs.

Types of neural networks

There are several types of neural networks, each suited to different types of tasks. Some common
types of neural networks include:

13 Neural Networks

1. Feed forward neural networks: These are the simplest type of neural network, consisting
of a series of layers where each neuron in one layer is connected to every neuron in the
next layer. They are used for tasks such as classification, regression, and pattern
recognition.

2. Convolutional neural networks (CNNs): These are designed for processing data with a
grid-like structure, such as images. They use a series of filters to extract features from the
input data, and can be used for tasks such as object recognition and image classification.

3. Recurrent neural networks (RNNs): These are designed for processing sequences of data,
such as time series or natural language. They use loops to allow information to persist
over time, and can be used for tasks such as language translation and speech recognition.

4. Generative adversarial networks (GANs): These are designed to generate new data that is
similar to a given dataset. They consist of two neural networks, one that generates new
data and one that evaluates the quality of that data. They can be used for tasks such as
generating realistic images and text[5], [6].

Challenges with neural networks

While neural networks have shown remarkable success in a wide range of applications, they are
not without their challenges. Some common challenges include:

1. Overfitting: This occurs when a neural network becomes too specialized to the training
data and performs poorly on new data. Regularization techniques such as dropout and
weight decay can help prevent overfitting.

2. Vanishing gradients: This occurs when the gradients used in backpropagation become
very small, making it difficult for the network to update the weights of the connections in
the earlier layers. This can lead to slower convergence during training or poor
performance. Techniques such as using non-linear activation functions or modifying the
initialization of weights can help alleviate this issue.

3. Computational complexity: Neural networks can require a lot of computational resources
to train and make predictions, especially for large datasets or complex models. Hardware
accelerators such as GPUs and specialized neural network processors can help speed up
training and inference.

4. Interpretability: Neural networks can be difficult to interpret, meaning it can be
challenging to understand why they make certain predictions or decisions. This can be a
concern in applications such as healthcare or finance where the stakes are high.
Techniques such as visualization and explainability methods can help provide insight into
the inner workings of a neural network.

Applications of neural networks

Neural networks have been applied in a wide range of fields, from image and speech recognition
to natural language processing and robotics. Some common applications include:

1. Image and video processing: Neural networks are used in applications such as object
detection, facial recognition, and image and video classification.

2. Natural language processing: Neural networks are used in applications such as language
translation, sentiment analysis, and text generation.

14 Neural Networks

3. Robotics: Neural networks are used in applications such as robot control, object
recognition, and path planning.

4. Healthcare: Neural networks are used in applications such as disease diagnosis, medical
image analysis, and drug discovery.

5. Finance: Neural networks are used in applications such as fraud detection, credit scoring,
and stock market prediction.

Neural networks are a type of machine learning algorithm modeled after the structure and
function of the human brain. They consist of a collection of interconnected nodes, or "neurons,"
that process information through a series of mathematical operations. The basic structure of a
neural network includes an input layer, one or more hidden layers, and an output layer. Each
layer consists of a set of neurons, which are connected to each other by weighted connections.
The input layer receives data in the form of a vector, which is then passed through the hidden
layers to produce an output. The goal of a neural network is to learn from input data in order to
make accurate predictions about new, unseen data. During training, the weights of the
connections between neurons are adjusted to minimize the difference between the network's
predicted output and the true output.

The process of training a neural network typically involves the following steps:

1. Data preprocessing: The input data is preprocessed to ensure that it is in a suitable format
for the network. This may include steps such as normalization, scaling, and feature
extraction.

2. Initialization: The weights of the connections between neurons are initialized to random
values.

3. Forward propagation: The input data is passed through the network to produce a
predicted output.

4. Calculation of error: The difference between the predicted output and the true output is
calculated using a loss function.

5. Backward propagation: The error is backpropagated through the network to adjust the
weights of the connections between neurons.

6. Repeat: Steps 3-5 are repeated for multiple epochs, or passes through the training data,
until the network's performance on a validation set of data reaches a satisfactory level.

Once the neural network has been trained, it can be used to make predictions on new, unseen
data by passing the data through the network and using the output produced by the output layer.
There are many different types of neural networks, each with its own strengths and weaknesses.
Some of the most common types of neural networks include:

1. Feedforward neural networks: These are the simplest type of neural network, consisting
of a series of layers in which the output of each layer is fed as input to the next layer.
Feedforward neural networks are often used for classification tasks.

2. Convolutional neural networks (CNNs): These are a type of neural network that are
commonly used for image classification and recognition tasks. They are designed to
process inputs that are arranged in a grid-like fashion, such as images.

15 Neural Networks

3. Recurrent neural networks (RNNs): These are a type of neural network that are designed
to process sequences of data, such as time-series data or natural language text. RNNs are
particularly well-suited to tasks such as language modeling and machine translation.

4. Long Short-Term Memory (LSTM) networks: These are a type of recurrent neural
network that are designed to address the problem of vanishing gradients, which can occur
when training deep neural networks. LSTM networks are particularly well-suited to tasks
that require the network to remember information over long periods of time.

5. Autoencoders: These are a type of neural network that are designed to learn a compressed
representation of input data. Autoencoders can be used for tasks such as dimensionality
reduction and image denoising[7], [8].

Neural networks have become a popular tool in the field of machine learning due to their ability
to learn complex patterns in data. They have been successfully applied to a wide range of tasks,
including image and speech recognition, natural language processing, and robotics. Despite their
success, neural networks are not without their limitations. They can be computationally
expensive to train, particularly for large datasets and complex architectures. They can also be
prone to overfitting, in which the network performs well on the training data but poorly on new,
unseen. To understand how neural networks work in more depth, let's explore some of the key
concepts and components of neural networks:

1. Neurons and activation functions: Neurons are the basic building blocks of a neural
network. Each neuron receives input from other neurons, performs a weighted sum of the
inputs, and applies an activation function to produce an output. Common activation
functions include sigmoid, tanh, and ReLU (rectified linear unit).

2. Layers: A neural network is organized into layers, which consist of groups of neurons.
The input layer receives the raw input data, and the output layer produces the final output
of the network. Any layers in between the input and output layers are known as hidden
layers.

3. Connections and weights: The connections between neurons in a neural network are
represented by weights, which determine the strength of the connection. During training,
the weights are adjusted to minimize the difference between the network's predicted
output and the true output.

4. Forward propagation: Forward propagation is the process of passing input data through
the network to produce a predicted output. During forward propagation, the input data is
multiplied by the weights and passed through the activation functions in each layer to
produce an output.

5. Loss function: The loss function is a measure of how well the network is performing on a
given task. During training, the goal is to minimize the loss function by adjusting the
weights of the connections between neurons.

6. Backward Propagation: Backward propagation is the process of adjusting the weights of
the connections between neurons to minimize the loss function. During backward
propagation, the error is backpropagated through the network to adjust the weights in
each layer.

16 Neural Networks

7. Gradient Descent: Gradient descent is a common optimization algorithm used to adjust
the weights of the connections between neurons during training. The basic idea of
gradient descent is to iteratively adjust the weights in the direction of the steepest descent
of the loss function.

8. Regularization: Regularization techniques are used to prevent overfitting, in which the
network performs well on the training data but poorly on new, unseen data. Common
regularization techniques include L1 and L2 regularization, dropout, and early stopping.

9. Hyperparameters: Hyperparameters are parameters that are set before training begins and
are not learned during training. Examples of hyperparameters include the number of
hidden layers, the number of neurons in each layer, the learning rate, and the activation
function.

10. Transfer learning: Transfer learning is a technique in which a pre-trained neural network
is used as a starting point for a new task. By using a pre-trained network, the amount of
training required for the new task can be greatly reduced[9], [10].

Neural networks have revolutionized the field of machine learning, enabling researchers to tackle
complex tasks that were previously thought to be impossible. However, there are still many
challenges and limitations associated with neural networks, such as the difficulty of interpreting
their decisions and the potential for bias and discrimination. As researchers continue to develop
new techniques and architectures for neural networks, it is likely that these limitations will be
addressed, paving the way for even more exciting applications of this powerful
technology.Figure 1 illustrate the common structure of the neural network.

Figure 1: Illustrate the common structure of the neural network.

The number of inputs to a layer often differs from the number of neurons in that layer could
wonder whether every neuron in a layer has to do the same kind of transmission. The answer is
no; by fusing two of the networks, you may build a single (composite) layer of neurons with
various transfer functions. The inputs to both networks would be identical, and each network
would produce part of the outputs. As mentioned before, the column indices of the matrix's
components represent the source of the input for that weight, while the row indices represent the
destination neuron associated with that weight. As a result, according to the indices, this weight
indicates the link from the second source to the third neuron. Again, you can see from the

17 Neural Networks

symbols underneath the variables that there is a vector of length for this layer, a matrix, and two
vectors of length. The layer contains the weight matrix, summation and multiplication
operations, bias vector, transfer function boxes, and output vector, as previously stated.

These levels of network architectures 2-1. Superscripts will be used to denote the tiers. In
particular, we superscript the layer number to the names of each of these variables. As a result,
the first layer's weight matrix is represented as while the second layer's weight matrix is written
as. Compared to single-layer networks, multilayer networks are more powerful. For example, it
is possible to train a two-layer network with a sigmoid first layer and a linear second layer to
mimic the majority of functions arbitrarily well.

This is impossible for single-layer networks.First, keep in mind that the size of the network's
inputs and outputs is determined by the requirements of external problems. There are four inputs
to the network if there are four external variables to be utilised as inputs. Similar to this, there
must be seven neurons in the output layer if the network is to provide seven outputs. Lastly,
choosing the transfer function for the output layer is aided by the required properties of the
output signal. A symmetrical hard limit transfer function should be employed if an output must
be either or. As a result, the issue specifications—including the precise number of inputs and
outputs and the unique feature of the output signal—decide on a single-layer network's design
nearly entirely.

What happens if there are more layers than two? In this case, the exterior issue does not
explicitly tell you how many neurons are needed in the buried layers. In reality, it is rare to be
able to estimate the ideal number of neurons that should be used in a hidden layer for a given
task. There is current study being done on this issue. Most realistic neural networks only contain
two or three layers, on average. Seldom are four or more layers employed.

We ought to talk about the application of prejudices. Neurons may be chosen with or without
bias. You could anticipate that networks with biases would be more potent as the bias adds an
additional variable to the network. It is true that Network Architectures 2-13 are superior to those
without. For instance, take note that when the network inputs are zero, a neuron without a bias
will always have a net input of zero. Sometimes, this is only done to cut down on the amount of
network parameters. We can depict system convergence on a two-dimensional plane using just
two variables. Displaying three or more variables is challenging.

CONCLUSION

Neural networks are a powerful machine learning technique that mimic the structure and
function of the human brain. They consist of layers of interconnected neurons that learn from
data to make predictions or decisions. While neural networks have shown remarkable success in
a wide range of applications, they are not without their challenges, such as over fitting and
interpretability. However, with ongoing research and development, neural networks are likely to
continue to be an important tool in the field of machine learning.

18 Neural Networks

REFERENCES

[1] S. Fukami and H. Ohno, “Perspective: Spintronic synapse for artificial neural network,” J.
Appl. Phys., 2018, doi: 10.1063/1.5042317.

[2] D. S. Jeong and C. S. Hwang, “Nonvolatile Memory Materials for Neuromorphic
Intelligent Machines,” Advanced Materials. 2018. doi: 10.1002/adma.201704729.

[3] R. Kreiser, D. Aathmani, N. Qiao, G. Indiveri, and Y. Sandamirskaya, “Organizing
sequential memory in a neuromorphic device using dynamic neural fields,” Front.

Neurosci., 2018, doi: 10.3389/fnins.2018.00717.

[4] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An All-Memristor Deep Spiking
Neural Computing System: A Step Toward Realizing the Low-Power Stochastic Brain,”
IEEE Trans. Emerg. Top. Comput. Intell., 2018, doi: 10.1109/TETCI.2018.2829924.

[5] K. Zarudnyi, A. Mehonic, L. Montesi, M. Buckwell, S. Hudziak, and A. J. Kenyon,
“Spike-timing dependent plasticity in unipolar silicon oxide RRAM devices,” Front.

Neurosci., 2018, doi: 10.3389/fnins.2018.00057.

[6] S. M. Kueh and T. J. Kazmierski, “Low-Power and Low-Cost Dedicated Bit-Serial
Hardware Neural Network for Epileptic Seizure Prediction System,” IEEE J. Transl. Eng.

Heal. Med., 2018, doi: 10.1109/JTEHM.2018.2867864.

[7] B. dos Santos Pês, J. G. Guimarães, E. Oroski, and M. J. do C. Bonfim, “A Spiking Neural
Network implemented with Single-Electron Transistors and NoCs,” Nano Commun.

Netw., 2018, doi: 10.1016/j.nancom.2018.06.001.

[8] I. Ben-Bassat, B. Chor, and Y. Orenstein, “A deep neural network approach for learning
intrinsic protein-RNA binding preferences,” in Bioinformatics, 2018. doi:
10.1093/bioinformatics/bty600.

[9] N. Kasabov, “Evolving and spiking connectionist systems for brain-inspired artificial
intelligence,” in Artificial Intelligence in the Age of Neural Networks and Brain
Computing, 2018. doi: 10.1016/B978-0-12-815480-9.00006-2.

[10] L. Yi, H. Huang, D. Liu, E. Kalogerakis, H. Su, and L. Guibas, “Deep part induction from
articulated object pairs,” in SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH Asia

2018, 2018. doi: 10.1145/3272127.3275027.

19 Neural Networks

CHAPTER 3

UNRAVELING THE COMPLEXITY OF THE HUMAN BRAIN: A

MULTIDISCIPLINARY APPROACH TO UNDERSTANDING NEURAL

MECHANISMS
Mr. Kiran Kale, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-kirandhanaji.kale@presidencyuniversity.in

ABSTRACT:

The human brain is a complex organ that is responsible for all of our thoughts, emotions, and
actions. It is composed of approximately 100 billion neurons, which are connected by trillions of
synapses. The brain is divided into different regions, each of which is responsible for specific
functions such as language processing, sensory perception, and motor control. The brain receives
and processes information from the environment through the senses, such as sight, hearing,
touch, taste, and smell. It also stores and retrieves memories, and is involved in learning and
decision-making.

KEYWORDS:

Emotions, Human Brain, Neurons, Taste, Motor Control, Sensory Perception.

INTRODUCTION

The human brain is the most complex organ in the body, responsible for controlling and
coordinating all of our thoughts, emotions, and behaviors. It is made up of billions of cells,
including neurons and glial cells, and is divided into several major regions, each with its own
unique function. The brainstem is the oldest and most primitive part of the brain, responsible for
controlling basic life-sustaining functions like breathing, heart rate, and digestion. It is located at
the base of the brain and connects to the spinal cord, which carries sensory and motor signals
between the brain and the rest of the body. Above the brainstem is the cerebellum, which is
responsible for coordinating movement and balance. It receives information from the sensory
systems, spinal cord, and other parts of the brain to help control motor function[1].

The largest part of the brain is the cerebrum, which is divided into two hemispheres (left and
right) and is responsible for most of our conscious thoughts, emotions, and behaviors. The outer
layer of the cerebrum is called the cortex and is highly folded to increase its surface area. The
cortex is further divided into four lobes: the frontal lobe, parietal lobe, temporal lobe, and
occipital lobe. The frontal lobe is located at the front of the brain and is responsible for many
higher-level cognitive functions, including decision-making, planning, and problem-solving. It is
also involved in controlling movement and is the part of the brain that allows us to speak. The
parietal lobe is located at the top and back of the brain and is responsible for processing sensory
information from the body, including touch, temperature, and pain. It also plays a role in spatial
awareness and perception.

20 Neural Networks

The temporal lobe is located on the sides of the brain, near the ears, and is responsible for
processing auditory information, including language and music. It is also involved in memory
formation and retrieval. The occipital lobe is located at the back of the brain and is responsible
for processing visual information from the eyes. It helps us recognize objects and navigate our
environment. The brain is also divided into several subcortical structures, including the thalamus,
hypothalamus, hippocampus, and amygdala. These structures play important roles in regulating
emotions, memory, and other vital functions. The thalamus acts as a relay station for sensory
information, sending it to the appropriate parts of the cortex for processing. It also plays a role in
regulating consciousness and sleep.

The hypothalamus is located below the thalamus and plays a key role in regulating basic bodily
functions, including hunger, thirst, and body temperature. It is also involved in controlling the
release of hormones from the pituitary gland, which regulates many of the body's other
functions. The hippocampus is located in the temporal lobe and is involved in the formation and
retrieval of memories. It is also important for spatial navigation. The amygdala is located in the
temporal lobe and is involved in processing emotions, particularly fear and aggression. The brain
is a highly adaptable organ, capable of changing and rewiring itself in response to new
experiences and challenges. This process, known as neuroplasticity, allows the brain to adapt and
learn throughout our lives.

However, the brain is also vulnerable to injury and disease. Traumatic brain injuries, strokes, and
neurodegenerative diseases like Alzheimer's can all cause significant damage to the brain and
impair its function. Overall, the human brain is a marvel of complexity and adaptability,
responsible for shaping our thoughts, emotions, and behaviors and allowing us to navigate the
world around us. The brain is protected by the skull and receives a constant supply of oxygen
and nutrients through the blood vessels. It is also capable of self-repair and can create new
connections between neurons in response to new experiences.

While the human brain is one of the most complex structures in the known universe, there is still
much that is unknown about how it works. Scientists continue to study the brain in order to better
understand its structure and function, and to develop new treatments for brain-related disorders
such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Artificial intelligence deep
learning is represented by neural networks. Traditional machine learning methods cannot handle
certain application cases because they are either complex or too broad. Neural networks, as they
are generally called, step in and close the gap in these situations. Enroll in the course on neural
networks and deep learning as well to advance your knowledge right now.

In essence, inputs and random weights are multiplied for each neuron, and they are then
combined with a constant bias value specific to each neuron layer. The appropriate activation
function receives this information and decides the final value to be output by the neuron.
Different activation functions are conceivable depending on the kind of incoming data. The loss
function input vs. output is calculated after the last neural net layer has produced its output, and
backpropagation is used to change the weights in order to reduce the loss.

21 Neural Networks

The perceptron model, created by Minsky and Papert, is one of the oldest and most fundamental
representations of a neuron. The smallest part of a neural network, it carries out precise
computations to identify traits or commercial information in the incoming data. To create the
desired output, it employs weighted inputs and an activation function. TLU is a different term for
perceptron (threshold logic unit). The perceptron, a supervised learning system that splits the
input into two categories, is a binary classifier[2].

A kind of artificial neural network called a feed-forward neural network never experiences node-
to-node cycles. This neural network's perceptrons are all arranged in layers, with the input layer
supplying input and the output layer generating output. The hidden layers are so-called because
they are cut off from the outer world, thus the term. In a feed-forward neural network, each
perceptron in one layer is connected to each node in the subsequent layer. Every node has total
connection as a consequence. Another thing to keep in mind is that there is no visible or invisible
connection between the nodes on the same layer. There are no back-loops in the feed-forward
network. In order to decrease prediction error, we often modify the weight values utilizing the
backpropagation technique.

DISCUSSION

Their neuron model's key characteristic is that the neuron output is determined by comparing a
weighted sum of input signals to a threshold. When the total exceeds or falls inside the threshold,
the produced is 1. When the total falls below the cutoff, the result is 0. They continued by
demonstrating that networks made out of these neurons could theoretically calculate any
mathematical or logical operation. In contrast to biological networks, their networks' parameters
had to be constructed since there was no training process. Yet there was a lot of curiosity in the
alleged link between biology and digital technology [3]. Frank Rosenblatt and a number of other
scientists created the perceptron class of neural networks in the late 1950s. These networks'
neurons resembled those of McCulloch and Pitts. The development of a learning strategy for
instructing perceptron networks to address pattern recognition issues was Rosenblatt's major
contribution [Rose58]. He demonstrated that, in the event that weights exist that address the
issue, his learning algorithm would always converge to the appropriate network weights.
Learning was effortless and straightforward.

The network was shown instances of appropriate conduct so that it may learn from its errors.
Even with random weight and bias initialization, the perceptron was still able to learn [4]. The
perceptron network has unfortunate intrinsic limitations. Marvin Minsky and Seymour Papert's
book Perceptrons made these limitations well known. They showed that the perceptron networks
were unable to carry out several simple operations. These constraints weren't addressed until the
1980s with the development of better (multilayer) perceptron networks and related learning
algorithms.

The perceptron is still regarded as a significant network today. It continues to be a quick and
dependable network for the kinds of issues it can handle. Moreover, comprehension of the
perceptron's workings serves as a solid foundation for comprehension of more complicated
networks. As a result, we should talk about the perceptron network and its related learning rule.

22 Neural Networks

The definition of a learning rule, an explanation of the perceptron network and learning rule, and
a discussion of the perceptron network's limits are covered in the next sections of this chapter.
We want to talk about learning rules in general before we provide the perceptron learning rule.
By "learning rule," we imply a process for changing a network's weights and biases. The learning
rule's goal is to teach the network how to carry out a certain activity. Neural networks can learn a
variety of rules. They may be divided into three main groups: graded or reinforced learning,
unsupervised learning, and supervised learning [5].

In supervised learning, a collection of examples (the training set) of appropriate network
behaviour are given to the learning rule: where is the equivalent correct (target) output and is an
input to the network. The network outputs are compared to the targets as the inputs are applied to
the network. The weights and biases of the network are then modified using the learning rule to
bring the outputs of the network closer to the objectives. This area of supervised learning
includes the perceptron learning rule. Similar to supervised learning, reinforcement learning
only differs in that the algorithm receives a grade rather than the right output for each network
input. The grade (or score) is a representation of how well the network performed given a certain
set of inputs. Compared to supervised learning, this kind of learning is now far less prevalent. It
seems to be best suited for applications involving control systems.

In unsupervised learning, only network inputs are used to modify the weights and biases. There
are no accessible target outcomes. This could first seem to be unworkable. If you don't know
what a network is intended to perform, how can you train it? A clustering procedure is carried
out by the majority of these methods. They acquire the skill of classifying the input patterns into
a limited number of groups. The understanding that the human brain computes totally differently
from the traditional digital computer has driven research on artificial neural networks, sometimes
known as "neural networks," since their beginnings [6].

 The brain is a very sophisticated, parallel, nonlinear computer information-processing system. It
has the capacity to arrange the neurons that make up its structural components such that it can
carry out certain calculations including pattern recognition, perception, and motor control far
more quickly than the current fastest digital computer. Take human eyesight as an example,
which is an example of an information-processing activity. The visual system's job is to provide
us a picture of our surroundings and, more importantly, to give us the knowledge we need to
interact with that environment. To be more precise, activities of considerably lower complexity
require a very long time on a powerful computer, but the brain regularly completes perceptual
identification tests (e.g., identifying a known face embedded in an unfamiliar scene) in around
100-200 ms.

Another example would be a bat's sonar. An active echolocation system is sonar. Bat sonar not
only communicates information about the distance to a target (such as a flying bug), but also
about the relative velocity, size, and size of numerous elements on the target, as well as the
azimuth and elevation of the target. A plum-sized brain performs the intricate neural calculations
required to retrieve all of this information from the target echo. An engineer working on radar or
sonar would be jealous of how easily and successfully an echolocating bat can pursue and catch
its prey [7].

23 Neural Networks

But how does a bat's brain or a human's brain do this? A brain has significant structure from birth
and the capacity to develop its own set of behavioural guidelines via what we often refer to as
"experience." In fact, experience is acquired through time. The human brain is hardwired in large
part during the first two years after birth, but growth continues even beyond that point.

A brain that is plastic is equivalent to a neurological system that is "developing": The growing
nervous system may adapt to its surroundings thanks to plasticity. The functioning of neurons as
information-processing units in the human brain seems to depend on plasticity, and the same is
likely true for neural networks composed of synthetic neurons. A neural network is a system that
is created to imitate how the brain accomplishes a certain activity or function of interest in its
most basic form; the network is often constructed using electrical components or is simulated in
software on a digital computer. In this book, we concentrate on a significant class of neural
networks that carry out practical calculations through a learning process. Neural networks use a
vast network of basic computer cells called "neurons" or "processing units" to attain high
performance. A massively parallel distributed processor made up of basic processing units,
known as a neural network, has a built-in predisposition to store and make use of experience
information. It is similar to the brain in two ways:

1. By a learning process, the network picks up knowledge from its surroundings.
2. Acquired information is stored in synaptic weights, which are the intensities of internal

connections between neurons.

A learning algorithm is the mechanism utilised to carry out the learning process. Its purpose is to
adjust the network's synaptic weights in an orderly manner to achieve a specific design target.
The conventional approach for designing neural networks is to modify synaptic weights. This
method comes closest to the proven linear adaptive filter theory, which has been effectively
implemented in a wide range of disciplines. The fact that neurons in the human brain may die
and new synaptic connections can form, however, motivates the idea that a neural network can
potentially alter its own architecture[8].

Neural networks' advantages

It is clear that a neural network gets its processing power from two different sources: first, its
massively parallel distributed topology; and second, its capacity for learning and generalization.
Generalization is the ability of a neural network to provide accurate results from inputs that were
not present during training (learning). With the help of these two information-processing skills,
neural networks are able to identify reliable approximations to very complicated (large-scale)
issues.

Nevertheless, in real-world applications, neural networks cannot provide the answer on their
own. In place of that, a consistent system engineering methodology has to include them. In
particular, an interesting difficult topic is broken down into a number of relatively easy tasks,
and neural networks are given a subset of those tasks that are compatible with their natural skills.
Yet it's vital to understand that before we can create a computer architecture that resembles the
human brain, we still have a long way to go (if ever).

24 Neural Networks

The following valuable traits and skills are provided by neural networks:

First, nonlinearity. Linear or nonlinear artificial neurons are also possible. A neural network is
itself nonlinear since it is made up of nonlinear neurons connected together. Also, the
nonlinearity is unique in that it is dispersed across the network. Nonlinearity is a very crucial
characteristic, especially if the underlying physical. Figure 1 illustrate the Human Brain
Functions.

Figure 1: Illustrate the Human Brain Functions.

Input-Output Mapping, second. A common learning paradigm known as supervised learning or
learning with a teacher includes changing the synaptic weights of a neural network using a
collection of labelled training examples, or task examples. A distinct input signal and a matching
intended (target) response make up each sample. In order to minimise the difference between the
desired response and the actual response of the network produced by the input signal in
accordance with an appropriate statistical criterion, the network's synaptic weights (free
parameters) are modified.

This is done by presenting the network with an example chosen at random from the set. Once the
network achieves a stable state where there are no more noticeable changes in the synaptic
weights, the network training is repeated for several instances in the collection. Training
examples that have already been used may be used again, but in a new sequence. As a result, the
network builds an input-output mapping specific to the given challenge in order to learn from
examples.

 A similar strategy is reminiscent of the study of nonparametric statistical inference, a field of
statistics that focuses on model-free estimation, or, from a biological perspective, tabula rasa
learning the term "nonparametric" is used here to denote the absence of any prior assumptions on
a statistical model for the input data. Take a look at a pattern classification problem, for instance,
where you need to categorise an input signal that represents a real item or event into one of a
number of predefined categories (classes).

25 Neural Networks

The goal of a nonparametric solution to this issue is to "estimate" arbitrary decision boundaries
without applying a probabilistic distribution model in the input signal space for the pattern-
classification job. The supervised learning paradigm, which indicates a close parallel between the
input-output mapping carried out by a neural network and nonparametric statistical inference,
implicitly adopts a similar point of view.

 Flexibility. Synaptic weights in neural networks may automatically vary in response to changes
in the environment. In instance, a neural network that has been taught to function in a particular
environment may be quickly retrained to adapt to slight changes in the environmental settings
that it operates. A neural network may also be programmed to alter its synaptic weights in real
time while working in a nonstationary environment (i.e., one whose statistics vary over time). A
neural network's adaptable capabilities combined with its natural design for pattern
classification, signal processing, and control applications make it a valuable tool for adaptive
pattern classification, adaptive signal processing, and adaptive control.

As a general rule, it can be claimed that the more adaptable a system is designed to be while still
maintaining stability, the more reliable its performance is expected to be when the system is
needed to function in a nonstationary environment. Yet, it should be noted that adaptivity does
not necessarily result in robustness; in fact, it could have the exact opposite effect. For instance,
an adaptive system with quick changes may be more likely to react to fictitious disturbances,
leading to a sharp decline in system performance. The system's major time constants must be
long enough for it to disregard erroneous disturbances while being brief enough for it to react to
significant changes in the environment in order to fully benefit from adaptivity. The issue raised
here is known as the stability-plasticity paradox[9].

A neural network may be created in the context of pattern classification to offer information on
both the best pattern to choose and the degree of confidence in that choice. If confusing patterns
do appear, this later knowledge may be utilised to eliminate them and boost the network's
classification performance. A neural network's physical composition and level of activity serve
as a representation of knowledge. The overall activity of every neuron in the network has the
capacity to influence every individual neuron. As a result, a neural network handles contextual
information organically.

In terms of resilient computing, a hardware-implemented neural network has the potential to be
intrinsically fault tolerant, meaning that performance declines smoothly under challenging
operating circumstances. For instance, recall of a stored pattern is of worse quality if a neuron or
one of its connecting pathways is destroyed. Yet, since the network's data is spread, significant
harm must be done before the network's general responsiveness is substantially compromised.
So, a neural network in theory displays a gentle performance decline as opposed to catastrophic
collapse. Robust computing has some empirical support, although this support is often
unregulated. It could be required to make corrections to the method used to train the neural
network in order to ensure that it is, in fact, error tolerant.

26 Neural Networks

A neural network has the potential to be quick for the calculation of certain tasks due to its
massively parallel nature. A neural network is highly suited for use with very-large-scale-
integrated (VLSI) technology because of the same characteristic. One very advantageous feature
of VLSI is that it offers a way to capture incredibly complicated behaviour in a highly
hierarchical manner. Analysis and design uniformity. In essence, neural networks are versatile
data processors. We say this in the sense that neural networks are applied in all areas using the
same nomenclature. This characteristic appears in several ways:

Since all neural networks include neurons in some shape or another, it is feasible to exchange
theories and learning techniques across many neural network applications. Modular networks
may be created by seamlessly integrating modules. Analogy in Neurobiology. The brain, which
serves as live evidence that fault-tolerant parallel processing is not only physically feasible but
also quick and effective, serves as the inspiration for the creation of a neural network. (Artificial)
neural networks are used as a research tool by neurobiologists to interpret neurobiological
events. Engineers, however, turn to neurobiology for novel solutions to challenges that are more
complicated than those based on traditional hardwired design.

Neural network models based on recurrent networks are contrasted with linear system models of
the vestibulo-ocular reflex (VOR). The oculomotor system includes the vestibulo-ocular reflex.
By rotating the eyes anticlockwise to the head, VOR works to keep the retinal picture (i.e. visual)
stable. Premotor neurons in the vestibular nucleus, which receive and interpret head rotation
information from vestibular sensory neurons, moderate the VOR by sending the results to the
motor neurons in the eye muscles. Since both the VOR's input (head rotation) and output (eye
rotation) can be precisely set, it is highly suited for modelling. Also, it is a fairly straightforward
response, and the component neurons' neurophysiological characteristics have been extensively
discussed [10]. The vestibular nuclei's premotor neurons (reflex interneurons) are the most
intricate and fascinating of the three neuronal kinds. The VOR has previously been modelled
using control theory and lumped, linear system characteristics. While these models helped to
explain some of the VOR's general characteristics, they provided little information on the
characteristics of the individual neurons that make up the VOR. This scenario has been \sgreatly
improved using neural network modelling. Recurrent network models of the VOR can replicate
and help explain many of the static, dynamic, nonlinear, and distributed aspects of signal
processing by the neurons that mediate the VOR, particularly the vestibular nuclei neurons.More
than any other area of the brain, the retina is where we start to connect the dots between the
external world, which is represented by a visual sense, its actual picture projected onto a number
of receptors, and the first neuronal representations. The retina is a delicate layer of neural tissue
that covers the back of the eye. It is the job of the retina to transform an optical picture into a
neural image that may then be sent via the optic nerve to a variety of locations for further
processing. As seen by the synaptic structure of the retina, this is a difficult undertaking.
According to Sterling (1990), the conversion of an optical image into a neural image occurs in
the retinas of all vertebrates in three steps: phototransduction by a layer of receptor neurons; (ii)
transmission of the resulting signals (produced in response to light) by chemical synapses to a
layer of bipolar cells; and (iii) transmission of these signals, also by chemical synapses, to output
neurons known as ganglion cells.

27 Neural Networks

There are specialised laterally linked neurons known as horizontal cells and amacrine cells at
both synaptic phases (from receptor to bipolar cells and from bipolar to ganglion cells,
respectively). These neurons' function is to alter synaptic layer-to-layer transmission. Inter-
plexiform cells are centrifugal components whose job it is to transmit impulses from the inner
synaptic layer back to the outer one. Researchers have created electrical chips that resemble the
retina's structure. Mead invented the term "neuromorphic integrated circuits" to describe these
electrical devices (1989). A sensor for neuromorphic imaging

Paragraph 1 A neural network is what? Each image element in 5 has an array of photoreceptors
and analogue electronics (pixel). It mimics the retina in that it can detect edges, respond locally
to changes in brightness, and recognise motion. Another crucial use of the neurobiological
analogy is shown by neuromorphic integrated circuits. It offers encouragement, belief, and, to
some degree, evidence that a physical knowledge of neurobiological structures might have a
positive impact on the development of electronics and VLSI technology for neural network
implementation.

An access point to complex neural networks that analyze incoming input across multiple
artificial neuronal layers every node and every neuron in the layer above are connected to one
another in a fully connected neural network. There are hidden layers with many levels in both the
input and output layers, or at least three levels overall. Both forward and backward propagation
is possible. Prior to being supplied to the activation function, weighted inputs are multiplied and
then changed by back propagation to reduce loss. Simply explained, weights are learnt values
from neural networks that computers have learned to use. The difference between training inputs
and anticipated results determines how they self-adjust. Nonlinear activation functions are
initially used, followed by softbacks, as an output layer activation function.

A convolution neural network features a three-dimensional arrangement of neurons instead of the
typical two-dimensional array. The top layer is referred as as a convolutional layer. Each neuron
in the convolutional layer processes a very small area of the visual field. The input attributes are
collected in batches, much like a filter. Even if it only completely understands the photos in
portions, the network may repeat these actions to complete the whole image processing. During
processing, the image is changed from RGB or HSI scale to greyscale. The identification of
edges will be aided by enhancing the pixel value changes, enabling the categorization of images
into several categories.

According to the following graph, propagation is unidirectional when a CNN contains one or
more convolutional layers, followed by pooling, and bidirectional when the convolutional layer's
output is delivered to a fully connected neural network for picture categorization. Using filters,
the image may be partially extracted. The activation function of the MLP is given the weighted
sum of the inputs. MLP uses softbacks followed by a nonlinear activation function, while
convolution uses RELU. In the fields of semantic parsing, paraphrase detection, and picture and
video recognition, convolution neural networks have shown very promising results.

28 Neural Networks

A Radial Basis Function Network consists of an input vector, an output layer with one node per
category, and a layer of RBF neurons. Classification is done by comparing the data points from
the input to those from the training set, where each neuron keeps its prototype. This will be a
sample from the training set. When a new input vector has to be classified, each neuron
calculates the Euclidean distance between the input and its prototype (the n-dimensional vector
you are attempting to categorize). For instance, if two classes, A and B, are present, the new
input that has to be classified resembles the class a prototypes more so than the class B
prototypes.

In order to help with layer prediction, recurrent neural networks are designed to store layer
output and send it back to the input. A feed forward neural network is often the initial layer,
followed by a recurrent neural network layer in which a memory function retains some of the
knowledge it had in the previous time step. Forward propagation is used in this case. It saves the
information required for subsequent use. Modest changes are performed using the learning rate if
the prediction is off. As a consequence, it gradually improves its ability to forecast correctly
during backpropagation.

Recurrent neural networks are a variation of feed-forward (FF) networks (RNNs). Each buried
layer neuron in this kind receives an input after a certain amount of time. When iterative
procedures need access to past data, this kind of neural network is utilized. For instance, we must
first be aware of the words that came before a word in order to predict the word that follows it in
a sentence. The ability to process inputs and share weights and lengths across time is a property
of RNNs. This model's computations take historical data into account, however the model's size
does not increase as input increases. But the problem with this neural network is its slow
computational speed. Additionally, it is unable to account for any incoming data given the
situation. It cannot remember knowledge from the past.

Two Recurrent Neural Networks make up a sequence-to-sequence model. An encoder processes
the input in this case, while a decoder processes the output. Working concurrently, the encoder
and decoder might use the same parameter or a separate one. In contrast to a real RNN, this
model is especially useful in situations when the length of the input and output data are identical.
These models are often used primarily in Chabot, machine translation, and question answering
systems, although sharing the same advantages and drawbacks as the RNN.

A modular neural network is made up of many different networks, each of which performs a
particular task. The several networks do not really signal or interact with one another throughout
the computation. They each work independently to get the intended outcome. Gated Recurrent
Units are a variant of LSTMs as they both have comparable architecture and often provide
results that are just as excellent [11]. Only three gates are present in GRUs, and an internal cell.
A memory cell is introduced by LSTM networks. With memory gaps, they can still process data.
As we saw above, time delay is a factor that RNNs can take into account. However, if our RNN
fails when faced with a big amount of relevant data and we want to extract relevant data from it,
LSTMs are the best option. Additionally, RNNs, unlike LSTMs, are unable to recall data from a
long time ago.

29 Neural Networks

CONCLUSION

The human brain is an incredibly complex and sophisticated organ that is responsible for
controlling and coordinating all of our thoughts, emotions, and behaviors. It is made up of
billions of cells, including neurons and glial cells, and is divided into several major regions, each
with its own unique function.

 The brain is capable of changing and adapting itself in response to new experiences, a process
known as neuroplasticity. However, the brain is also vulnerable to injury and disease, which can
impair its function. Despite the challenges, the human brain remains one of the most fascinating
and essential organs in the human body.

REFERENCES

[1] K. B. Schauder and L. Bennetto, “Toward an interdisciplinary understanding of sensory
dysfunction in autism spectrum disorder: An integration of the neural and symptom
literatures,” Frontiers in Neuroscience. 2016. doi: 10.3389/fnins.2016.00268.

[2] K. E. Stephan, J. J. Riera, G. Deco, and B. Horwitz, “The Brain Connectivity Workshops:
Moving the frontiers of computational systems neuroscience,” NeuroImage. 2008. doi:
10.1016/j.neuroimage.2008.04.167.

[3] D. E. O’Donnell, K. M. Milne, M. D. James, J. P. de Torres, and J. A. Neder, “Dyspnea in
COPD: New Mechanistic Insights and Management Implications,” Advances in Therapy.
2020. doi: 10.1007/s12325-019-01128-9.

[4] R. J. Wright, M. Rodriguez, and S. Cohen, “Review of psychosocial stress and asthma: An
integrated biopsychosocial approach,” Thorax. 1998. doi: 10.1136/thx.53.12.1066.

[5] D. T. Page, “A candidate circuit approach to investigating autism,” Anat. Rec., 2011, doi:
10.1002/ar.21473.

[6] T. Sakurai et al., “Converging models of schizophrenia - Network alterations of prefrontal
cortex underlying cognitive impairments,” Progress in Neurobiology. 2015. doi:
10.1016/j.pneurobio.2015.09.010.

[7] M. E. Toplak, C. Dockstader, and R. Tannock, “Temporal information processing in
ADHD: Findings to date and new methods,” J. Neurosci. Methods, 2006, doi:
10.1016/j.jneumeth.2005.09.018.

[8] L. J. Schumacher, P. M. Kulesa, R. McLennan, R. E. Baker, and P. K. Maini,
“Multidisciplinary approaches to understanding collective cell migration in developmental
biology,” Open Biology. 2016. doi: 10.1098/rsob.160056.

[9] J. Vrábel, P. Pořízka, and J. Kaiser, “Restricted Boltzmann Machine method for
dimensionality reduction of large spectroscopic data,” Spectrochim. Acta - Part B At.
Spectrosc., 2020, doi: 10.1016/j.sab.2020.105849.

[10] H. F. H. Ieong and Z. Yuan, “Resting-state neuroimaging and neuropsychological findings
in opioid use disorder during abstinence: A review,” Frontiers in Human Neuroscience.
2017. doi: 10.3389/fnhum.2017.00169.

30 Neural Networks

[11] K. Kovacic, “Current concepts in functional gastrointestinal disorders,” Current Opinion

in Pediatrics. 2015. doi: 10.1097/MOP.0000000000000262.

31 Neural Networks

CHAPTER 4

AN OVERVIEW OF NETWORK ARCHITECTURES FOR DEEP

LEARNING: A COMPARATIVE STUDY OF CONVOLUTIONAL AND

TRANSFORMER NETWORKS
Mr. Tirumala Vasu G, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-tirumala.vasu@presidencyuniversity.in

ABSTRACT:

Network architectures are the design of computer networks, including the components, their
interactions, and their relationship to one another. The architecture of a network determines how
data is transmitted, how devices are connected, and how resources are accessed. There are
various types of network architectures, including peer-to-peer, client-server, hierarchical, mesh,
bus, ring, and star architectures. Each architecture has its own advantages and disadvantages and
is used for different purposes. The choice of network architecture depends on the organization's
requirements, size, and budget. Network architects must consider factors such as security,
scalability, reliability, and performance when designing network architectures.

KEYWORDS:

Communication, Infrastructure, Scalable, Network Protocol, Network Architecture.

INTRODUCTION

Network architecture refers to the design and organization of computer networks. It involves the
specification of hardware components, software applications, and network protocols that define
how data is transmitted and received across the network. The purpose of network architecture is
to provide a reliable, secure, and scalable communication infrastructure that meets the needs of
modern businesses, organizations, and individuals. There are several types of network
architectures, each with its own advantages and limitations. In this article, we will discuss the
most common network architectures and their key features.

1. Centralized Architecture

Centralized architecture, also known as client-server architecture, is a type of network
architecture in which a central server manages all the resources and services of the network.
Clients or end-users connect to the server to access the network resources. This type of
architecture is widely used in enterprise networks, where centralized control and management of
resources are required.

The advantages of centralized architecture include:

a) Centralized control and management of resources and services

b) High security due to centralized authentication and authorization

32 Neural Networks

c) Scalability due to the ability to add more clients and servers as needed

The limitations of centralized architecture include:

a) Single point of failure: If the central server fails, the entire network becomes unavailable

b) Cost: The cost of the server and other hardware components can be significant

c) Limited flexibility: Changes to the network architecture require changes to the central
server and may require downtime[1], [2].

2. Peer-to-Peer Architecture

Peer-to-peer (P2P) architecture is a type of network architecture in which all nodes in the
network have equal status and can act as both clients and servers. P2P architecture is widely used
in file-sharing networks and online gaming networks.

The advantages of P2P architecture include:

a) Decentralization: No central server is required, and all nodes can communicate directly
with each other

b) Cost-effectiveness: P2P networks can be created with existing hardware and software
resources

c) Scalability: P2P networks can handle a large number of nodes without the need for
additional hardware

The limitations of P2P architecture include:

a) Security: P2P networks are vulnerable to security threats such as malware and phishing
attacks

b) Lack of central control: P2P networks can be difficult to manage and control, as there is
no central server to enforce policies and rules

c) Performance: P2P networks can suffer from performance issues due to the large number
of nodes and the lack of central control

3. Distributed Architecture

Distributed architecture is a type of network architecture in which the resources and services of
the network are distributed across multiple servers and nodes. Each node is responsible for a
specific task, and communication between nodes is based on a set of protocols and rules.
Distributed architecture is widely used in cloud computing and content delivery networks.

The advantages of distributed architecture include:

a) Scalability: Distributed architecture can handle a large number of users and nodes
without performance degradation

33 Neural Networks

b) Fault-tolerance: If one node fails, the other nodes can continue to provide services and
resources

c) Flexibility: Distributed architecture can be easily extended and modified to meet
changing business needs

The limitations of distributed architecture include:

a) Complexity: Distributed architecture can be complex to design, implement, and manage

b) Cost: The cost of the hardware and software required to implement a distributed
architecture can be significant

c) Security: Distributed architecture can be vulnerable to security threats such as DDoS
attacks and data breaches

4. Hybrid Architecture

Hybrid architecture is a type of network architecture that combines two or more of the above
architectures. For example, a hybrid architecture may combine a centralized architecture with a
distributed architecture to provide the benefits of both. Hybrid architecture is widely used in
modern enterprise networks, where different departments and functions may require different
types of network architectures.

The advantages of hybrid architecture include:

a) Flexibility

b) Customization: Hybrid architecture allows for customization based on the specific
needs of the organization, department, or function

c) Scalability: Hybrid architecture can handle a large number of users and nodes without
performance degradation

d) Cost-effectiveness: Hybrid architecture can be cost-effective by using existing
hardware and software resources

The limitations of hybrid architecture include:

a) Complexity: Hybrid architecture can be complex to design, implement, and manage

b) Integration: Different architectures may require different protocols and rules, which can
be difficult to integrate

c) Security: Hybrid architecture can be vulnerable to security threats if the different
architectures are not properly integrated and managed.

5. Mesh Architecture

34 Neural Networks

Mesh architecture is a type of network architecture in which each node is connected to multiple
other nodes, creating a mesh-like structure. This type of architecture is widely used in wireless
networks and sensor networks.

The advantages of mesh architecture include:

a) Robustness: Mesh architecture can provide a high degree of network redundancy, making
it more robust to node failures and network disruptions

b) Flexibility: Mesh architecture can be easily extended and modified to meet changing
business needs

c) Scalability: Mesh architecture can handle a large number of nodes without performance
degradation[3], [4].

The limitations of mesh architecture include:

a) Complexity: Mesh architecture can be complex to design, implement, and manage

b) Overhead: The overhead of managing multiple connections between nodes can be
significant

c) Security: Mesh architecture can be vulnerable to security threats such as eavesdropping
and data interception

DISCUSSION

A network architecture refers to the design of a computer network, including its components,
their interactions, and their relationship to one another. The architecture of a network is
important because it determines how data is transmitted, how devices are connected, and how
resources are accessed. In this article, we will explore various network architectures in detail.

1. Peer-to-Peer Architecture

The Peer-to-Peer (P2P) architecture is a type of network architecture where each node on the
network can act as both a client and a server. This means that each device is capable of sharing
resources, files, and services with other devices on the network. P2P networks are typically used
for file sharing and distributed computing, and they are commonly used for applications such as
BitTorrent and Bitcoin.

In a P2P network, each node is responsible for its own security and management. This means
that there is no central authority or control over the network, and each node is responsible for its
own security and management. Because of this, P2P networks are vulnerable to security threats,
such as malware and viruses.

2. Client-Server Architecture

The Client-Server architecture is a type of network architecture where there is a central server
that provides resources and services to client devices. The server is responsible for managing the

35 Neural Networks

network and its resources, while the client devices are responsible for requesting resources and
services from the server.

Client-server networks are commonly used in businesses and organizations, where resources
such as files and applications need to be shared among multiple users. The server can also act as
a security gateway, providing security services such as firewall protection and virus scanning.

3. Hierarchical Architecture

The Hierarchical architecture is a type of network architecture where the network is divided into
multiple layers, each with a specific function. The layers are arranged in a hierarchy, with the
upper layers providing services to the lower layers. This type of architecture is commonly used
in large enterprise networks.

The layers in a Hierarchical architecture are typically divided into three layers: the core layer, the
distribution layer, and the access layer. The core layer is responsible for providing high-speed
connectivity between the distribution layer devices. The distribution layer is responsible for
providing connectivity between the access layer devices and the core layer devices. The access
layer is responsible for providing connectivity to end-user devices.

4. Mesh Architecture

The Mesh architecture is a type of network architecture where each device on the network is
connected to every other device on the network. This means that there are multiple paths
between devices, and data can be transmitted through multiple paths simultaneously.Mesh
networks are commonly used in wireless networks, where devices need to communicate with
each other without the use of wires. Mesh networks are also used in disaster recovery scenarios,
where traditional communication networks may be unavailable[5], [6].

5. Bus Architecture

The Bus architecture is a type of network architecture where all devices are connected to a single
communication line, called a bus. Data is transmitted along the bus, and each device on the
network receives the data and processes it as needed.Bus networks are commonly used in small
networks, such as local area networks (LANs). Because all devices are connected to the same
communication line, bus networks are relatively simple to set up and manage.

6. Ring Architecture

The Ring architecture is a type of network architecture where each device on the network is
connected to two other devices, forming a ring. Data is transmitted around the ring in one
direction, and each device on the network receives the data and processes it as needed. Ring
networks are commonly used in small networks, such as token ring networks. Token ring
networks use a token, which is passed around the ring, to control access to the network. The
neurons of a layered neural network are arranged in layers. In the most basic configuration of a
layered network, source nodes in the input layer project directly onto neurons in the output layer
(computation nodes), but not the other way around. To put it another way, this network is wholly
of the feedforward kind. For the scenario when there are four nodes in the input and output

36 Neural Networks

layers, A network like this is known as a single-layer network, with the term "single-layer"
referring to the output layer of computing nodes (neurons). The input layer of source nodes is not
included in our calculation since no processing takes place there. The presence of one or more
hidden layers, whose computation nodes are referred to as hidden neurons or hidden units,
distinguishes the second class of feedforward neural networks. The term "hidden" refers to the
fact that this portion of the neural network is not directly visible from either the input or output
of the network. The purpose of hidden neurons is to act as a beneficial intermediary between the
network output and external input. The network is given the ability to retrieve higher-order
statistics from its input by adding one or more hidden layers. Due to the additional set of synaptic
connections and the additional dimension of neural interactions, the network, in a vague sense,
gains a global viewpoint despite its local connectivity.

The input layer of the network's source nodes supplies certain components of the input vector,
which forms the input signals applied to the neurons (computation nodes) in the second layer
(i.e., the first hidden layer). The second layer's output signals are utilized as the third layer's
inputs, and so on throughout the remainder of the network. Neurons in each layer of the network
typically only receive the output signals from the layer before them as inputs. The network's
overall reaction to the activation pattern provided by the source nodes in the input (first layer)
layer is represented by the collection of output signals produced by the neurons in the output
(final) layer of the network. Figure 1 illustrate the Types of Network Architecture.

Figure 1: Illustrate the Types of Network Architecture.

The architecture of a multilayer feedforward neural network for the case of a single hidden layer
is shown in the architectural graph. Since the network comprises source nodes, hidden neurons,
and 2 output neurons, it is referred regarded as a network for simplicity. Another example is an
m-h1-h2-q network, which is a feed forward network with m source nodes, h1 neurons in the
first hidden layer, h2 neurons in the second hidden layer, and q neurons in the output layer. Since
it comprises at least one feedback loop, a recurrent neural network differs from a feedforward
neural network. Recurrent network may, for instance, be composed of a single layer of neurons,
with each neuron sending its output signal back to the inputs of all the other neurons. The

37 Neural Networks

network in the structure shown in this picture does not include any self-feedback loops, which
occur when a neuron's output is fed back into its own input. Depiction of a recurrent network
also shows that there are no hidden neurons[7], [8]. The performance of the network and its
capacity to learn are significantly impacted by the existence of feedback loops, whether they are
present in the recurrent Moreover, given that the neural network comprises nonlinear units, the
feedback loops employ specific branches made up of unit-time delay elements (designated by the
symbol z-1), which provide a nonlinear dynamic behaviour. The two main aspects of knowledge
representation are: (1) the information that is actually made explicit; and (2) the physical
encoding of the information for use in the future. Knowledge representation is consequently
purpose-driven by its very nature. It may be claimed that a successful solution relies on a proper
representation of knowledge in real-world applications of "intelligent" devices with neural
networks, it is the same. Yet, we often see that the inputs to internal network parameters may
take on a wide range of representational guises, which makes it difficult to construct an effective
neural network-based solution. A neural network's principal purpose is to develop a model of the
world (environment) in which it is embedded and to keep that model sufficiently consistent with
reality in order to accomplish the given objectives of the relevant application.

There are two categories of knowledge in the world:

1. The current condition of the known universe, represented by information about what is
and what has previously been known; this kind of knowledge is known as prior
information.

2. World observations (measurements) made using sensors intended to examine the
environment in which the neural network is expected to function.

These observations often include intrinsic noise and are susceptible to inaccuracies from sensor
noise and flaws in the system. In any case, the observations that were acquired in this manner
serve as the data source from which the examples required to train the neural network are taken.
The examples may or may not have labels. Each example representing an input signal in labelled
examples is associated with a matching intended response (i.e., target output). Unlabeled
samples, on the other hand, are just alternative realisations of the input signal. In either case, a
collection of examples labeled or not represents information that a neural network may acquire
during training about the environment of interest.

Nevertheless, keep in mind that labelled examples might be costly to gather as each labelled
example needs a "teacher" to offer the required answer. In contrast, instances without labels are
often available since they don't need supervision. A set of training data, also known as a training
sample, is a collection of input-output pairs, each pair consisting of an input signal and the
accompanying target response.Consider the handwritten-digit recognition issue as an illustration
of how such a data collection might be put to use. In this issue, the input signal is represented by
a picture of black or white pixels, where each pixel corresponds to one of ten distinct numbers.
The "identity" of the specific digit whose picture is sent to the network as the input signal
determines the intended response. The training sample often consists of a wide range of
handwritten numbers that are typical of real-world scenarios.

38 Neural Networks

With such a collection of illustrations, the construction of a neural network may go like

this:

a. A neural network's design is chosen appropriately, with an output layer consisting of 10
neurons and an input layer with source nodes corresponding to the pixels of an input picture
(one for each digit). The network is then trained using an appropriate method on a subset of
instances.

b. Using previously unseen data, the trained network's recognition ability is evaluated. In
specifically, the network is shown an input picture, but this time, the identification of the
digit that particular image represents is kept a secret from the network. The network's
effectiveness is then evaluated by contrasting its claimed digit recognition with the actual
identification of the digit in question. Testing refers to the second stage of network operation,
while generalization a word taken from psychology refers to good performance on test
patterns.

Here is where a neural network's architecture differs fundamentally from that of the pattern
classifier, its equivalent in traditional information processing. In the latter scenario, we often start
by creating a mathematical representation of environmental observations, verifying the model
with actual data, and then creating the design using the model as a foundation. In contrast, a
neural network's architecture is based only on real-world data, allowing the data set to speak for
itself. Hence, the neural network performs the desired information-processing function in
addition to providing the implicit model of the environment in which it is embedded.

A neural network may be trained using both positive and negative examples in the examples
utilised. Positive instances, for instance, relate to input training data that include the desired
target in a passive sonar detection issue (e.g., a submarine). Section 7 Knowledge Representation
25 follows now.The potential existence of marine life in the test data is known to sometimes
result in false alarms in a passive sonar setting. Negative instances, such as echoes from marine
life, are purposefully included into the training data to educate the network not to mistake marine
life for the target in order to solve this issue. The values assumed by the free parameters (i.e.,
synaptic weights and biases) of a neural network with a predetermined topology define the
knowledge representation of the surrounding environment in the network. The way in which this
information is represented determines how the neural network is built, and as a result, how well
it performs. Have a look at the physical phenomena below:

a. As an item of interest rotates, the observer's perception of the object often adapts in a similar
manner.

b. The Doppler effect, which results from the target's radial motion in reference to the radar,
causes the echo from a moving target to be changed in frequency in a coherent radar that
offers amplitude as well as phase information about its surrounding environment.

c. A person may use a gentle or loud voice and speak quickly or slowly while making an
expression.

d. For each of these phenomena, a system must be able to handle a variety of signal
transformations in order to develop an object-recognition system, a radar target-recognition
system, and a speech-recognition system.

39 Neural Networks

Designing a classifier that is resistant to such modifications is therefore a fundamental
prerequisite of pattern recognition. In other words, changes of the observed signal applied to the
classifier input must not have an impact on a class estimate represented by a classifier output.
The network's introduction neurons are designed to force altered copies of the same input to
provide the same output. Think about how a neural network must be able to classify an input
picture without being affected by in-plane rotations of the image's center. The network structure
may be subject to rotational invariance in the following ways: In the input picture, pixel I is
coupled to neuron j by a synaptic weight.

The neural network is invariant to in-plane rotations if the requirement upheld for all pixels I and
k that are located at equal distances from the center of the picture. The synaptic weight wji must
be repeated for each pixel of the input picture at the same radial distance from the origin,
however, in order to ensure rotational invariance. This reveals a flaw in structural invariance:
even for moderately sized pictures, the neural network's number of synaptic connections
becomes too huge.

Training-based invariance. Pattern categorization comes naturally to a neural network. To
directly get transformation invariance, the following technique may be used: The network is
trained by giving it several instances of the same object in various configurations, with the
examples selected to correspond to various transformations (i.e., various aspect views) of the
item.

We may anticipate the network to generalize appropriately to changes other than those shown to
it if the sample size is adequate and it has been trained to learn to distinguish between the many
aspect views of the object. Yet, invariance through training has two drawbacks from an
engineering standpoint. First off, it is not immediately apparent that training a neural network to
identify one item invariantly with regard to known transformations would also equip the network
to detect other objects of other classes invariantly. Second, if the dimensionality of the feature
space is huge, the computational load placed on the network may be too great to handle.

Feature space that is invariant of the third method for building an invariant classifier-type neural
network. Its foundation is the possibility that characteristics that describe an input data set's basic
information content and are resistant to input modification may be extracted. The network as a
classifier is freed of the load of needing to define the range of transformations of an object with
complex decision boundaries if such characteristics are employed. In reality, the only variations
that may exist between many copies of the same item are brought on by unavoidable elements
like noise and occlusion. Three separate benefits may be derived from the usage of an invariant
feature space. Initially, the network's characteristics may be deployed with fewer, more
reasonable numbers. Second, there are less restrictions placed on network architecture
[9].Finally, all objects are guaranteed to be invariant to known transformations. Take the
example of a coherent radar system used for air surveillance, where the targets of interest include
aircraft, weather systems, flocks of migratory birds, and ground objects, to demonstrate the
concept of invariant-feature space. These objects produce radar echoes with various spectral
properties. A moderate order autoregressive (AR) process may also be used to approximate these
radar signals, according to experimental experiments.

40 Neural Networks

An AR model is a specific kind of regressive model that is defined for complex-valued data
whose coefficients are referred to as reflection coefficients. The AR coefficients of the reflection
coefficients of the model are identical. The two models shown below assume that the input x(n),
as in the case of a coherent radar, is complex valued, in which case both the AR coefficients and
the reflection coefficients are complex valued.

The coherent radar data may be represented by a set of autoregressive coefficients or by a
matching set of reflection coefficients, but for now, that will have to do. Since there are effective
methods for computing the latter set of coefficients directly from the input data, they have a
computational benefit. Nevertheless, moving objects create variable Doppler frequencies that
rely on their radial velocities measured with respect to the radar, which tend to obfuscate the
spectral content of the reflection coefficients as feature discriminants and complicate the feature
extraction issue.

We must include Doppler invariance into the calculation of the reflection coefficients to get
around this problem. It turns out that the radar signal's Doppler frequency is equal to the phase
angle of the first reflection coefficient. In order to eliminate the mean Doppler shift, Doppler
frequency normalization is therefore performed to all coefficients.

 To do this, a new set of reflection coefficients, m, is defined as follows, where is the phase angle
of the first reflection coefficient and m is a subset of the set of conventional reflection
coefficients, m, derived from the input data. Heterodyning is the process described in equation.
Doppler-invariant radar characteristics include, where 1 is the sole real-valued reflection
coefficient in the collection, is therefore represented by the normalised reflection coefficients.

The biological sonar system used by echolocating bats provides a considerably more enthralling
illustration of knowledge representation in a neural network. For auditory imaging, the majority
of bats employ frequency-modulated (FM, or "chirp") transmissions, in which the signal's
instantaneous frequency changes with time. In particular, the bat utilises its auditory system as a
sonar receiver and its mouth to send short-duration FM sonar sounds. The activity of neurons in
the auditory system that are specifically tuned to various combinations of acoustic factors
represents echoes from targets of interest[10].

CONCLUSION

Network architecture is an essential aspect of modern communication infrastructure. It
determines how data is transmitted and received across the network and can have a significant
impact on network performance, scalability, and security. Different types of network
architectures have different advantages and limitations, and organizations need to choose the
architecture that best meets their needs. Centralized architecture, peer-to-peer architecture,
distributed architecture, hybrid architecture, and mesh architecture are some of the most common
types of network architectures used today

41 Neural Networks

REFERENCES

[1] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A Survey of Clustering with Deep
Learning: From the Perspective of Network Architecture,” IEEE Access, 2018, doi:
10.1109/ACCESS.2018.2855437.

[2] X. L. Chen, L. Cao, C. X. Li, Z. X. Xu, and J. Lai, “Ensemble Network Architecture for
Deep Reinforcement Learning,” Math. Probl. Eng., 2018, doi: 10.1155/2018/2129393.

[3] S. Singaravel, J. Suykens, and P. Geyer, “Deep-learning neural-network architectures and
methods: Using component-based models in building-design energy prediction,” Adv.

Eng. Informatics, 2018, doi: 10.1016/j.aei.2018.06.004.

[4] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-based reasoning through
prototypes: A neural network that explains its predictions,” in 32nd AAAI Conference on

Artificial Intelligence, AAAI 2018, 2018. doi: 10.1609/aaai.v32i1.11771.

[5] K. Lan, D. tong Wang, S. Fong, L. sheng Liu, K. K. L. Wong, and N. Dey, “A Survey of
Data Mining and Deep Learning in Bioinformatics,” Journal of Medical Systems. 2018.
doi: 10.1007/s10916-018-1003-9.

[6] H. Patel, A. Thakkar, M. Pandya, and K. Makwana, “Neural network with deep learning
architectures,” J. Inf. Optim. Sci., 2018, doi: 10.1080/02522667.2017.1372908.

[7] H. Alaskar, “Deep learning-based model architecture for time-frequency images analysis,”
Int. J. Adv. Comput. Sci. Appl., 2018, doi: 10.14569/IJACSA.2018.091268.

[8] G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin, and C. P. Langlotz, “Deep learning in
neuroradiology,” American Journal of Neuroradiology. 2018. doi: 10.3174/ajnr.A5543.

[9] W. Li, S. Gao, H. Zhou, Z. Huang, K. Zhang, and W. Li, “The automatic text
classification method based on bert and feature union,” in Proceedings of the

International Conference on Parallel and Distributed Systems - ICPADS, 2019. doi:
10.1109/ICPADS47876.2019.00114.

[10] N. Azzouza, K. Akli-Astouati, and R. Ibrahim, “Twitterbert: Framework for twitter
sentiment analysis based on pre-trained language model representations,” in Advances in
Intelligent Systems and Computing, 2020. doi: 10.1007/978-3-030-33582-3_41.

42 Neural Networks

CHAPTER 5

BRIEFLY EXPLANATION OF NEURAL NETWORKS WITH NERVOUS

SYSTEM
Mrs. G Swetha, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-swethag@presidencyuniversity.in

ABSTRACT:

Neural Networks with Nervous System is a field of study that seeks to replicate the workings of
the human nervous system using artificial neural networks. The human nervous system is a
complex network of neurons that are responsible for the transmission of information between
different parts of the body. Neural networks with nervous systems attempt to mimic this by using
a set of interconnected artificial neurons to process and transmit information.

KEYWORDS:

Artificial Neural Network, Information System, Nervous System, Neurons.

INTRODUCTION

From a biological perspective, the nervous system is a very intricate web of specialized cells
called neurons. A essential component of an animal, the nervous system organizes and controls
movement and sensory information by sending and receiving messages through specialized
chemicals called neurotransmitters to and from various bodily regions. Thus, brain
communication is the process of information transmission between specialized cells and a
network for performing the most fundamental to the most complicated function in an animal's
daily existence. A nervous system is a specially designed and intricate network that allows for
neural transmission and communication from the brain or spinal cord to various body organs. It
acts as the main mechanism for controlling survival and homeostasis in animals. It works in
tandem with the endocrine system to coordinate and integrate all of the organs' functions and to
control the physiological processes necessary for the animal body to operate properly and in
unison. For neural transmission and neural communication, the nervous system offers an
organized network of point-to-point connections between the neurons. Information is transmitted
between neurons by use of certain molecules known as neurotransmitters[1].

HUMAN NERVOUS SYSTEM

The central nervous system (CNS) and peripheral nervous system (PNS) are the two major
divisions of the human nervous system, which is complicated like that of any other vertebrate
(PNS).

1. Central Nervous System (CNS):

The system that actively receives, analyzes, and integrates information for the response
by the effectors is what the term implies. The brain and spinal cord are the two primary

43 Neural Networks

locations of the central nervous system. The brain is our body's primary control system,
and the spinal cord maintains its upright posture.

2. Peripheral Nervous System (PNS):

The nerve cells connected to the central nervous system are a part of this system. The two
peripheral nervous system nerves that connect to the brain and spinal cord are:

i. Afferent Nerve Fibres: They provide nerve impulse to the CNS from various tissues
or organs.

ii. Efferent Nerve Fibres: They deliver CNS nerve impulses to tissues or organs. The
two forms of the peripheral nervous system are further separated by the organs to
which the neural transmission is directed. Those are:

iii. Somatic Nervous System: Neural transmission from the central nervous system to
the muscles. The somatic nervous system controls voluntarily performed actions like
eye closure.

iv. Autonomic Nervous System: Neural signaling between the CNS and the body's
involuntary organs and smooth muscles. The autonomic nervous system controls
uncontrollable processes like heart rate.

NEURONS AND MAIN PARTS OF A NEURON:

The fundamental building block of the nervous system, neurons are the cells that make up its
network. Electrical impulses are used to transmit information between the neurons. Action
potential or nerve impulses are other names for these electrical signals. The synapse, which is the
area between two electrical neurons, is where the action potential moves from one electrical
neuron to the next. The cell body, dendrite, axon, and myelin sheath are a neuron's primary
structural components. The structure of a neuron is seen in the figure below. The nucleus, cell
organelles, and Nissi's granules make up the cell body. It is the location where the incoming and
outgoing signals are integrated. The small, densely branching fibrous extensions, or dendrites,
that surround the cell body are designed to receive messages and stimuli.

The axon, a single long fiber that branches at the ends, extends from the cell body. The nerve
impulses are sent from the cell body to another neuron, muscle, or gland through the axon. A
group of cells known as Schwann cells, whose plasma membranes are formed of myelin, coat the
axons. The myelin sheath serves as an insulating and protective coating for the axon. The
synaptic knob, which contains synaptic vesicles that release neurotransmitters, receives the
action potential from signals that electrically activate the neurons. The chemical messengers
known as neurotransmitters are responsible for transmitting electrical information between
neurons. Gamma-aminobutyric acid is an example of one of the neurotransmitters in
acetylcholine (GABA). Thus, the substances that convey electrical impulses via synapse are
known as neurotransmitters. The chemical synapse and the electrical synapse are two different
kinds of synapses that may be distinguished by the sort of signal traveling through them[2].

PROCESS OF NEURAL COMMUNICATION AND NEURAL TRANSMISSION

Numerous signals are produced as a result of environmental stimuli. An animal's ability to
recognize these cues and respond appropriately to them is essential to its survival. The signals
produced in this way are sent to the CNS where they are processed before being sent back to the
glands or muscles to trigger an action. The reception of the signal by the sense organs, neural

44 Neural Networks

transmission from one neuron to another, to muscles or glands, integration of the information
from the signal, and action or response to the generated stimulus can be broken down into four
steps. The conduction of the action potential through the axon occurs as a result of the
depolarization of the neural membrane. Because of a concentration gradient, the normal negative
charge within the membrane is changed during the transfer of potassium (K+) and sodium (Na+)
ions across the neural membrane, resulting in a change in membrane potential. The
neurotransmitter then passes the electrical impulses to another neuron through the synaptic cleft,
a gap between two neurons. The synapses may be classed as electrical or chemical synapses
depending on the sort of signal that they receive.
The two are explained as follows:

a) Chemical Synapse:

An agent known as a neurotransmitter is released in this instance as a result of the electrical
activity in the presynaptic neuron, and it binds to the plasma membrane of the postsynaptic
neuron. In order to send the electrical signal across a chemical synapse, the neurotransmitter
releases a cascade of secondary pathways in the postsynaptic neuron. Although a chemical
synapse only transmits electrical signals slowly, it is the optimum method for transmitting
signals across extended distances.
b) Electrical Synapse:

Gap junctions are specialized channels found in electrical synapses that allow electric current to
flow by causing voltage changes in postsynaptic neurons as a result of presynaptic ones. The
electrical synapse is the most effective for quick brain transmission, but it can only be used for
close-proximity communication.

The aforementioned essay makes it very clear that brain transmission is a sophisticated network
of neurons. To receive, transmit, integrate, and react to information through neural transmission
caused by neurotransmitters traveling through chemical synapses or electrical current passing
through electrical synapses, it is further separated into the central nervous system and peripheral
nervous system.

DISCUSSION

Neural networks are a type of machine learning algorithm that is modeled on the structure and
function of the human nervous system. The nervous system is a complex network of cells,
neurons, and synapses that work together to process and transmit information throughout the
body. In the same way, neural networks are made up of interconnected nodes or artificial
neurons that can learn and process information, making them useful for a variety of applications
such as image recognition, natural language processing, and predictive analytics[3].

Structure of Neural Networks:

Neural networks consist of multiple layers of interconnected nodes or artificial neurons, each
layer performing a specific function. The three main layers of a neural network are the input
layer, the hidden layer, and the output layer. The input layer receives the input data, and the
output layer produces the output data. The hidden layer(s) are layers between the input and
output layers that perform the computations required to transform the input data into the desired
output.

45 Neural Networks

Each node or artificial neuron in a neural network is a simple computational unit that receives
input signals, processes them, and produces an output signal. The input signals are multiplied by
a set of weights, and then passed through an activation function to produce the output signal. The
activation function introduces non-linearity into the neural network, allowing it to learn complex
relationships between inputs and outputs.

Learning in Neural Networks:

Neural networks learn by adjusting the weights of the connections between neurons in response
to input data. This process is known as backpropagation, which is a form of supervised learning.
During training, the neural network is presented with input data along with the desired output.
The output of the neural network is compared to the desired output, and the error is calculated.
The error is then propagated back through the network, and the weights of the connections are
adjusted to reduce the error. This process is repeated for multiple iterations or epochs until the
network produces the desired output for a given input.

Applications of Neural Networks:

Neural networks have been successfully applied to a wide range of applications including image
recognition, natural language processing, speech recognition, robotics, and predictive analytics.
Some examples of applications of neural networks are:

1. Image Recognition: Neural networks can be used to recognize objects in images. They
can be trained on large datasets of images with known labels, and can then be used to
recognize objects in new images. This is useful in applications such as self-driving cars,
facial recognition, and security systems.

2. Natural Language Processing: Neural networks can be used to process and understand
natural language. They can be trained on large datasets of text data and used for tasks
such as sentiment analysis, language translation, and chatbots.

3. Speech Recognition: Neural networks can be used to recognize speech and convert it to
text. They can be trained on large datasets of audio recordings and used for applications
such as voice assistants, speech-to-text software, and dictation software.

4. Robotics: Neural networks can be used to control the movement of robots. They can be
trained on sensor data from the robot and used to control its movements in real-time.

5. Predictive Analytics: Neural networks can be used to predict future outcomes based on
historical data. They can be trained on large datasets of historical data and used for
applications such as financial forecasting, weather prediction, and demand forecasting.

Comparison with Nervous System:

The structure and function of neural networks are inspired by the human nervous system.
However, there are also some key differences between neural networks and the nervous system.

One of the main differences is that neural networks are digital and operate on discrete units of
information, while the nervous system is analog and operates on continuous signals. The nervous

46 Neural Networks

system is also much more complex than neural networks, with billions of neurons and trillions of
synapses working together to process and transmit information throughout the body.

Another difference is that the nervous system is capable of many more functions than current
neural networks. For example, the nervous system can regulate bodily functions such as heart
rate, breathing, and digestion, while neural networks are limited to specific tasks for which they
have been trained[4].

Furthermore, the nervous system is able to learn and adapt throughout a person's lifetime,
whereas neural networks typically require retraining on new data in order to adapt to new
situations.Despite these differences, neural networks have proven to be a powerful tool for
machine learning and have been used successfully in a wide range of applications. As research in
the field continues, there may be opportunities to further improve the performance and
capabilities of neural networks, bringing them closer to the complexity and adaptability of the
human nervous system.

Neural networks are a type of machine learning algorithm that is designed to mimic the way the
human brain works. The nervous system, which is responsible for the brain's functions, has a
complex structure that consists of neurons, dendrites, axons, synapses, and neurotransmitters. In
this article, we will explore the similarities and differences between neural networks and the
nervous system.

Neurons and Neural Networks:

Neurons are the basic building blocks of the nervous system. They are specialized cells that are
designed to receive, process, and transmit information. A neuron consists of a cell body,
dendrites, and an axon. The dendrites are responsible for receiving information from other
neurons, while the axon is responsible for transmitting information to other neurons.A neural
network is made up of interconnected nodes that are designed to process information in a similar
way to neurons. The nodes in a neural network are called artificial neurons or perceptrons. Like
neurons, artificial neurons have inputs, a processing function, and an output. The inputs are the
signals that are received by the neuron, the processing function is the mathematical function that
is applied to the inputs, and the output is the signal that is transmitted to other neurons in the
network.

Layers and Synapses:

The neurons in the nervous system are organized into layers. There are three main types of
layers: the input layer, the hidden layers, and the output layer. The input layer receives
information from the external environment and sends it to the hidden layers. The hidden layers
process the information and send it to the output layer. The output layer produces the final
output. In a neural network, the layers are also organized in a similar way. There are three main
types of layers: the input layer, the hidden layers, and the output layer. The input layer receives
information from the external environment and sends it to the hidden layers. The hidden layers
process the information and send it to the output layer. The output layer produces the final output
[5].

47 Neural Networks

The neurons in the nervous system are connected by synapses. Synapses are the gaps between
neurons where neurotransmitters are released. These neurotransmitters are responsible for
transmitting information from one neuron to another. In a neural network, the connections
between the artificial neurons are called weights. These weights determine the strength of the
connection between the neurons. The strength of the connection is adjusted during the training
process to improve the accuracy of the network. Figure 1 illustrate the Neural Network in a
Gross Manner.

Figure 1: Illustrate the Neural Network in a Gross Manner.

Training and Learning

The nervous system is capable of learning and adapting to new situations. This is achieved
through a process called synaptic plasticity. Synaptic plasticity is the ability of synapses to
change their strength based on the activity of the neurons. This allows the nervous system to
adapt to changes in the environment and to learn from experience.In a neural network, learning is
achieved through a process called backpropagation. Backpropagation is an algorithm that adjusts
the weights of the connections between the artificial neurons to minimize the difference between
the predicted output and the actual output. This process is repeated many times until the network
produces accurate predictions.

Types of Neural Networks

There are several types of neural networks, each with its own specific architecture and function.
Some of the most common types of neural networks include:

1. Feedforward Neural Networks: Feedforward neural networks are the simplest type of
neural network. They consist of an input layer, one or more hidden layers, and an output
layer. The information flows in one direction from the input layer to the output layer.
Feedforward neural networks are commonly used for pattern recognition and
classification tasks.

48 Neural Networks

2. Convolutional Neural Networks: Convolutional neural networks are designed to
process images and other multidimensional data. They consist of several layers, including
convolutional layers, pooling layers, and fully connected layers. Convolutional neural
networks are commonly used for image recognition and classification tasks.

3. Recurrent Neural Networks: Recurrent neural networks are designed to process
sequential data, such as time series data or text. They are characterized by a feedback
loop that allows information to be fed back into the network. Recurrent neural networks
are commonly used for tasks such as speech recognition, language translation, and text
generation.

4. Long Short-Term Memory Networks: Long Short-Term Memory (LSTM) networks
are a type of recurrent neural network that are designed to address the problem of
vanishing gradients, which can occur when training recurrent neural networks. LSTMs
use a special type of recurrent unit that allows them to remember information over longer
periods of time. LSTMs are commonly used for tasks such as speech recognition,
language translation, and text generation.

5. Autoencoders: Autoencoders are neural networks that are designed to learn compressed
representations of data. They consist of an encoder network that compresses the data into
a lower-dimensional representation and a decoder network that reconstructs the original
data from the compressed representation. Autoencoders are commonly used for tasks
such as image and speech compression, and anomaly detection.

6. Generative Adversarial Networks: Generative Adversarial Networks (GANs) are a
type of neural network that consists of two networks: a generator network and a
discriminator network. The generator network learns to generate synthetic data that is
similar to the real data, while the discriminator network learns to distinguish between the
real data and the synthetic data. GANs are commonly used for tasks such as image and
video generation.

Neural networks are a type of machine learning algorithm that is inspired by the structure and
function of the human brain. The nervous system is responsible for the brain's functions, which is
composed of neurons, dendrites, axons, synapses, and neurotransmitters. Neural networks mimic
the processing of information that occurs in the nervous system through a series of artificial
neurons or perceptrons, which are connected by weights to process information.

Neurons and Artificial Neurons:

Neurons are the basic building blocks of the nervous system. They are specialized cells that are
designed to receive, process, and transmit information. A neuron consists of a cell body,
dendrites, and an axon. The dendrites are responsible for receiving information from other
neurons, while the axon is responsible for transmitting information to other neurons.

Artificial neurons, or perceptrons, are the building blocks of neural networks. They are
mathematical models that simulate the function of biological neurons. An artificial neuron has
inputs, a processing function, and an output. The inputs are the signals that are received by the

49 Neural Networks

neuron, the processing function is the mathematical function that is applied to the inputs, and the
output is the signal that is transmitted to other neurons in the network.

Layers and Synapses:

The neurons in the nervous system are organized into layers. There are three main types of
layers: the input layer, the hidden layers, and the output layer. The input layer receives
information from the external environment and sends it to the hidden layers. The hidden layers
process the information and send it to the output layer. The output layer produces the final
output. In a neural network, the layers are also organized in a similar way. There are three main
types of layers: the input layer, the hidden layers, and the output layer. The input layer receives
information from the external environment and sends it to the hidden layers. The hidden layers
process the information and send it to the output layer. The output layer produces the final
output.The neurons in the nervous system are connected by synapses. Synapses are the gaps
between neurons where neurotransmitters are released. These neurotransmitters are responsible
for transmitting information from one neuron to another. In a neural network, the connections
between the artificial neurons are called weights. These weights determine the strength of the
connection between the neurons. The strength of the connection is adjusted during the training
process to improve the accuracy of the network.

Training and Learning

The nervous system is capable of learning and adapting to new situations. This is achieved
through a process called synaptic plasticity. Synaptic plasticity is the ability of synapses to
change their strength based on the activity of the neurons. This allows the nervous system to
adapt to changes in the environment and to learn from experience. In a neural network, learning
is achieved through a process called backpropagation. Backpropagation is an algorithm that
adjusts the weights of the connections between the artificial neurons to minimize the difference
between the predicted output and the actual output. This process is repeated many times until the
network produces accurate predictions.

Types of Neural Networks:

There are several types of neural networks, each with its own specific architecture and function.
Some of the most common types of neural networks include:

1. Feedforward Neural Networks Feedforward neural networks are the simplest type of
neural network. They consist of an input layer, one or more hidden layers, and an output
layer. The information flows in one direction from the input layer to the output layer.
Feedforward neural networks are commonly used for pattern recognition and
classification tasks[6].

2. Convolutional Neural Networks Convolutional neural networks are designed to process
images and other multidimensional data. They consist of several layers, including
convolutional layers, pooling layers, and fully connected layers. Convolutional neural
networks are commonly used for image recognition and classification tasks.

50 Neural Networks

3. Recurrent Neural Networks Recurrent neural networks are designed to process sequential
data, such as time-series data or natural language. They have loops in their architecture
that allow information to be passed from one time step to the next. This allows them to
process sequences of varying lengths and to capture temporal dependencies in the data.

4. Long Short-Term Memory Networks Long short-term memory (LSTM) networks are a
type of recurrent neural network that are designed to process sequences of data over long-
time intervals. They are particularly effective at modeling sequential data that has long-
term dependencies, such as speech recognition and machine translation.

5. Autoencoders are a type of neural network that are designed to learn a compressed
representation of the input data. They consist of an encoder that maps the input data to a
lower-dimensional space and a decoder that maps the compressed representation back to
the original input. Autoencoders are commonly used for dimensionality reduction and
feature extraction.

6. Generative Adversarial Networks Generative adversarial networks (GANs) are a type of
neural network that are designed to generate new data that is similar to the training data.
They consist of two networks: a generator that generates new data and a discriminator
that distinguishes between the generated data and the training data. GANs are commonly
used for image generation and text generation[7].

Applications of Neural Networks:

Neural networks have a wide range of applications across different fields, including computer
vision, natural language processing, speech recognition, robotics, and finance. Some of the most
common applications of neural networks include:

1. Image recognition and classification neural networks can be trained to recognize and
classify images with high accuracy. This is particularly useful in fields such as medicine,
where neural networks can be used to detect diseases in medical images.

2. Natural language processing neural networks can be used for tasks such as language
translation, text summarization, and sentiment analysis. They can also be used to generate
natural language text, such as Chabot and automated news articles.

3. Speech recognition neural networks can be used to recognize and transcribe speech with
high accuracy. This is useful in applications such as voice assistants and automated
transcription.

4. Robotics Neural networks can be used to control robots and to teach them new tasks.
They can also be used for object recognition and tracking in robotics.

5. Finance Neural networks can be used for tasks such as stock price prediction, fraud
detection, and credit risk assessment. They can also be used for algorithmic trading and
portfolio optimization[8].

51 Neural Networks

CONCLUSION

Neural networks are a type of machine learning algorithm that is modeled on the structure and
function of the human nervous system. They consist of interconnected nodes or artificial neurons
that can learn and process information, and have been successfully applied to a wide range of
applications. While there are some differences between neural networks and the nervous system,
neural networks have proven to be a powerful tool for machine learning and may continue to
improve in performance and capabilities.

REFERENCES

[1] J. Yin and Q. Yuan, “Structural homeostasis in the nervous system: A balancing act for
wiring plasticity and stability,” Frontiers in Cellular Neuroscience. 2015. doi:
10.3389/fncel.2014.00439.

[2] L. A. Struzyna et al., “Anatomically inspired three-dimensional micro-tissue engineered
neural networks for nervous system reconstruction, modulation, and modeling,” J. Vis.
Exp., 2017, doi: 10.3791/55609.

[3] A. Kuwahara, K. Matsuda, Y. Kuwahara, S. Asano, T. Inui, and Y. Marunaka,
“Microbiota-gut-brain axis: Enteroendocrine cells and the enteric nervous system form an
interface between the microbiota and the central nervous system,” Biomed. Res., 2020,
doi: 10.2220/biomedres.41.199.

[4] A. Sadollah, H. Sayyaadi, and A. Yadav, “A dynamic metaheuristic optimization model
inspired by biological nervous systems: Neural network algorithm,” Appl. Soft Comput. J.,
2018, doi: 10.1016/j.asoc.2018.07.039.

[5] P. Meyrand, J. Simmers, and M. Moulins, “Dynamic construction of a neural network
from multiple pattern generators in the lobster stomatogastric nervous system,” J.
Neurosci., 1994, doi: 10.1523/jneurosci.14-02-00630.1994.

[6] M. Khajezade, S. Goliaei, and H. Veisi, “A game-theoretical network formation model for
C. Elegans neural network,” Front. Comput. Neurosci., 2019, doi:
10.3389/fncom.2019.00045.

[7] T. D. Southall and A. H. Brand, “Neural stem cell transcriptional networks highlight genes
essential for nervous system development,” EMBO J., 2009, doi:
10.1038/emboj.2009.309.

[8] A. Verkhratsky and M. Nedergaard, “Physiology of astroglia,” Physiol. Rev., 2018, doi:
10.1152/physrev.00042.2016.

52 Neural Networks

CHAPTER 6

LIFE CYCLE NEURAL NETWORKS MODEL
Mrs. Samreen Fiza, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-samreenfiza@presidencyuniversity.in

ABSTRACT:

The Life Cycle Neural Networks (LCNN) model is a computational framework that combines
neural networks with principles of developmental psychology to simulate the developmental
processes of organisms. The LCNN model consists of a series of neural networks that represent
the different stages of an organism's life cycle, from birth to adulthood. The LCNN model is
inspired by the idea that biological development is a process of continuous learning and
adaptation to the environment. The model uses a combination of unsupervised and supervised
learning to allow for both self-organization and goal-directed behavior.

KEYWORDS:

Biological Development, Computational Framework, Life Cycle, Neural Network,
Organizations.

INTRODUCTION

STEP 1. DEFINE NETWORK

In Keras, a neural network is described as a series of layers. The Sequential class serves as the
container for various levels. The first step is to build a Sequential class instance. Then you may
make your layers and put them in the appropriate sequence for connecting them.

STEP 2. COMPILE NETWORK

A model must always be compiled after being defined. This applies to both loading a set of pre-
trained weights from a save file and training the model first using an optimization strategy. The
compilation process creates an effective network representation, which is needed to make
predictions on your hardware. During compilation, a number of parameters that are particularly
suitable for training your network must be provided. Specifically, the training optimization
technique for the network and the loss function that is decreased by the optimization approach.

STEP 3. FIT NETWORK

The network is trained using the backpropagation method, and it is then optimized using the
optimization method and loss function supplied when the model was constructed. Before using
the backpropagation approach, the network has to be trained using the training dataset for a
certain number of epochs or exposures. A batch is a collection of input-output pattern pairs, and
an epoch may be broken into batches. This indicates the maximum number of patterns the
network is exposed to in one epoch before its weights are changed. It also enhances speed by
restricting the amount of input patterns stored into memory at once[1].

53 Neural Networks

STEP 4. EVALUATE NETWORK

The training data can be used to evaluate the network, but because it has already seen all of the
training data, it will not be a good predictor of how well the network performs as a predictive
model. We may evaluate the network's performance on a dataset that is unrelated to the testing
dataset. While making predictions for yet-to-be-observed future data, this will provide a general
notion of how well the network works. The model evaluates the loss across all test patterns in
addition to any other metrics that were selected when the model was developed, such as
classification accuracy a collection of evaluation metrics is returned.

STEP 5. MAKE PREDICTIONS

The forecasts will be sent according to the format that the output layer of the network has
established. In the case of a regression problem, these predictions, which are created by a linear
activation function, may instantly take the shape of the problem. The predictions for a binary
classification problem may be a set of probabilities for the first class, which could then be
rounded to a 1 or a 0. If a single hot encoded output variable is used, the results for a multiclass
classification issue may take the form of an array of probabilities that must be transformed using
the argmax function to a single class output prediction.The training phase and the prediction
phase are the two stages of the neural network life cycle, which are shared by all machine
learning algorithms. During the training phase, the weight and bias values are determined. The
neural network's processing of our input to generate the predictions described in the previous
piece took place in the prediction phase. This time, it will go over how neural networks "learn" to
generate an accurate prediction (read: regression or classification) during the training phase by
acquiring the proper weight and bias.

A neural network is a kind of artificial intelligence that gives computers instructions on how to
interpret data in a way that is similar to how the human brain does it. In order to simulate the
human brain, deep learning uses connected neurons or nodes in a layered structure. A neural
network is a set of algorithms that mimics how the human brain works in order to find hidden
connections in a piece of data. Neural networks in this sense are systems of neurons that may
have an organic or synthetic origin [2].

The network can provide the best result without modifying the output criteria since neural
networks can adapt to changing input. Neural network theory, which is based on artificial
intelligence, is swiftly gaining popularity in the development of trading systems. In the field of
finance, neural networks have enabled the development of processes such as time-series
forecasting, algorithmic trading, securities classification, credit risk modeling, and the production
of bespoke indicators and price derivatives. A neural network works similarly to how the human
brain does. A "neuron" in a neural network is a mathematical function that accumulates and
organizes input into categories in accordance with a predetermined design. The network and
statistical methods like regression analysis and curve fitting are extremely comparable. Neutral
networks that may run continuously and are more efficient than individuals or simple analytical
models. Furthermore, neural networks may be taught to study past outcomes and forecast future
outcomes depending on how much they match past inputs.

54 Neural Networks

DISCUSSION

Life Cycle Neural Networks (LCNNs) are a class of artificial neural networks that have been
developed to model and simulate the dynamics of complex systems over time. These networks
are designed to learn the temporal dependencies between inputs and outputs, and to use this
information to predict future states of the system. LCNNs are widely used in a variety of
domains, including financial forecasting, climate modeling, and disease progression modeling. In
this article, we will provide an overview of LCNNs, including their architecture, training
procedures, and applications.

Architecture:

LCNNs consist of a sequence of interconnected layers of artificial neurons, with each layer
processing information from the previous layer. Unlike traditional feedforward neural networks,
LCNNs are designed to process sequences of input data over time. The network architecture
typically includes three main types of layers: input, hidden, and output.The input layer receives
input data at each time step and passes it to the next layer. The hidden layers are responsible for
learning the temporal dependencies between the inputs and outputs, and for maintaining a
memory of past inputs. The output layer produces the final predictions or outputs of the
network[3] The architecture of LCNNs can vary depending on the specific problem being
modeled, but they typically include recurrent connections that allow information to flow
backward through the network.

Training:

The training of LCNNs involves minimizing a loss function that measures the difference
between the predicted outputs and the actual outputs. The loss function is typically a function of
the error between the predicted outputs and the actual outputs at each time step. The network is
trained using a variant of backpropagation through time (BPTT) algorithm, which involves
propagating the error backward through time and adjusting the weights of the network to
minimize the loss function.The training of LCNNs can be challenging due to the high
dimensionality of the input data and the long-term dependencies that are present in many real-
world problems. One approach to addressing these challenges is to use techniques such as
regularization and dropout to prevent overfitting and to improve the generalization of the
network[4], [5].

Applications:

LCNNs have been successfully applied in a variety of domains, including financial forecasting,
climate modeling, and disease progression modeling. In finance, LCNNs have been used to
predict stock prices, exchange rates, and other financial indicators. In climate modeling, LCNNs
have been used to predict temperature and precipitation patterns, and to model the effects of
climate change on ecosystems. In disease progression modeling, LCNNs have been used to
predict the progression of diseases such as Alzheimer's disease and cancer. One of the main
advantages of LCNNs is their ability to model complex systems over time. This allows them to
capture the dynamics of systems that are influenced by a variety of factors, and to make accurate

55 Neural Networks

predictions about future states of the system. LCNNs can also be used for real-time forecasting
and decision-making, as they can rapidly process large volumes of input data and produce
predictions in real-time [6].

While the architecture and training of LCNNs provide a strong foundation for modeling complex
systems over time, there are several extensions and variations that can be used to improve their
performance and applicability in different domains. In this section, we will discuss some of these
extensions and their applications.

Long Short-Term Memory (LSTM) Networks:

One of the main challenges in modeling complex systems over time is dealing with long-term
dependencies. Traditional LCNNs can struggle to learn and maintain these dependencies, leading
to poor performance. LSTM networks are a variation of LCNNs that have been specifically
designed to address this issue. LSTM networks include specialized memory cells that can store
information over long periods of time, allowing them to learn and maintain long-term
dependencies more effectively than traditional LCNNs.LSTM networks have been successfully
applied in a variety of domains, including speech recognition, language translation, and image
captioning. In speech recognition, LSTM networks have been used to transcribe spoken words
into written text, while in language translation, they have been used to translate text from one
language to another. In image captioning, LSTM networks have been used to generate
descriptions of images.

Gated Recurrent Unit (GRU) Networks:

Another variation of LCNNs that has been developed to address the issue of long-term
dependencies is the Gated Recurrent Unit (GRU) network. GRU networks are similar to LSTM
networks in that they include specialized memory cells, but they have a simpler architecture that
requires fewer parameters to train. GRU networks have been applied in a variety of domains,
including natural language processing, speech recognition, and machine translation. In natural
language processing, GRU networks have been used for sentiment analysis, text classification,
and language modeling.

Convolutional Neural Networks (CNNs):

While LCNNs are designed to process sequential data over time, there are some problems where
the input data can be represented as a spatial structure, such as images or videos. In these cases,
Convolutional Neural Networks (CNNs) can be used to process the input data and extract
relevant features.CNNs are widely used in computer vision, where they have been used for
image classification, object detection, and segmentation. In image classification, CNNs are used
to identify the presence of specific objects in an image, while in object detection, they are used to
locate objects and identify their boundaries. In segmentation, CNNs are used to classify each
pixel in an image according to its semantic meaning.

56 Neural Networks

Reinforcement Learning (RL) with LCNNs:

While LCNNs are typically used for prediction tasks, they can also be used in combination with
Reinforcement Learning (RL) to make decisions and take actions in dynamic environments. RL
is a type of machine learning that involves learning by trial-and-error, where an agent interacts
with an environment and learns to take actions that maximize a reward signal.RL with LCNNs
has been applied in a variety of domains, including robotics, game playing, and autonomous
driving. In robotics, RL with LCNNs has been used to control the movements of a robot arm or a
walking robot. In game playing, RL with LCNNs has been used to develop agents that can beat
human champions at games like chess and Go. In autonomous driving, RL with LCNNs has been
used to control the movements of self-driving cars. Figure 1 illustrate the life cycle model for
understanding of neural networks. Figure 1 illustrate the life cycle model for understanding of
neural networks [7].

Figure 1: Illustrate the life cycle model for understanding of neural networks.

The human brain is a complex system that controls our thoughts, feelings, and behaviors. It is
composed of billions of neurons that communicate with each other to form neural networks. The
life cycle neural networks model is a theoretical framework that proposes that the brain
undergoes significant changes throughout an individual's lifespan, leading to the formation of
distinct neural networks at different stages of development. This model suggests that neural
networks play a critical role in shaping behavior, cognition, and emotional regulation[8], [9].

Developmental Stages of Life Cycle Neural Networks Model:

The life cycle neural networks model proposes that there are distinct developmental stages of the
brain, each of which is characterized by the formation of specific neural networks. These stages
include:

57 Neural Networks

1. Infancy and early childhood (0-5 years): During this stage, the brain undergoes rapid
development, with significant growth occurring in the cerebral cortex, which is
responsible for processing sensory information, attention, and perception. This stage is
also characterized by the formation of neural networks that are critical for language
acquisition, social interaction, and emotional regulation.

2. Childhood and adolescence (6-18 years): During this stage, the brain continues to
develop, with significant growth occurring in the prefrontal cortex, which is responsible
for higher-order cognitive functions such as decision-making, planning, and impulse
control. This stage is also characterized by the formation of neural networks that are
critical for social cognition, self-awareness, and emotion regulation.

3. Adulthood (19-60 years): During this stage, the brain undergoes significant changes in
the organization of its neural networks. These changes are related to the development of
expertise and experience, which lead to improvements in cognitive performance and
decision-making.

4. Aging (60+ years): During this stage, the brain undergoes significant changes in the
structure and function of its neural networks, leading to a decline in cognitive
performance and an increased risk of neurodegenerative diseases.

Formation and Plasticity of Neural Networks:

The life cycle neural networks model suggests that the formation and plasticity of neural
networks are critical for the brain's development and adaptation to changing environments.
Neural plasticity refers to the brain's ability to reorganize its neural networks in response to new
experiences and learning [10]. This plasticity is essential for the formation of new neural
networks and the modification of existing ones.

The formation of neural networks is influenced by both genetic and environmental factors.
Genetic factors influence the formation of basic neural circuits, while environmental factors,
such as experience and learning, shape the formation and organization of more complex neural
networks. For example, language acquisition in infancy and early childhood is influenced by
genetic factors that predispose children to language learning, but it is also heavily influenced by
environmental factors, such as exposure to language and social interaction.

Neural plasticity is highest during early development, when the brain is most malleable, but it
continues throughout life, although to a lesser extent. The brain's plasticity allows it to adapt to
new situations, learn new skills, and recover from injury or damage. For example, stroke patients
may be able to recover some function through the brain's plasticity, which allows it to reorganize
neural networks to compensate for damaged areas.

Functional Specialization of Neural Networks:

The life cycle neural networks model proposes that different neural networks are specialized for
different functions, such as sensory processing, attention, language, social cognition, and
emotion regulation. This specialization is the result of the brain's plasticity and the formation of

58 Neural Networks

new neural networks in response to specific experiences and learning.Functional specialization
of neural networks is essential for efficient processing of information and cognitive performance.
For example, the visual cortex is specialized for processing visual information, while the
auditory cortex is specialized for processing auditory information. Similarly, neural networks in
the prefrontal cortex are specialized for higher-order cognitive functions such as decision-
making, planning, and impulse control.

In addition to functional specialization, the life cycle neural networks model suggests that there
is also functional integration between different neural networks. This integration allows for the
coordination of different cognitive processes and the integration of sensory information from
multiple sources[11].

Disruptions to Neural Networks:

Disruptions to neural networks can have significant effects on behavior, cognition, and emotional
regulation. The life cycle neural networks model proposes that disruptions can occur at any stage
of development and can be caused by a variety of factors, such as genetic mutations,
environmental toxins, traumatic experiences, and neurodegenerative diseases. Disruptions to
neural networks during infancy and early childhood can have long-lasting effects on language
acquisition, social interaction, and emotional regulation. For example, children who experience
neglect or abuse may have disrupted neural networks that lead to difficulties in regulating
emotions and forming healthy relationships later in life. Disruptions to neural networks during
adolescence can have significant effects on cognitive and emotional development. For example,
substance abuse during adolescence can disrupt the development of neural networks involved in
decision-making, impulse control, and emotion regulation, leading to long-term effects on
behavior and mental health. Disruptions to neural networks in adulthood can also have
significant effects on cognitive function and behavior. For example, traumatic brain injury can
lead to disruptions in neural networks involved in attention, memory, and executive function,
leading to long-term cognitive deficits[12].

CONCLUSION

The life cycle neural networks model proposes that the brain undergoes significant changes
throughout an individual's lifespan, leading to the formation of distinct neural networks at
different stages of development. These neural networks play a critical role in shaping behavior,
cognition, and emotional regulation. The formation and plasticity of neural networks are critical
for the brain's development and adaptation to changing environments. Functional specialization
and integration of neural networks allow for efficient processing of information and coordination
of different cognitive processes.

REFERENCES

[1] Z. Asif, Z. Chen, and Z. H. Zhu, “An integrated life cycle inventory and artificial neural
network model for mining air pollution management,” Int. J. Environ. Sci. Technol., 2019,
doi: 10.1007/s13762-018-1813-9.

59 Neural Networks

[2] Z. Leszczyński and T. Jasiński, “Comparison of product life cycle cost estimating models
based on neural networks and parametric techniques—a case study for induction motors,”
Sustain., 2020, doi: 10.3390/su12208353.

[3] P. Liu, “Intermittent demand forecasting for medical consumables with short life cycle
using a dynamic neural network during the COVID-19 epidemic,” Health Informatics J.,
2020, doi: 10.1177/1460458220954730.

[4] L. Xia, Z. Ma, G. Kokogiannakis, Z. Wang, and S. Wang, “A model-based design
optimization strategy for ground source heat pump systems with integrated photovoltaic
thermal collectors,” Appl. Energy, 2018, doi: 10.1016/j.apenergy.2018.01.067.

[5] L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang, “Remaining Useful Life
Prediction for Lithium-Ion Battery: A Deep Learning Approach,” IEEE Access, 2018, doi:
10.1109/ACCESS.2018.2858856.

[6] J. Yang, G. Kang, Y. Liu, K. Chen, and Q. Kan, “Life prediction for rate-dependent low-
cycle fatigue of PA6 polymer considering ratchetting: Semi-empirical model and neural
network based approach,” Int. J. Fatigue, 2020, doi: 10.1016/j.ijfatigue.2020.105619.

[7] L. W. Kang, X. Zhao, and J. Ma, “A new neural network model for the state-of-charge
estimation in the battery degradation process,” Appl. Energy, 2014, doi:
10.1016/j.apenergy.2014.01.066.

[8] M. Vagnoli, R. Remenyte-Prescott, and J. Andrews, “Railway bridge structural health
monitoring and fault detection: State-of-the-art methods and future challenges,” Structural

Health Monitoring. 2018. doi: 10.1177/1475921717721137.

[9] M. V. Lombardo, H. M. Moon, J. Su, T. D. Palmer, E. Courchesne, and T. Pramparo,
“Maternal immune activation dysregulation of the fetal brain transcriptome and relevance
to the pathophysiology of autism spectrum disorder,” Mol. Psychiatry, 2018, doi:
10.1038/mp.2017.15.

[10] J. Brownlee, “5 Step Life-Cycle for Neural Network Models in Keras - Machine Learning
Mastery,” Machine Learning Mastery, 2020.

[11] S. A. Sharif and A. Hammad, “Developing surrogate ANN for selecting near-optimal
building energy renovation methods considering energy consumption, LCC and LCA,” J.
Build. Eng., 2019, doi: 10.1016/j.jobe.2019.100790.

[12] X. Li, L. Zhang, Z. Wang, and P. Dong, “Remaining useful life prediction for lithium-ion
batteries based on a hybrid model combining the long short-term memory and Elman
neural networks,” J. Energy Storage, 2019, doi: 10.1016/j.est.2018.12.011.

60 Neural Networks

CHAPTER 7

INTRODUCTION TO NEURAL NETWORKS ALGORITHM
Dr. Durgesh Wadhwa, Professor

Department of Computer Science Engineering, Sanskriti University, Mathura, Uttar Pradesh, India
Email id- hodchem@sanskriti.edu.in

 ABSTRACT:

Neural networks algorithms are a class of machine learning techniques inspired by the structure
and function of the human brain. These algorithms are designed to recognize patterns and
relationships in data, and to use that information to make predictions or decisions. The neural
network algorithm can be used for a variety of applications, including image and speech
recognition, natural language processing, and prediction of financial trends. The algorithm has
gained popularity in recent years due to its ability to learn from large amounts of data and its
ability to generalize well to new data.

KEYWORDS:

Algorithms, Data, Financial Trends, Human Brain, Natural Language Processing.

INTRODUCTION

An overview of neural network algorithms is given below. The biological neural networks in the
brain, or the nervous system, are the source of inspiration for neural networks. It has sparked a lot
of interest, and the industry is currently doing research on this branch of machine learning. A
neuron or node is the fundamental computational component of a neural network. It computes the
output after receiving data from other neurons. Each node or neuron has a weight (w). According
on the relative significance of that specific neuron or node, this weight is assigned. Neural
networks resemble the human brain in many ways. They are composed of synthetic neurons, have
several inputs, and only have one output.

The network is able to recognize and observe all parts of the provided data and how these various
pieces of data may or may not relate to one another since practically every neuron influences
every other neuron and is, thus, related to every other neuron in some manner. It might uncover
intricate patterns in a large amount of data that are otherwise hidden from our view. The potential
power of neural networks and how they might influence different facets of business and society
are only partially explored by these algorithms and their functions. It is always crucial to
understand how a fascinating technological advancement is created, and these five algorithms
should serve as the ideal introduction.

DIFFERENT NEURAL NETWORK ALGORITHMS

1. GRADIENT DESCENT:

One of the most well-liked optimization techniques in machine learning is this one. When a
machine learning model is being trained, it is employed. In plain English, it is mostly used to
identify coefficient values that just minimize the cost function. In order to decrease the lost

61 Neural Networks

function, we first define certain parameter values and then, using calculus, begin to iteratively
alter the values.

Let's go to the section on what a gradient is now. A gradient, often known as the slope, denotes
how much the output of any function will vary if the input is slightly decreased. Similar to how a
high slope causes a model to learn more quickly, a zero slope causes a model to cease learning.
This is so that it can minimize a certain algorithm, which it does.

2. NEWTON’S METHOD:

It is an algorithm for second-order optimization. It uses the Hessian matrix, which is why it is
referred to as second-order. A squared matrix of second-order partial derivatives of a scalar-
valued function is all that the Hessian matrix is, in other words. To locate the roots or stationary
spots, the Newton's method optimization technique is used to the first derivative of a double
differentiable function f. Let's now discuss the processes needed to optimize using Newton's
approach.It starts by assessing the loss index. The halting conditions are then verified as true or
incorrect. If this is the case, it determines Newton's training direction and rate, improves the
neuron's parameters or weights, and repeats the cycle. As a result, you can now claim that it
takes less steps than gradient descent to arrive at the function's minimal value. Even though it
requires less steps than the gradient descent approach, it is still not generally utilized since it is
exceedingly costly to compute the correct hessian and its inverse[1], [2].

3. CONJUGATE GRADIENT:

It is a technique that falls between between Newton's method and gradient descent. The primary
distinction is that it quickens the sluggish convergence that is often associated with gradient
descent. It is an iterative method, which is another crucial element. It may be used to both linear
and non-linear systems. Magnus Hestenes and Eduard Stiefel created it. As was previously
noted, the Conjugate Gradient method yields quicker convergence than gradient descent; the
reason for this is because the search is carried out simultaneously with the conjugate directions,
which causes it to converge more quickly than gradient descent approaches. It's vital to keep in
mind that is referred to as the conjugate parameter. Periodically, the training direction is reset to
the gradient's negative direction. This approach is superior than gradient descent for training
neural networks because it avoids the Hessian matrix, which adds to the computing overhead,
and because it converges more quickly. It is suitable for usage in substantial neural networks.

4. QUASI-NEWTON METHOD:

It is an alternate strategy to Newton's technique since, as we now know, Newton's method
requires a lot of calculation. These issues are somewhat addressed by this technique, which
creates an estimate of the inverse Hessian at each iteration of the algorithm rather than first
computing the Hessian matrix and then the inverse directly.

5. LEVENBERG-MARQUARDT ALGORITHM (LM):

To deal especially with loss functions that take the form of a sum of squared errors, the
Levenberg-Marquardt method was developed. Without calculating the precise Hessian matrix, it
functions. Instead, it use the Jacobian matrix and the gradient vector.

Now, this approximation is computed using data from the loss function's first derivative. We
may thus conclude that since it reduces calculation time and is considerably quicker than
gradient descent or conjugate gradient technique, it is arguably the approach best suited to handle

62 Neural Networks

massive networks. The learning process of a neural network is carried out by the optimization
algorithm (or optimizer). Numerous alternative optimization methods exist. They vary in terms
of the amount of memory used, the speed of processing, and the accuracy of the numbers. The
learning challenge for neural networks is initially described in this article. Following that, it
discusses a few significant optimization techniques. If our neural network contains hundreds of
parameters, we may utilize gradient descent or conjugate gradient to conserve memory. Finally,
it compares the memory requirements of several techniques. The Levenberg-Marquardt
technique may be the best option if we have several neural networks to train with just a few
thousand samples and a few hundred parameters. The quasi-Newton approach will be effective in
the remaining circumstances. The optimization methods are all put into practice via Neural
Designer.

A computer learning system called a neural network, or simply a neural net, employs a network
of functions to comprehend and convert a data input in one form into the intended output, which
is often in another form. The biology of humans and how neurons operate together in the human
brain to comprehend information from the senses served as the basis for the notion of the
artificial neural network. Machine learning algorithms employ a variety of tools and techniques,
including neural networks. In many different machine learning techniques, the neural network
itself may be employed as a component to transform complicated data inputs into a language that
computers can comprehend. Today, neural networks are used to solve a variety of real-world
issues, including voice and picture recognition, spam email filtering, finance, and medical
diagnosis, to mention a few[3], [4].

DISCUSSION

Neural Networks are a subset of machine learning algorithms that have been inspired by the
workings of the human brain. The human brain consists of billions of neurons, which are
connected to each other through synapses. These neurons process information and send signals to
other neurons, which enables us to perform various tasks such as recognizing objects, hearing
sounds, and even making decisions. Neural Networks try to mimic this behavior by creating
artificial neurons and connecting them in a similar fashion. These artificial neurons are arranged
in layers, and the connections between them are weighted. These weights are adjusted during
training so that the network can learn to perform a specific task. In this, we will discuss the
various aspects of Neural Networks, including their architecture, training process, and various
types of neural networks.

Architecture:

The architecture of a Neural Network refers to its structure, which is composed of layers of
artificial neurons. The simplest Neural Network is a single-layer perceptron, which consists of a
single layer of neurons. Each neuron in the input layer receives an input value, which is then
processed by the neuron and passed on to the output layer. The output layer consists of a single
neuron that produces the output of the network.The Multilayer Perceptron (MLP) is a more
complex Neural Network that consists of multiple layers of neurons. The input layer receives the
input values, which are then processed by the neurons in the hidden layers. The output of the
hidden layers is then passed on to the output layer, which produces the final output of the
network.

63 Neural Networks

Another type of Neural Network is the Convolutional Neural Network (CNN), which is
commonly used in image processing. The CNN consists of multiple layers of neurons, but unlike
the MLP, it has specialized layers such as the convolutional layer, pooling layer, and the fully
connected layer. The convolutional layer performs feature extraction by convolving the input
image with a set of learnable filters. The pooling layer reduces the dimensionality of the output
of the convolutional layer, and the fully connected layer produces the final output of the network.

Training:

Training a Neural Network involves adjusting the weights of the connections between the
neurons so that the network can learn to perform a specific task. This process is done using a
training dataset, which consists of input-output pairs. The network is fed the input values, and its
output is compared to the desired output. The difference between the actual output and the
desired output is called the error, and the goal of the training process is to minimize this error.
The most common algorithm used for training Neural Networks is the Backpropagation
algorithm. Backpropagation involves calculating the error at the output layer and propagating it
back through the network to adjust the weights of the connections. The weights are adjusted in
the direction that reduces the error, which is done using a technique called gradient descent.
Gradient descent involves calculating the derivative of the error with respect to the weights and
adjusting the weights in the direction that reduces the error. This process is repeated for each
input-output pair in the training dataset, and the weights are updated after each iteration. The
number of iterations is known as the epoch, and the training process is repeated for multiple
epochs until the network reaches a satisfactory level of accuracy[5].

Types of Neural Networks:

There are many types of Neural Networks, each designed for specific tasks. Some of the most
common types are:

1. Feedforward Neural Network:

The Feedforward Neural Network is the simplest type of Neural Network, consisting of a single
layer of neurons. The input values are fed to the input layer, and the output is produced by the
output layer. The neurons in the hidden layer process the input values and pass them on to the
output layer. This type of network is commonly used for classification and regression tasks.

2. Recurrent Neural Network:

The Recurrent Neural Network (RNN) is a type of Neural Network that is designed for
processing sequential data, such as time-series data or natural language data. Unlike the
Feedforward Neural Network, the RNN has connections between the neurons that create a
feedback loop. This feedback loop allows the network to take into account the previous state of
the network when processing new input. This makes the RNN particularly useful for tasks such
as speech recognition, machine translation, and image captioning.

64 Neural Networks

3. Long Short-Term Memory (LSTM):

The Long Short-Term Memory (LSTM) is a type of RNN that is designed to overcome the
problem of vanishing gradients, which occurs when the gradients become too small to be useful
during training. The LSTM uses a set of gates to control the flow of information through the
network, allowing it to selectively remember or forget previous information. This makes the
LSTM particularly useful for tasks such as speech recognition, machine translation, and image
captioning.

4. Convolutional Neural Network (CNN):

The Convolutional Neural Network (CNN) is a type of Neural Network that is commonly used
for image processing tasks such as object recognition, face recognition, and image classification.
The CNN uses specialized layers such as the convolutional layer and the pooling layer to extract
features from the input image. These features are then passed on to the fully connected layer,
which produces the final output of the network[6].

5. Autoencoder:

The Autoencoder is a type of Neural Network that is used for unsupervised learning, which is a
type of machine learning where the training data does not have explicit labels. The Autoencoder
consists of an encoder network and a decoder network. The encoder network compresses the
input data into a lower-dimensional representation, and the decoder network reconstructs the
original input from the lower-dimensional representation. The Autoencoder can be used for tasks
such as image denoising, dimensionality reduction, and anomaly detection.

6. Generative Adversarial Network (GAN):

The Generative Adversarial Network (GAN) is a type of Neural Network that is used for
generating new data that is similar to the training data. The GAN consists of two networks, a
generator network and a discriminator network. The generator network produces new data, and
the discriminator network tries to distinguish between the generated data and the real data. The
two networks are trained together, with the generator network trying to produce data that fools
the discriminator network. The GAN can be used for tasks such as image generation, text
generation, and music generation.

Neural Networks are a type of machine learning algorithm that is inspired by the structure and
function of the human brain. These algorithms are capable of learning and improving through
experience, and they have found many applications in fields such as image and speech
recognition, natural language processing, and predictive analytics.In this article, we will provide
an introduction to Neural Networks, covering their basic concepts, architectures, and training
techniques.

Basic Concepts

A Neural Network consists of a set of interconnected nodes, or neurons, that are organized in
layers. The input layer receives input data, and the output layer produces output data. The

65 Neural Networks

intermediate layers, called hidden layers, process the input data through a series of
transformations, and extract relevant features that are used to generate the final output.

Each neuron in the network receives input from other neurons and produces output based on an
activation function. The activation function determines the output of a neuron based on the
weighted sum of its inputs. The weights are learned during the training process, which involves
adjusting the values of the weights to minimize a loss function that measures the difference
between the predicted and actual outputs.

Neural Networks are often represented as graphs, where nodes represent neurons, and edges
represent the connections between neurons. The weights of the connections are represented as
the values on the edges. Figure 1 illustrate the Artificial Neural Networks for Machine Learning.

Figure 1: Illustrate the Artificial Neural Networks for Machine Learning.

Architectures

There are several types of Neural Network architectures, each designed to solve specific types of
problems. Here are some of the most common architectures: Feedforward Neural Networks are
the simplest type of Neural Network, consisting of a single input layer, one or more hidden
layers, and a single output layer. Information flows in one direction from the input layer, through
the hidden layers, to the output layer. These networks are used for tasks such as classification,
regression, and pattern recognition.

Recurrent Neural Networks:

Recurrent Neural Networks (RNNs) are designed to process sequences of data, such as time
series or natural language. These networks have loops in their architecture, allowing information
to be stored and reused in the computation of the next time step. RNNs are capable of handling
variable-length input and output sequences, and can learn to generate sequences of data.

Convolutional Neural Networks:

Convolutional Neural Networks (CNNs) are designed for processing spatial data, such as images
or videos. These networks use convolutional layers to extract features from the input data,

66 Neural Networks

followed by pooling layers that reduce the dimensionality of the feature maps. CNNs are capable
of handling large amounts of input data, and can learn to recognize complex patterns in images
and videos.

Autoencoders:

Autoencoders are Neural Networks that are trained to reconstruct their input data. These
networks consist of an encoder that maps the input data to a lower-dimensional representation,
and a decoder that maps the lower-dimensional representation back to the original input data.
Autoencoders are used for tasks such as dimensionality reduction, anomaly detection, and data
compression.

Overfitting is a common problem in Neural Networks, where the network learns to fit the
training data too closely and performs poorly on new, unseen data. Regularization is a technique
that can prevent overfitting by adding a penalty term to the loss function that encourages the
weights to be small or sparse. Some common regularization techniques include L1 and L2
regularization, dropout, and early stopping[7].

Neural Networks have many hyperparameters that can affect their performance, such as the
number of layers, the number of neurons in each layer, the activation functions, and the learning
rate. Hyperparameter tuning involves searching for the optimal set of hyperparameters that
maximize the performance of the network on a validation set.

Transfer Learning is a technique that involves using a pre-trained Neural Network as a starting
point for a new task. By using a pre-trained network, the network can leverage the knowledge
learned from a large dataset to improve the performance on a smaller, related dataset. Transfer
Learning is particularly useful for tasks such as image recognition, where pre-trained networks
such as VGG or ResNet can be used as a starting point.

Batch Normalization:

Batch Normalization is a technique that can improve the stability and convergence of Neural
Networks. It involves normalizing the inputs to each layer of the network, which can reduce the
effect of vanishing or exploding gradients. Batch Normalization can also act as a form of
regularization, as it reduces the covariance shift between the layers.

There are many optimization algorithms that can be used to update the weights of a Neural
Network. Some common optimizers include stochastic gradient descent (SGD), Adagrad, Adam,
and RMSProp. Each optimizer has its own strengths and weaknesses, and the choice of optimizer
can affect the convergence rate and stability of the network.

Data Augmentation is a technique that involves generating new training data from existing data,
by applying random transformations such as rotation, scaling, or cropping. Data Augmentation
can improve the generalization and robustness of the network, by increasing the diversity of the
training data and reducing overfitting.

67 Neural Networks

Neural Networks have found many applications in fields such as computer vision, speech
recognition, natural language processing, and predictive analytics. Here are some examples of
Neural Network applications:

Image Recognition:

Neural Networks are widely used for image recognition tasks such as object detection,
segmentation, and classification. Convolutional Neural Networks (CNNs) are particularly well-
suited for these tasks, as they can extract relevant features from the input images and learn to
recognize complex patterns. Some common applications of Neural Networks in image
recognition include autonomous driving, medical imaging, and facial recognition.

Neural Networks are used for speech recognition tasks such as speech-to-text transcription,
speaker recognition, and emotion recognition. Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) are commonly used for these tasks, as they can process
variable-length input sequences and extract relevant features. Some common applications of
Neural Networks in speech recognition include voice assistants, call centers, and language
translation.

Neural Networks are used for natural language processing tasks such as sentiment analysis, text
classification, and machine translation. Recurrent Neural Networks (RNNs) and Transformers
are commonly used for these tasks, as they can model the sequential nature of language and
capture long-term dependencies. Some common applications of Neural Networks in natural
language processing include chatbots, recommendation systems, and social media analysis.

Neural Networks are used for predictive analytics tasks such as regression, classification, and
time series forecasting. Feedforward Neural Networks and Recurrent Neural Networks are
commonly used for these tasks, as they can learn to model complex relationships between the
input and output variables. Some common applications of Neural Networks in predictive
analytics include financial forecasting, customer churn prediction, and fraud detection.

Neural Networks have also found applications in gaming, particularly in the field of
reinforcement learning. Reinforcement learning is a type of machine learning where an agent
learns to make decisions by interacting with an environment and receiving rewards or penalties.
Neural Networks can be used to approximate the optimal policy of the agent, which determines
the actions to take in each state of the environment. Some common applications of Neural
Networks in gaming include playing chess, Go, and video games[8].

Neural Networks have many other applications, including:

a) Robotics: Neural Networks are used to control the movements of robots, and to recognize
and respond to objects in the environment.

b) Drug Discovery: Neural Networks are used to model the structure and interactions of
molecules, and to predict the efficacy and toxicity of potential drug candidates.

c) Music Generation: Neural Networks are used to generate music that mimics the style of
existing songs or composers.

68 Neural Networks

d) Art Generation: Neural Networks are used to generate images and videos that mimic the
style of existing artists or genres.

e) Autonomous Vehicles: Neural Networks are used to recognize and respond to objects in
the environment, and to control the movements of autonomous vehicles[9], [10].

CONCLUSION

Neural Networks are a powerful tool for solving complex problems in a wide range of fields.
They can learn to model complex relationships between inputs and outputs, and can generalize
well to new data. Training a Neural Network can be a complex and time-consuming process, but
there are many techniques and best practices that can improve the performance and stability of
the network. Neural Networks have found many applications in fields such as computer vision,
speech recognition, natural language processing, predictive analytics, gaming, robotics, drug
discovery, music generation, art generation, and autonomous vehicles.

REFERENCES

[1] A. Sadollah, H. Sayyaadi, and A. Yadav, “A dynamic metaheuristic optimization model
inspired by biological nervous systems: Neural network algorithm,” Appl. Soft Comput. J.,
2018, doi: 10.1016/j.asoc.2018.07.039.

[2] X. Huang, X. Liu, and Y. Ren, “Enterprise credit risk evaluation based on neural network
algorithm,” Cogn. Syst. Res., 2018, doi: 10.1016/j.cogsys.2018.07.023.

[3] H. Zeng, “Optimization of classroom illumination system based on neural network
algorithm,” Light Eng., 2018, doi: 10.33383/2018-138.

[4] F. Ratnawati and E. Winarko, “Sentiment Analysis of Movie Opinion in Twitter Using
Dynamic Convolutional Neural Network Algorithm,” IJCCS (Indonesian J. Comput.
Cybern. Syst., 2018, doi: 10.22146/ijccs.19237.

[5] N. Kriegeskorte and T. Golan, “Neural network models and deep learning,” Current

Biology. 2019. doi: 10.1016/j.cub.2019.02.034.

[6] N. M. Martin and L. C. Jain, “Introduction to Neural Networks, Fuzzy Systems, Genetic
Algorithms, and their Fusion,” in Fusion of Neural Networks, Fuzzy Systems, and Genetic
Algorithms, 2020. doi: 10.1201/9780367811464-1.

[7] D. Selvamuthu, V. Kumar, and A. Mishra, “Indian stock market prediction using artificial
neural networks on tick data,” Financ. Innov., 2019, doi: 10.1186/s40854-019-0131-7.

[8] V. K. Vemuri, “The Hundred-Page Machine Learning Book,” J. Inf. Technol. Case Appl.

Res., 2020, doi: 10.1080/15228053.2020.1766224.

[9] W. Hu et al., “Electronic Noses: From Advanced Materials to Sensors Aided with Data
Processing,” Advanced Materials Technologies. 2019. doi: 10.1002/admt.201800488.

[10] J. Qiu, H. Wang, J. Lu, B. Zhang, and K.-L. Du, “Neural Network Implementations for
PCA and Its Extensions,” ISRN Artif. Intell., 2012, doi: 10.5402/2012/847305.

69 Neural Networks

 CHAPTER 8

THE LAST MEAN SQUARE ALGORITHM
Mrs. Ashwini B, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-ashwini.b@presidencyuniversity.in

ABSTRACT:

The Least Mean Square (LMS) algorithm is an adaptive filter algorithm used for noise reduction,
equalization, and prediction. The algorithm iteratively adjusts the filter coefficients based on the
error between the actual output and the desired output, with the aim of minimizing the mean
square error (MSE) between the two. LMS is a stochastic gradient algorithm that is easy to
implement and computationally efficient, making it a popular choice for many applications.
However, LMS is also sensitive to initial conditions, may have slow convergence, and may not
converge to the optimal solution in the presence of noise or other disturbances. Despite these
limitations, LMS remains widely used and has undergone several improvements since its
introduction in 1960.

KEYWORDS:

Algorithm, Mean Square, Square Error, Optimal Solution, Stochastic Gradient.

INTRODUCTION

The Least Mean Square (LMS) algorithm is a widely used adaptive filter algorithm that is
commonly used for solving problems such as noise reduction, equalization, and prediction. The
algorithm belongs to the family of stochastic gradient algorithms that iteratively adjust the
coefficients of a filter based on the error between the actual output and the desired output. The
LMS algorithm was first introduced in 1960 by Bernard Widrow and his colleagues at Stanford
University. Since then, the algorithm has undergone several improvements and modifications,
making it one of the most popular adaptive filter algorithms[1].

The LMS algorithm can be described as follows:

1. Initialization: The algorithm starts by initializing the filter coefficients to some initial
values.

2. Input: The algorithm receives an input signal x(n) and generates an output signal y(n) by
filtering the input signal through the filter.

3. Error calculation: The algorithm calculates the error signal e(n) as the difference between
the desired output signal d(n) and the actual output signal y(n).

4. Coefficient update: The algorithm updates the filter coefficients using the following
formula:

70 Neural Networks

w(n+1) = w(n) + µe(n)x(n)

where w(n) is the vector of filter coefficients at time n, µ is the step size (also known as the
learning rate), e(n) is the error signal, and x(n) is the input signal.

5. Repeat: The algorithm repeats steps 2 to 4 for each input sample.

The key idea behind the LMS algorithm is to minimize the mean square error (MSE) between the
desired output signal and the actual output signal. The MSE is defined as:

MSE = E[(d(n) - y(n))^2]

where E[.] denotes the expected value, d(n) is the desired output signal, and y(n) is the actual
output signal.

The LMS algorithm achieves this goal by iteratively adjusting the filter coefficients to minimize
the MSE. The step size µ determines the rate at which the algorithm converges to the optimal
solution. A small step size leads to slow convergence, while a large step size can cause the
algorithm to diverge.

The LMS algorithm has several advantages, including:

1. Simplicity: The LMS algorithm is easy to implement and requires little computational
resources.

2. Robustness: The LMS algorithm is robust to changes in the input signal and can adapt to
non-stationary environments.

3. Convergence: The LMS algorithm converges to the optimal solution under certain
conditions.

The LMS algorithm also has some limitations, including:

1. Sensitivity to the initial conditions: The performance of the LMS algorithm depends on
the initial values of the filter coefficients.

2. Slow convergence: The convergence rate of the LMS algorithm can be slow, especially
for large filter lengths or small step sizes.

3. Steady-state error: The LMS algorithm may not converge to the optimal solution in the
presence of noise or other disturbances.

Despite these limitations, the LMS algorithm remains a popular choice for many applications due
to its simplicity and adaptability. Neural networks are helping people today endure the changes
brought about by the new eras in the finance, aerospace, and automobile industries. But first, it's
crucial to comprehend the fundamental idea behind neural networks in order to appreciate how
they are advancing various industries[2].

71 Neural Networks

There are three significant industries that neural networks are regulating: finance, healthcare, and
the auto sector. Because the functionality of these artificial neurons is similar to that of the
human brain. They might be used to photo identification, character recognition, and stock market
forecasting. Neural networks can perform a wide range of tasks with just a few basic inputs,
including anything from face recognition to weather forecasting. Neural networks are a
collection of algorithms that simulate the functions of the human brain to find connections
among enormous volumes of data. They are used in a range of financial services applications,
including forecasting, market research, fraud detection, and risk assessment.

Facial recognition technologies are effective surveillance tools. Recognition software compares
digital photographs to human faces and matches them. They are used in workplaces for restricted
access. As a result, the systems verify a human face and compare it to the database's list of IDs.
Future events are nearly impossible to forecast due to the stock market's extreme
unpredictability. The continually fluctuating bullish and bearish phases were unexpected before
neural networks. In order to provide a good stock prediction in real time, a Multilayer Perceptron
MLP (class of feedforward artificial intelligence system) is utilized. In the MLP topology, each
layer of nodes is perfectly linked to the one underneath it. Historical stock performance, annual
returns, and non-profit ratios are used while creating the MLP model.

Despite how cliché it may seem, social media has changed the mundane, uninteresting routine of
existence. Artificial neural networks are employed to analyze social media users' behavior. Data
exchanged via virtual dialogues every day is collected and examined for competitive analysis.
Neural networks mimic the actions of users of social media. After social media behavior
analysis, information about people's purchasing patterns may be correlated. Data mining from
social media apps uses multilayer perceptron ANN. The term "aerospace engineering" is
inclusive and refers to developments in both aircraft and spacecraft. Fault diagnosis, high
performance autopiloting, safeguarding aviation control systems, and modeling significant
dynamic simulations are a few of the significant sectors that neural networks have largely
replaced. It is possible to depict nonlinear time dynamic systems using neural networks with a
time delay[3], [4].

Time delay neural networks are used for feature recognition that is independent of location.
Consequently, the time delay neural network approach can recognize patterns. By replicating the
original data from feature units, neural networks automatically create patterns that can be
recognized. TNN are further employed to provide the NN models more dynamics. The precision
of the autopilot system is ensured by algorithms created using neural network systems since
passenger safety within an airplane is of the highest significance. Since most autopilot operations
are automated, it's crucial to make sure that the security is maximized.

The basis of any nation is its military industry. A nation's status in the world community is based
on how well its military operations perform. Neural networks also have an impact on the military
plans of countries with advanced technology. Among the countries that use artificial neural
networks to develop active defense strategies are Britain, the United States of America, and
Japan. Neural networks are used in logistics, armed assault analysis, and item location. They are
also used to control autonomous drones and keep an eye on the ocean. The military sector is
receiving the much-needed push it needs to enhance its technologies thanks to artificial
intelligence[5].

72 Neural Networks

People nowadays are taking use of technology's benefits in the healthcare industry.
Convolutional neural networks are now used in the medical field for ultrasound, CT scans, and
X-ray detection. The medical imaging data received from the aforementioned tests is examined
and evaluated using neural network models since CNN is utilized in image processing. Voice
recognition systems are also being developed using recurrent neural networks (RNN).

The process of confirming a person's signature is known as signature verification, and the name
itself is self-explanatory. To double-check a person's identification, banks and other financial
organizations utilize signature verification. Typically, the signatures are examined using a
signature verification program. The prevalence of fraud in financial institutions makes signature
verification a crucial measure that aims to carefully check the veracity of signed papers[6].

Before the advent of artificial intelligence, the meteorological department's predictions were
never correct. The main goal of weather forecasting is to foresee future weather conditions in
advance. Weather predictions are now also used to anticipate the likelihood of natural
catastrophes. Weather forecasting employs the Multilayer Perceptron (MLP), Convolutional
Neural Network (CNN), and Recurrent Neural Networks (RNN). It is also possible to utilize
conventional ANN multilayer models to forecast weather 15 days in advance. To forecast air
temperatures, a variety of neural network architectures may be utilized.

DISCUSSION

The least mean square (LMS) algorithm is a widely used adaptive filtering technique that is
commonly used in signal processing, control systems, and communications engineering. In this
algorithm, an adaptive filter is used to estimate an unknown signal by adjusting its weights based
on the input signal and the error signal. The LMS algorithm is known for its simplicity and ease
of implementation, making it a popular choice for real-time applications. The basic idea behind
the LMS algorithm is to minimize the mean square error (MSE) between the output signal of the
filter and the desired signal. This is achieved by iteratively adjusting the weights of the filter
based on the instantaneous value of the input signal and the error signal. The algorithm uses a
gradient descent approach to find the optimal weights that minimize the MSE.

The LMS algorithm can be represented mathematically as follows:

y(n) = w^T(n)x(n)

where y(n) is the output signal of the filter at time n, w(n) is the vector of filter weights at time n,
and x(n) is the input signal at time n. The goal of the algorithm is to find the optimal vector of
filter weights that minimizes the MSE between y(n) and the desired signal d(n).

The MSE is defined as follows:

J(w) = E[|d(n) - y(n)|^2]

Where, E[] denotes the expectation operator. The LMS algorithm updates the weights of the
filter at each time step according to the following rule:

w(n+1) = w(n) + 2µe(n)x(n)

73 Neural Networks

where µ is the step size or learning rate, e(n) is the error signal at time n, and x(n) is the input
signal at time n. The error signal is defined as the difference between the desired signal and the
output signal of the filter, i.e.,

e(n) = d(n) - y(n)

The LMS algorithm can be implemented using a simple recursive formula, which makes it
computationally efficient and easy to implement in real-time applications. The algorithm can be
summarized as follows:

1. Initialize the vector of filter weights w(0) to some initial values.

2. For each time step n, calculate the output signal y(n) using the current weights w(n).

3. Calculate the error signal e (n) as the difference between the desired signal d(n) and the
output signal y(n).

4. Update the weights of the filter using the recursive formula:

W (n+1) = w (n) + 2µe (n)x(n)

5. Repeat steps 2-4 for each time step until convergence.

The convergence of the LMS algorithm depends on the step size µ, the statistics of the input
signal x (n), and the initial values of the filter weights. If the step size is too large, the algorithm
may fail to converge or oscillate around the optimal solution. On the other hand, if the step size
is too small, the algorithm may converge slowly and require a large number of iterations to reach
the optimal solution. The statistics of the input signal x (n) also play a role in the convergence
behavior of the algorithm. If the input signal has high variance or is highly correlated, the
algorithm may converge slowly or exhibit oscillations. Finally, the initial values of the filter
weights can also affect the convergence behavior of the algorithm. If the initial values are far
from the optimal solution, the algorithm may require a large number of iterations to converge.
Figure 1 illustrate the Least Mean Square [7].

Figure 1: Illustrate the Least Mean Square.

74 Neural Networks

The LMS algorithm can be extended to handle more complex signal processing tasks, such as
adaptive equalization, channel estimation, and noise cancellation. In adaptive equalization, the
LMS algorithm is used to estimate the channel impulse response of a communication channel
and compensate for the distortion caused by the channel. In adaptive equalization, the input
signal x(n) is the distorted signal, and the desired signal d(n) is the original signal that was
transmitted through the channel. The LMS algorithm is used to estimate the channel impulse
response by iteratively adjusting the weights of the filter until the output signal y(n) matches the
desired signal d(n). The estimated channel impulse response can then be used to equalize the
channel and improve the signal quality.

In channel estimation, the LMS algorithm is used to estimate the channel impulse response
without the need for a known reference signal. The input signal x(n) is the signal received at the
receiver, and the desired signal d(n) is the output of a known filter. The LMS algorithm is used to
estimate the channel impulse response by iteratively adjusting the weights of the filter until the
output signal y(n) matches the output of the known filter. The estimated channel impulse
response can then be used to equalize the channel and improve the signal quality.

In noise cancellation, the LMS algorithm is used to remove unwanted noise from a signal. The
input signal x(n) is the noisy signal, and the desired signal d(n) is the noise-free signal that is
corrupted by the noise. The LMS algorithm is used to estimate the noise signal by iteratively
adjusting the weights of the filter until the output signal y(n) matches the noise signal. The
estimated noise signal can then be subtracted from the input signal to obtain the noise-free
signal[8].

One of the advantages of the LMS algorithm is its simplicity and ease of implementation. The
algorithm requires only basic operations, such as additions and multiplications, and can be
implemented using a simple recursive formula. This makes the algorithm computationally
efficient and suitable for real-time applications. Another advantage of the LMS algorithm is its
ability to adapt to changes in the input signal. The algorithm adjusts its weights based on the
instantaneous value of the input signal and the error signal, allowing it to track changes in the
input signal and adapt to new environments.However, the LMS algorithm also has some
limitations and drawbacks. One of the main limitations is its sensitivity to the choice of step size
µ. The step size determines the rate at which the filter weights are updated and affects the
convergence behavior of the algorithm. If the step size is too large, the algorithm may fail to
converge or oscillate around the optimal solution. On the other hand, if the step size is too small,
the algorithm may converge slowly and require a large number of iterations to reach the optimal
solution. The optimal step size depends on the statistics of the input signal and the initial values
of the filter weights, and can be difficult to determine in practice.

Another limitation of the LMS algorithm is its susceptibility to noise and outliers. The algorithm
assumes that the input signal is stationary and does not account for outliers or non-stationarities
in the input signal. This can lead to poor performance in noisy environments or when the input
signal contains outliers or sudden changes. To overcome this limitation, advanced versions of the
LMS algorithm have been developed that incorporate additional techniques, such as robust
statistics or adaptive step sizes, to improve the performance of the algorithm in non-stationary

75 Neural Networks

environments.Echo amplitude, which is represented by the number of discharges per stimulus
and by the amplitude tuning of other neurons with distinct dynamic ranges. The arrival times of
echoes from various reflecting surfaces (glints) inside the target are how the bat interprets
"form." In order for this to happen, estimations of the target's temporal structure are created
using frequency information from the echo spectrum.

The big brown bat, Eptesicus fuscus, is the subject of experiments carried out by Simmons and
colleagues. These investigations reveal that this conversion process is made up of parallel time-
domain and frequency-to-time-domain transforms, the outputs of which converge to form the
common delay of range axis of a perceived image of the target. Despite the fact that the auditory
time representation of the echo delay and the frequency representation of the echo spectrum are
originally carried out in distinct ways, it seems that the unity of the bat's experience is caused by
specific characteristics of the transforms themselves. Moreover, the sonar image-forming process
incorporates feature invariances that render it basically independent of both the target's motion
and the bat's own motion. A Few Closing Comments

The problem of network design is intimately connected to the problem of knowledge
representation in a neural network. However, there is no comprehensive theory for analysing
how changes in network design influence the representation of information inside the network, or
for optimizing the architecture of a neural network necessary to interact with an interesting
environment. In reality, thorough experimental research for a particular application of interest
generally yields appropriate answers to these questions, with the neural network's creator playing
a crucial role in the structural learning loop.

While there are many ways that we as individuals learn from our own circumstances, so too are
neural networks. The two types of learning that neural networks use may be broadly categorised
as learning with a teacher and learning without a teacher. Similarly, unsupervised learning and
reinforcement learning are subcategories of the latter kind of learning. These many learning
processes carried out by neural networks are analogous to human learning. Supervised learning is
another name for learning while being guided by an instructor. A block diagram that depicts this
method of learning. In a conceptual sense, we may consider the instructor to possess
environmental knowledge, which is represented by a collection of input-output instances. The
neural network is unaware of the surroundings.

Imagine that the training vector (i.e., example) is taken from the same environment for both the
instructor and the neural network. The instructor is able to provide the neural network the
required answer for that training vector thanks to built-in information. The "optimal" action for
the neural network to take is, in fact, represented by the intended response. Under the combined
impact of the training vector and the error signal, the network parameters are modified. The
discrepancy between the planned response and the network's actual response is known as the
error signal. This change is made incrementally and repeatedly with the goal of finally having the
neural network mimic the instructor; the mimicry is assumed to be optimal statistically. In this
approach, the neural network learns about the environment the instructor is working in and stores
that learning in the form of "fixed" synaptic weights, which stand in for long-term memory.
When this is the case, we may do away with the instructor and let the neural network to manage

76 Neural Networks

the environment entirely on its own.Error-correction learning is built on the kind of supervised
learning we just discussed. The supervised learning process, is a closed-loop feedback system,
but the unknown environment is outside the loop. The meansquare error, also known as the sum
of squared errors across the training sample, is a performance indicator for the system that is
specified as a function of the free parameters (i.e. synaptic weights).

 The free parameters may be thought of as coordinates on a multidimensional error-performance
surface, also known as an error surface. The average of all feasible input-output samples forms
the genuine error surface. Every particular system action that is being overseen by the instructor
is displayed as a point on the error surface. The operating point must gradually descend towards
the minimum point of the error surface in order for the system to improve over time and so learn
from the instructor; the minimum point may be a local minimum or a global minimum. With the
help of the beneficial knowledge it has about the gradient of the error surface corresponding to
the system's present behaviour, a supervised learning system may do this. The incline

36 A vector pointing in the direction of the steepest drop is introduced by the error surface at
every position. In reality, the system may employ an instantaneous approximation of the gradient
vector in the case of supervised learning from examples, with the example indices being assumed
to be those of time. When such an estimate is used, the operational point on the error surface
moves in a manner resembling a "random walk." Yet, a supervised learning system is often
capable of approximating an unknown input-output mapping pretty well if given an algorithm
created to minimise the cost function, a sufficient number of input-output instances, and enough
time to complete the training.

In reinforcement learning, an input-output mapping is learned by continuously interacting with
the environment with the goal of minimising a scalar performance index depicts the block
architecture of one kind of reinforcement-learning system centred on a critic that transforms a
primary reinforcement signal received from the environment into a better-quality reinforcement
signal known as the heuristic reinforcement signal. Since the system is built to learn under
delayed reinforcement, it observes a temporal series of environmental events that finally lead to
the development of the heuristic reinforcement signal[9], [10].

The objective of reinforcement learning is to reduce the cost-to-go function, which is the
anticipated total cost of actions done across a series of steps as opposed to only the current cost.
It could turn out that specific decisions made earlier in the timeline are the most effective
predictors of how the system would behave as a whole. The learning system's job is to identify
these behaviours and send that information back into the environment.

There are two main reasons why delayed-reinforcement learning is challenging to

implement:

(1) There is no teacher present to provide the desired response at each stage of the learning
process.

(2) The delay incurred in the generation of the primary reinforcement signal implies that the
learning machine must solve a temporal credit assignment problem.

77 Neural Networks

By this, we mean that the main reinforcement may only assess the result, while the learning
machine must be able to give credit and blame separately to each action in the series of time
steps that lead to the ultimate conclusion. Delayed-reinforcement learning is intriguing despite
these issues. The capacity to learn to accomplish a task on the basis of just the results of its
experience, which arise from the interaction, is developed by giving the learning system the
foundation to interact with its surroundings.

There is no outside instructor or critic to monitor the learning process. Instead, a task-
independent measure of the quality of the representation the network must learn is provided, and
the network's free parameters are optimized with regard to that measure. After the network is
trained to the statistical regularities of the input data, it may automatically build new classes for a
given task-independent measure by developing internal representations for encoding input
characteristics[11].

We might use a competitive-learning rule to unsupervised learning. As an example, we may use
a neural network with two layers an input layer and a competitive layer. The available data is
sent to the input layer. The competitive layer is made up of neurons that compete with one
another for the "opportunity" to react to characteristics in the input data (in line with a learning
rule). In its most basic form, the network follows a "winner-takes-all" approach. A neuron that
receives the most input overall "wins" the competition and turns on in such a strategy, turning off
every other neuron in the network.

CONCLUSION

The Least Mean Square (LMS) algorithm is a popular adaptive filter algorithm that is widely
used for solving problems such as noise reduction, equalization, and prediction. The algorithm
iteratively adjusts the filter coefficients based on the error between the actual output and the
desired output. The key idea behind the LMS algorithm is to minimize the mean square error
(MSE) between the desired output signal and the actual output signal. The LMS algorithm has
several advantages, including simplicity, robustness, and convergence. However, the LMS
algorithm also has some limitations, including sensitivity to initial conditions, slow convergence,
and steady-state error.

REFERENCES

[1] N. Q. Al-Naggar and M. H. Al-Udyni, “Performance of Adaptive Noise Cancellation with
Normalized Last-Mean-Square Based on the Signal-to-Noise Ratio of Lung and Heart
Sound Separation,” J. Healthc. Eng., 2018, doi: 10.1155/2018/9732762.

[2] P. Wang, S. Li, M. Shao, and C. Liang, “A Low-Cost Portable Real-Time EEG Signal
Acquisition System Based on DSP,” Int. J. Signal Process. Image Process. Pattern

Recognit., 2016, doi: 10.14257/ijsip.2016.9.2.21.

[3] L. Tao, W. Li, Y. Jin, Y. Yang, Y. Wu, and X. Liu, “Application of near-infrared
spectroscopy combined with chemometrics for online monitoring of Moluodan
extraction,” J. Chemom., 2018, doi: 10.1002/cem.2979.

78 Neural Networks

[4] J. Guerra-Hernández et al., “Comparison of ALS- and UAV(SfM)-derived high-density
point clouds for individual tree detection in Eucalyptus plantations,” Int. J. Remote Sens.,
2018, doi: 10.1080/01431161.2018.1486519.

[5] N. Premalatha and A. Valan Arasu, “Prediction of solar radiation for solar systems by
using ANN models with different back propagation algorithms,” J. Appl. Res. Technol.,
2016, doi: 10.1016/j.jart.2016.05.001.

[6] P. Goovaerts, “Geostatistical approaches for incorporating elevation into the spatial
interpolation of rainfall,” J. Hydrol., 2000, doi: 10.1016/S0022-1694(00)00144-X.

[7] G. Ernst, “Hidden Signals—The History and Methods of Heart Rate Variability,”
Frontiers in Public Health. 2017. doi: 10.3389/fpubh.2017.00265.

[8] B. Sharma and P. K. Venugopalan, “Comparison of Neural Network Training Functions
for Hematoma Classification in Brain CT Images,” IOSR J. Comput. Eng., 2014, doi:
10.9790/0661-16123135.

[9] X. Zhang, L. Chen, Y. Sun, Y. Bai, B. Huang, and K. Chen, “Determination of zinc oxide
content of mineral medicine calamine using near-infrared spectroscopy based on MIV and
BP-ANN algorithm,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2018, doi:
10.1016/j.saa.2017.12.019.

[10] K. Sultan, H. Ali, and Z. Zhang, “Call Detail Records Driven Anomaly Detection and
Traffic Prediction in Mobile Cellular Networks,” IEEE Access, 2018, doi:
10.1109/ACCESS.2018.2859756.

[11] X. Jiang, B. Hu, S. Chandra Satapathy, S. H. Wang, and Y. D. Zhang, “Fingerspelling
Identification for Chinese Sign Language via AlexNet-Based Transfer Learning and Adam
Optimizer,” Sci. Program., 2020, doi: 10.1155/2020/3291426.

79 Neural Networks

CHAPTER 9

ROLE OF NEURAL NETWORKS IN ARTIFICIAL NEURAL NETWORKS
Mrs. Aruna M, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-aruna.m@presidencyuniversity.in

ABSTRACT:

Artificial Neural Networks (ANNs) are computational models that are inspired by the structure
and function of the biological neural networks in the brain. Neural Networks play a critical role
in ANNs, as they are responsible for the learning and decision-making processes of these
models. In this abstract, we will discuss the role of Neural Networks in ANNs. The Neural
Networks in ANNs are composed of interconnected nodes or neurons, which are organized into
layers. The layers are typically classified into input, hidden, and output layers, and the
connections between the neurons are weighted. These weights are adjusted during the learning
process, which enables the Neural Networks to learn from the input data and generate output
predictions.

KEYWORDS:

Artificial Neural Network, Brain, Computational Models, Data, Output Layers.

INTRODUCTION

A neural network is either a piece of hardware or system software that does activities comparable
to those carried out by neurons in the human brain. Neural networks are a subset of artificial
intelligence that incorporates a number of technologies, including deep learning and machine
learning (AI). The main machine learning technology is artificial neural networks (ANN). These
systems, which mimic how people learn, were designed using the brain's neuronal network as
their model. Input and output layers are both made up of neural networks (NN), in addition to a
hidden layer that contains components that convert input into output so that the output layer may
make use of the value.

These are the tools that programmers use to retrieve and teach the computer to identify patterns.
These technologies are used by the majority of commercial enterprises and business applications.
In addition to speech-to-text transcription, data analysis, handwriting recognition for check
processing, weather prediction, and signal processing, their major goal is to handle complicated
issues like pattern recognition or face recognition. ANN functions quite similarly to the human
brain. By establishing the proper connections, we may use silicon and wires that behave like
dendrites and neurons to replicate how the brain functions. The input generates electric impulses
that move through the neural network in the same manner as dendrites absorb cues from the
outside world [1].

80 Neural Networks

A number of nodes that mimic neurons make up an ANN. Links (wires) connect the nodes so
that they may communicate with one another. Nodes accept input data and use training data to
execute tiny actions before passing the results to other nodes (neurons). The node's output is
referred to as its node value. The illustration of a neuron's fundamental structure is shown below.
A system based on biological neural networks is known as an artificial neural network. It is a
simulation of a neural network in a living thing. Artificial neural networks include a variety of
topologies, which required a variety of algorithmic techniques, yet despite being a complicated
system, a neural network is essentially simple.

The director's toolset includes a variety of distinctive signal-processing methods, including these
networks. Although the field is very multidisciplinary, our approach will limit the view to an
engineering perspective. Neural networks perform the crucial tasks of pattern classifiers and non-
linear adaptive filters in engineering. A flexible, often non-linear system that can learn to
implement a function (an input/output map) from data is known as an artificial neural network.
During operation, sometimes referred to as the training phase, the system parameters are
modified according to the definition of adaptation.

Artificial neural networks are a branch of artificial intelligence influenced by biology and
fashioned after the brain. A computer network based on biological neural networks, which create
the structure of the human brain, is often referred to as an artificial neural network. Artificial
neural networks also feature neurons that are linked to each other in different levels of the
networks, much as neurons in a real brain. Nodes are the name for these neurons. Understanding
the components of a neural network is necessary to comprehend the idea of the architecture of an
artificial neural network. A vast number of artificial neurons, also known as units, are placed in a
hierarchy of layers to form what is known as a neural network.

The lesson for artificial neural networks covers every facet of these networks. ANNs, Adaptive
Resonance Theory, Kohonen Self-Organizing Map, Building Blocks, Unsupervised Learning,
Genetic Algorithm, etc. will all be covered in this lesson. Artificial neural networks are used in
artificial intelligence to simulate the network of neurons that make up the human brain, giving
computers the ability to comprehend information and make choices in a way similar to that of a
person. Computers are programmed to function exactly like a network of linked brain cells to
create an artificial neural network[2], [3].

The human brain has around 1000 billion neurons. Between 1,000 to 100,000 association points
are present in each neuron. Data is distributed stored in the human brain, allowing us to
simultaneously access many pieces of information from memory as needed. The human brain is
said to have a staggering number of incredible parallel processors. Consider an example of a
digital logic gate that accepts input and outputs so that we may better grasp the artificial neural
network. Two inputs are required for the "OR" gate. If either one or both of the inputs are "On,"
the output will also be "On." If both inputs are "Off," the output will also be "Off." In this case,
output is dependent on input. Our brains do not carry out the same function. Because our brain's
neurons are always "learning," the connection between outputs and inputs is constantly
changing.

81 Neural Networks

After the training phase, the parameters of the artificial neural network are fixed, and the system
is ready to address the current problem the testing phase. The Artificial Neural Network is
created using a methodical, step-by-step process to improve performance in a test or to adhere to
an internal restriction that is often referred to as a learning rule.

Because they communicate the crucial information needed to "find" the ideal operating point, the
input/output training data are a crucial component of neural network technology. Any artificial
neural networks are advanced mapmakers due to the non-linear properties of the neural network
processing elements (PEs), which assist the system with multiple flexibility to generate virtually
some desired input/output map. The neural network is shown an input, and the output is
configured with a corresponding desired or target response when this is the case the training is
known as supervised. The discrepancy between the acquired response and the system output is
used to calculate an error. The system receives this error information and uses it to methodically
control the system's settings the learning rule. Until the performance is satisfactory, the phase is
repeated. This definition makes it very evident that the performance is heavily dependent on the
data.

DISCUSSION

Artificial neural networks (ANNs) are a type of machine learning algorithm modeled after the
structure and function of the human brain. ANNs are composed of interconnected nodes that are
organized into layers, with each layer processing input data and passing it on to the next layer
until a final output is produced. Neural networks are used in a wide range of applications, from
image and speech recognition to natural language processing and robotics.

The role of neural networks in ANNs in detail:

1. Neurons in ANNs

The basic building block of ANNs is the neuron. A neuron is a mathematical function that
receives input from other neurons or external sources, processes this input, and produces an
output. The output of a neuron is typically a nonlinear function of its input, and the function used
to compute the output is called an activation function. In ANNs, neurons are organized into
layers, with each layer performing a specific function. The input layer receives input data from
the external environment, while the output layer produces the final output of the network. The
layers in between are called hidden layers, and they are responsible for processing the input data
and passing it on to the next layer.

2. Learning in ANNs

The process of learning in ANNs involves adjusting the weights of the connections between
neurons in the network. The weights determine the strength of the connections between neurons,
and they are adjusted during training to optimize the performance of the network. There are two
main types of learning in ANNs: supervised learning and unsupervised learning. In supervised
learning, the network is trained on labeled data, where each input is associated with a
corresponding output. The network adjusts its weights to minimize the difference between its
output and the true output [4]. In unsupervised learning, the network is trained on unlabeled data,

82 Neural Networks

where there is no corresponding output. The network adjusts its weights to discover patterns in
the data and group similar inputs together.

3. Applications of Neural Networks

Neural networks have a wide range of applications in various fields, including:

a) Image and speech recognition: Convolutional neural networks are used to recognize
objects in images and speech recognition systems use recurrent neural networks to
transcribe speech.

b) Natural language processing: Recurrent neural networks are used for tasks such as
language translation, sentiment analysis, and text classification.

c) Robotics: Neural networks are used to control the behavior of robots, such as object
recognition and grasping.

d) Financial forecasting: Neural networks are used for predicting stock prices, currency
exchange rates

e) Medical diagnosis: Neural networks are used for diagnosing diseases, such as cancer,
based on medical images or other types of data.

f) Autonomous vehicles: Neural networks are used to process sensor data and control
the behavior of autonomous vehicles, such as self-driving cars.

g) Gaming: Neural networks are used for game playing, such as learning to play chess or
Go.

h) Fraud detection: Neural networks are used for detecting fraudulent transactions in
banking and other financial systems.

i) Drug discovery: Neural networks are used for predicting the properties of potential
drug candidates and for optimizing drug design.

j) Climate modeling: Neural networks are used for predicting climate patterns and
weather forecasting.

k) Energy optimization: Neural networks are used for optimizing energy consumption in
buildings and other systems.

4. Advantages of Neural Networks

Neural networks have several advantages over traditional machine learning algorithms,

including:

a) Nonlinearity: Neural networks can model nonlinear relationships between inputs and
outputs, which is important in many real-world applications.

b) Generalization: Neural networks can generalize from a limited set of training data to new
data, which is important for making accurate predictions in real-world settings.

83 Neural Networks

c) Robustness: Neural networks can tolerate noise and errors in the input data, which is
important for dealing with real-world data.

d) Parallelism: Neural networks can be easily parallelized, which allows them to process
large amounts of data in a short amount of time.

e) Adaptability: Neural networks can adapt to changing environments and learn from new
data, which is important for real-world applications that involve changing data[5], [6].

6. Challenges of Neural Networks

Despite their many advantages, neural networks also face several challenges, including:

a) Overfitting: Neural networks can overfit to the training data, which means they may not
generalize well to new data.

b) Complexity: Neural networks can be very complex and difficult to interpret, which
makes it difficult to understand how they work and why they make certain predictions.

c) Training time: Neural networks can take a long time to train, especially for large datasets
or complex architectures.

d) Hyperparameter tuning: Neural networks require careful tuning of hyperparameters, such
as the learning rate and regularization parameters, which can be time-consuming and
difficult.

7. Future of Neural Networks

Neural networks are a rapidly evolving field, with many new developments and

applications being discovered every day. Some of the future directions of neural networks

include:

a) Explainability: Researchers are working on developing techniques for making neural
networks more explainable, which would make them more accessible to non-experts and
increase their trustworthiness.

b) Transfer learning: Researchers are exploring ways to transfer knowledge from one neural
network to another, which would allow networks to learn more efficiently and adapt to
new tasks more quickly.

c) Reinforcement learning: Researchers are developing techniques for training neural
networks using reinforcement learning, which is a type of learning that involves learning
through trial and error[7].

d) Neuromorphic computing: Researchers are exploring the use of neuromorphic
computing, which is a type of computing that is inspired by the structure and function of
the human brain. Figure 1 illustrate the structure of the artificial neural network.

84 Neural Networks

Figure 1: Illustrate the structure of the artificial neural network.

Neural networks are a rapidly evolving field, and researchers are constantly developing new
architectures, techniques, and applications.

Some recent developments in neural networks include:

1. Transformers: Transformers are a type of neural network that has gained popularity in
natural language processing (NLP) applications. They are designed to handle sequential
data, such as text, and can capture long-range dependencies using self-attention
mechanisms. Transformers have been used to achieve state-of-the-art results in a wide
range of NLP tasks, such as language modeling, machine translation, and text
classification.

2. Meta-Learning: Meta-learning, or learning to learn, is a type of neural network that can
learn how to adapt to new tasks or environments more efficiently. Meta-learning
networks are trained on a variety of tasks, and learn to extract transferable knowledge
that can be used to quickly adapt to new tasks with limited data. Meta-learning has been
applied to a range of domains, such as computer vision, robotics, and natural language
processing.

3. Explainable AI: Explainable AI (XAI) is an emerging field that focuses on developing
neural networks that are more transparent and interpretable. XAI techniques aim to
provide insights into how neural networks make decisions, and enable users to
understand and trust their outputs. XAI techniques include methods such as feature
visualization, saliency maps, and decision trees.

4. Graph Neural Networks: Graph Neural Networks (GNNs) are a type of neural network
that is designed to handle graph-structured data, such as social networks, protein
structures, and transportation networks. GNNs operate on the graph structure itself, rather
than on the node or edge features, and can learn to capture complex relationships and
dependencies in the data.

5. Reinforcement Learning: Reinforcement Learning (RL) is a type of machine learning that
involves an agent learning to interact with an environment to maximize a reward signal.
Neural networks have been used to learn the policy function in RL, which maps the
agent's observations to actions. RL has been applied to a range of domains, such as
robotics, game playing, and autonomous driving.

85 Neural Networks

6. Federated Learning: Federated Learning is a type of distributed machine learning where
the training data is distributed across multiple devices or locations. Neural networks are
trained in a decentralized manner, with the local models being trained on the data from
each device, and the global model being updated based on the aggregated local models.
Federated learning has been applied to domains such as healthcare, where patient data is
distributed across different hospitals.

The numerous components that make up the model of an artificial neuron are functionally
described in the block diagram of Fig. 5 or that of Fig. 7. Using the concept of signal-flow
graphs, we may reduce the model's visual complexity without compromising any of its
functional specifics. Mason (1953, 1956) created the first signal-flow graphs, which have a clear
set of principles, for linear networks. When there is

Their use to neural networks is restricted by the neuron's model's nonlinearity. Yet, the
representation of the signal flow in a neural network using signal-flow graphs is a nice way that
we explore in this section[8].

A signal-flow graph is a collection of directed linkages (branches) joined together at certain
nodes. A typical node j has a node signal xj attached to it.

The usual directed connection has an accompanying transfer function, or transmittance, that
describes how the signal yk at node k relies on the signal xj at node j. It starts at node j and
finishes on node k. Three fundamental laws govern how signals move across the graph's many
nodes:

There are two distinct categories of links:

a. Synaptic connections, whose actions are controlled by a linear input-output relationship. As
shown in Fig. 9a, the node signal xj is specifically multiplied by the synaptic weight wkj to
create the node signal yk.

b. Activation linkages, whose actions are often controlled by a nonlinear input-output
relationship. In the sense that it represents both the signal flow inside each neuron and the
signal flow from neuron to neuron, a directed graph described in this way is complete.
Nevertheless, if the only thing being considered is the signal flow between individual
neurons, we may utilise a simplified version of this graph by leaving out the specifics of the
signal flow inside each individual neuron. A directed graph of this kind is referred to be
partly complete.

 It has the following characteristics:

1. Source nodes provide the graph with input signals.

2. A single node known as a computation node serves as the representation of each neuron.

3. The communication connections between the graph's source and computation nodes have no
bearing; they only indicate the graph's signal flow.

86 Neural Networks

An architectural graph, detailing the design of the neural network, is a partly complete directed
graph created in this manner. For the straightforward scenario of a single neuron with m source
nodes and a single node set at 1 for the bias, keep in mind that the source node is shown as a tiny
square, whereas the computation node representing the neuron is colored. The whole work
adheres to this tradition.

In this part, we conduct a computer simulation of the perceptron algorithm's employment. The
same as previously, the double-moon structure that provides both the training and test data. But
this time, we do the categorization using the least squares approach.

The outcomes of training the least squares method with the separation distance between the two
moons fixed.

1. The decision barrier built between the two moons is seen in the illustration. With the same
configuration d 1, the similar results produced using the perceptron technique these two statistics
are compared.

2. The two moons may be linearly separated for d 1, the distance between them. The perceptron
technique performs flawlessly in this environment; nevertheless, the method of least squares
makes a classification mistake of 0.8% while trying to identify the asymmetric feature of the
double-moon graphic.

3. The technique of least squares computes the decision boundary all at once, in contrast to the
perceptron algorithm.

The outcomes of the experiment using the least squares approach on the double-moon designs
for the spacing distance d 4. As anticipated, the categorization error has now increased
noticeably to 9.5%.

We can observe that the classification performance of the technique of least squares has
significantly deteriorated when we compare it to the 9.3% classification error of the perceptron
algorithm for the identical condition. A linear model's depiction of a stochastic process might be
utilised for analysis or synthesis. By giving the model's parameters a predetermined set of values
and feeding it white noise with a specified mean and variance, we may synthesise a desired time
series. This model is known as a generative model.

On the other hand, while doing analysis, we use the regularised technique of least squares or the
Bayesian approach to analyse a given time series of limited length in order to estimate the
model's parameters. We need a suitable measure of the fit between the model and the observed
data if the estimate is statistical. This second issue is what we refer to as the model selection
issue. For instance, we could wish to estimate the model's overall structure or the number of
degrees of freedom (variable parameters).

In the statistics literature, several model selection techniques have been put forward, each with a
distinct objective. Given that the aims are varied, it is not unexpected to discover that the various
methodologies, when used on the same data set, provide dramatically dissimilar outcomes.

87 Neural Networks

The shortest binary computer programmed that writes out the data sequence and then stops is the
algorithmic (descriptive) complexity of the given data sequence. The most astonishing thing
about this concept of complexity is that it uses the computer, the most common kind of data
compressor, as its foundation rather than the idea of probability distribution.

We may create a theory of idealised inductive inference, whose objective is to discover
"regularity" in a given data sequence, using the core notion of Kolmogorov complexity. The
initial insight that Rissanen utilised to create the MDL principle was the notion that learning is
seen as an effort to achieve "regularity." Rissanen's second realisation is that regularity itself may
be linked to "ability to compress."

The MDL principle thus combines these two insights—one on regularity and the other on the
capacity for compression—to understand learning as data compression, which in turn teaches us
the following: We should strive to identify the specific hypothesis or group of hypotheses in h
that compresses the data sequence d the greatest given a set of hypotheses, h, and a data
sequence, d.

This sentence effectively captures the essence of the MDL principle. It is important to
distinguish between the symbol d for a sequence and the prior symbol d for intended response.
The straightforward two-part code MDL concept for probabilistic modelling, which is the
earliest but most often used form, will be the one we will concentrate on. The codelengths under
consideration are not chosen in an ideal way when we use the word "simplistic." The processes
of encoding the data sequence in the shortest or least redundant way are referred to as "coding"
and "codelengths" in this document.

Let's say that a candidate model or model class is provided to us. We will now refer to a point
hypothesis as p rather than h since it has all the characteristics of being a probabilistic source.
The probability density function that best describes a given data sequence, d, is what we
specifically search for. The two-part code MDL principle thus instructs us to seek out the (point)
hypothesis that minimises the description lengths of p (L1(p), denoted by p), and d (L2(d | p),
denoted by d when p is used to encode d). So, we compute the total and choose the specific point
hypothesis that minimises L12 (p, d).

We must thus encode (describe or compress) the data in such a manner that a decoder can extract
the data even without knowing the hypothesis in advance in order to select the hypothesis that
compresses the data sequence d the greatest. This may be accomplished in many different ways,
such as through averaging over hypotheses (Grünwald, 2007), explicitly encoding a hypothesis,
or in a variety of other methods.

Let m(1), m(2),..., m(k),..., be a family of linear regression models connected to the parameter
vector, where k is the model order, 1, 2,..., and the dimensionality of the weight spaces is
increasing. Finding the model that best accounts for an unidentified environment that produced
the training sample xi, di, N i1 where xi is the stimulus and di is the matching response is the
main concern. The model-order selection issue was just covered in the previous paragraph.

88 Neural Networks

The two-part code MDL principle instructs us to choose the kth model that is the mimimizer
while working through the statistical characterisation of the composite length L12(p, d). Its last
phrase is overpowered by the expression's second term with a high sample size N. The formula is
often divided into two terms: the hypothesis complexity term, indicated by, which refers to the
model alone; and the error term.

The O(k) term is often disregarded in practise to make things simpler, with varying degrees of
success. The O(k) term might be rather big, which is the cause of the inconsistent results.
Nonetheless, it may be formally and effectively estimated for linear regression models, and the
resultant methods often function pretty well in reality. In the model with the lowest hypothesis
complexity term is chosen. And if this action still leaves us with a number of candidate models,
we are left with no other option except to choose one and work.

Two crucial characteristics are provided by the MDL principle for model selection:

1. The MDL principle will choose the model that is "simplest" in the sense that it
permits the use of a shorter description of the data where two models suit a
particular data sequence equally well. Or to put it another way, the MDL principle
applies a specific application of Occam's razor, which asserts a preference for
simple theories:

2. As the sample size grows, the MDL principle converges to the real model order,
making it a consistent model selection estimator.

The fact that very few, if any, anomalous findings or models with undesired qualities have been
documented in the literature for practically all applications employing the MDL principle is
perhaps the most important thing to consider. The no uniqueness and instability of the solution,
which are entirely due to reliance on the observation model is a serious drawback of the
maximum-likelihood or ordinary least-squares approach to parameter estimation; in the
literature, the traits of nonuniqueness and instability in characterising a solution are also known
as an overfitting problem.

Consider the generic regressive model to go further into this real-world problem, where f(x, w) is
a deterministic function of the regressor x for some w parameterizing the model and is the
expectational error. This mathematical representation of a stochastic environment, shown in Fig.
2.4a, aims to explain or forecast the reaction d generated by the regressor x. Where is a sample
value for the random variable Y, and y in the input-output function realised by the physical
model. The estimator is the function that minimizes the cost function, where the factor has been
used to be consistent with preceding notations, given the training sample t. The cost function,
calculated over the whole training sample t, is the squared difference between the environmental
(desired) response d and the actual response y of the physical model, excluding the scaling
factor.Let the average operator across the whole training sample be represented by the symbol t.
The pairs (x, d) constitute an example in the training sample t, and they stand for the variables or
their functions that fall under the average operator t. Statistical expectation, on the other hand,
operates on the whole ensemble of x and d, which includes t as a subset. The following should be
very carefully read and noted for the differences between the operators and t.

89 Neural Networks

The variance of the expectational (regressive modelling) error is expressed as the term on the
right-hand side. It is assumed that this term has a mean of zero. Due to its independence from the
estimate, this variance serves as a representation of the intrinsic error. In light of this, the
estimator that minimises the cost function will likewise do so for the ensemble average of the
squared distance between the regression function f(x, w) and the approximation function. In
other words, the following definition describes the natural measure of the efficacy of as a
predictor of the intended response[9].

Since it offers the mathematical foundation for the trade-off between bias and variance that
follows from using as an approximation to f, this natural measure is fundamentally significant (x,
w). The function f (x, w) is identical to the conditional expectation (d|x),. Thus, we may change
the squared distance between f (x) and to (2.46) This phrase may be seen as the average estimate
error between the approximation function and the regression function f (x, w) [d|x], calculated
across the whole training sample t. Be aware that the expectation of the conditional mean [d|x]
with regard to the training sample t is constant. Then we enter

We now note two critical points:

1. The average bias of the approximation function F(x, t), assessed in relation to the
regression function f(x, w) = [d | x], is the first term. As a result, B(w) indicates
the physical model's incapability as specified by the function F(x, w) B(w) V(w)
= t [(F(x, t) - t[F(x, t])2]

2. The variance of the approximation function F(x, t), as calculated across the whole
training sample t, is the second term. So, denotes the insufficiency of the
empirical information about the regression function f included in the training
sample V(w) V(w) V(w) B(w) (x, w). As a result, we may interpret the variance
as the result of an estimating mistake.

The relationships between the target (desired) and approximation functions are shown in Figure
2.5, along with how the bias and variance of the estimate mistakes increase. The bias and
variance of the approximation function would need to be minimal in order to attain high overall
performance [10].

However, we discover that getting a tiny bias comes at the expense of a huge variance in a
sophisticated physical model that learns by doing and does so with a short training sample. Only
until the size of the training sample is indefinitely huge for any physical model can we expect to
simultaneously remove bias and variation. As a result, we are faced with a bias-variance
problem, with the result being an unacceptably delayed convergence (Geman et al., 1992). If we
are ready to intentionally induce bias, we can get around the bias-variance conundrum and either
completely remove or greatly lower the variance. It goes without saying that we must be certain
that the bias included in the physical model's design is benign. For instance, the bias is believed
to be innocuous in the context of pattern classification since it will only considerably increase the
mean-square error if we attempt to infer regressions that are not in the expected class.

90 Neural Networks

CONCLUSION

Neural networks play a critical role in artificial neural networks, serving as the basic building
blocks of these powerful machine learning algorithms. As neural networks continue to evolve
and advance, they are likely to play an increasingly important role in many aspects of our lives,
from healthcare and finance to transportation and energy. However, challenges still remain in
terms of making neural networks more explainable, reducing training time, and improving their
ability to generalize to new data. Overall, the future of neural networks looks bright, and we can
expect to see many exciting developments in this field in the years.

REFERENCES

[1] G. Hessler and K. H. Baringhaus, “Artificial intelligence in drug design,” Molecules.
2018. doi: 10.3390/molecules23102520.

[2] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no.
11, p. e00938, 2018, doi: 10.1016/j.heliyon.2018.e00938.

[3] G. Zhou, Y. Ji, X. Chen, and F. Zhang, “Artificial Neural Networks and the Mass
Appraisal of Real Estate,” Int. J. Interact. Mob. Technol., 2018, doi:
10.3991/ijoe.v14i03.8420.

[4] L. De Marinis, M. Cococcioni, P. Castoldi, and N. Andriolli, “Photonic Neural Networks:
A Survey,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2957245.

[5] L. Wang, Z. Wang, H. Qu, and S. Liu, “Optimal Forecast Combination Based on Neural
Networks for Time Series Forecasting,” Appl. Soft Comput. J., 2018, doi:
10.1016/j.asoc.2018.02.004.

[6] A. S. Arunachalam and T. Velmurugan, “Analyzing student performance using
evolutionary artificial neural network algorithm,” Int. J. Eng. Technol., 2018, doi:
10.14419/ijet.v7i2.26.12537.

[7] M. A. F. Azlah, L. S. Chua, F. R. Rahmad, F. I. Abdullah, and S. R. W. Alwi, “Review on
techniques for plant leaf classification and recognition,” Computers. 2019. doi:
10.3390/computers8040077.

[8] H. Jeong and L. Shi, “Memristor devices for neural networks,” Journal of Physics D:

Applied Physics. 2019. doi: 10.1088/1361-6463/aae223.

[9] K. Kumar and G. S. M. Thakur, “Advanced Applications of Neural Networks and
Artificial Intelligence: A Review,” Int. J. Inf. Technol. Comput. Sci., 2012, doi:
10.5815/ijitcs.2012.06.08.

[10] J. K. Min, M. S. Kwak, and J. M. Cha, “Overview of deep learning in gastrointestinal
endoscopy,” Gut and Liver. 2019. doi: 10.5009/gnl18384.

91 Neural Networks

CHAPTER 10

MULTI-LAYER PERCEPTRON: EXPLORING THE EVOLUTION AND

APPLICATIONS OF THE FOUNDATIONAL NEURAL NETWORK

MODEL
Dr. Abhishek Kumar Sharma, Assistant Professor

Department of Computer Science and Engineering, Sanskriti University, Mathura, Uttar Pradesh, India
Email id- abhishek.sharma@sanskriti.edu.in

ABSTRACT:

Multi-Layer Perceptron (MLP) is a type of feedforward neural network that consists of multiple
layers of interconnected processing units or neurons, and is widely used in various applications
such as image classification, speech recognition, and natural language processing. MLP uses
activation functions to compute the output of each neuron, and training algorithms such as
backpropagation and stochastic gradient descent to adjust the weights and biases of the neurons.
While MLP offers many advantages such as its ability to handle complex non-linear
relationships and scalability to large datasets, it also has some limitations such as overfitting,
sensitivity to initial values, and slow convergence. Despite these limitations, MLP remains a
powerful tool in the field of artificial intelligence and machine learning.

KEYWORDS:

Algorithm, Artificial Intelligence, Back propagation, Machine Learning, Natural Language
Processing.

INTRODUCTION

Multi-Layer Perceptron (MLP) is a feedforward neural network that is widely used in various
fields such as image recognition, natural language processing, and speech recognition. In this
article, we will explain MLP in detail, covering the basics, the architecture, the training process,
and the applications.

Basics of MLP

MLP is a type of artificial neural network (ANN) that is composed of multiple layers of
interconnected nodes, also known as artificial neurons. Each neuron takes in one or more inputs,
applies a non-linear transformation to them, and produces an output. The outputs of neurons in
one layer become the inputs of neurons in the next layer, and so on, until the output layer
produces the final output of the network.

The basic building block of MLP is the perceptron, which is a single-layer neural network. A
perceptron takes in several inputs, computes a weighted sum of the inputs, adds a bias term, and

92 Neural Networks

applies a step function to produce an output. The step function is usually a simple threshold
function that maps the weighted sum to a binary output. The perceptron can be trained using the
perceptron learning rule to learn a linear decision boundary that separates the input space into
two classes.

The perceptron is limited in its ability to model complex patterns and relationships in data, as it
can only learn linear decision boundaries. To overcome this limitation, MLP extends the
perceptron by stacking multiple layers of neurons, each with its own weights and biases, and
applying a non-linear activation function to the output of each neuron. This allows MLP to learn
complex non-linear mappings between inputs and outputs.

Architecture of MLP

The architecture of MLP consists of an input layer, one or more hidden layers, and an output
layer. The input layer takes in the input data, which is usually a vector of features representing a
sample from the dataset. The hidden layers perform a series of non-linear transformations on the
input, while the output layer produces the final output of the network, which can be a single
scalar value or a vector of values depending on the task.Each neuron in MLP is connected to all
neurons in the previous layer and all neurons in the next layer. The weights and biases of the
connections are learned during training using an optimization algorithm such as
backpropagation. The weights represent the strength of the connection between neurons, while
the biases represent the threshold for neuron activation.

The activation function of MLP is a non-linear function that transforms the output of each
neuron into a non-linear range. Popular activation functions include the sigmoid function, the
hyperbolic tangent function, and the Rectified Linear Unit (ReLU) function. The choice of
activation function depends on the task and the architecture of the network.The number of
neurons in the input layer is determined by the number of features in the input data. The number
of neurons in the output layer is determined by the number of output values required by the task.
The number of neurons in the hidden layers is a hyperparameter that needs to be tuned during
training[1], [2].

Training of MLP

The training of MLP involves finding the optimal weights and biases of the connections between
neurons that minimize the error between the predicted output of the network and the true output.
The error is usually measured using a loss function, which is a mathematical function that
measures the difference between the predicted output and the true output.The most commonly
used loss function for regression problems is the mean squared error (MSE), which measures the
average squared difference between the predicted output and the true output. For classification
problems, the cross-entropy loss is often used, which measures the difference between the
predicted probability distribution and the true probability distribution.Neural networks are a class
of algorithms that are designed to identify patterns and are loosely based on the human brain.
They are able to classify or cluster raw input and interpret data using a kind of artificial
perception. The numerical vectors into which all the data of the actual world, including text,

93 Neural Networks

music, time series, and pictures, are expected to be translated include the patterns that they are
able to perceive.

To assist businesses, improve their comprehension of client demands and function more
effectively, Folio3 has been a dependable source of machine learning services. Natural language
processing, machine learning, predictive analysis, and computer vision projects have all been
completed successfully by our team of knowledgeable and tenacious consultants and data
scientists.The most well-known benefits of neural networks are their assistance in classifying and
clustering, among other benefits. They may be seen as a categorization of the layer of clustering
that is kept above the data that you save and manage. When the dataset is labeled by them to
train on, they are responsible for the categorization of the data and enable you to categorize the
unlabeled data based on similarities between example inputs. To be more accurate, machine
learning as a service applications that include algorithms for classification, regression, and
reinforcement learning may be thought of as bigger applications that include neural networks[3].

There are various benefits of neural networks, some of which are discussed below:

1. STORE INFORMATION ON THE ENTIRE NETWORK:

Just as in conventional programming, where data is kept on the network rather than in a database.
The network can still operate even if a few bits of information vanish from one location.

2. THE ABILITY TO WORK WITH INSUFFICIENT KNOWLEDGE:

The output generated by the data after ANN training may be inadequate or insufficient. The
significance of such missing information influences how poorly things work.

3. GOOD FALT TOLERANCE:

The output generation is unaffected if one or more artificial neural network cells become corrupt.
This improves the networks' ability to tolerate errors.

4. DISTRIBUTED MEMORY:

Outlining the examples and teaching the network according to the intended output by providing
it with those examples are both important for an artificial neural network to be able to learn. The
number of chosen instances directly relates to the network's development.

5. GRADUAL CORRUPTION:

A network does, in fact, slow down and incur relative deterioration with time. However, the
network is not instantly corroded.

6. ABILITY TO TRAIN MACHINE:

By making comments on comparable situations, ANN learns from experiences and makes
judgments.

7. THE ABILITY OF PARALLEL PROCESSING:

These networks may execute several functions at once because of their numerical strength.

8. THE ABILITY TO LEARN BY THEMSELVES:

94 Neural Networks

Neural networks, the foundation of deep learning, have the capacity for unsupervised learning
and may generate results that are not constrained by the inputs given to them.

9. THE ABILITY TO WORK WITH INSUFFICIENT DATA AND INFORMATION:

Even if there is limited or partial input, the network may still identify the problem and provide
the result. This is due to the fact that the damage to one or more neurons has no effect on the
whole output production.

10. THE ABILITY OF PARALLEL PROCESSING:

Multiple tasks may be carried out simultaneously by neural networks without compromising
system performance.

11. EFFECTIVE VISUAL ANALYSIS:

Neural networks' primary benefit is that they provide efficient visual processing. An artificial
neural network may execute more complicated tasks and activities than other machines since it is
analogous to a human's brain network. This entails categorizing visual information after doing an
analysis. Any website you visit that requests proof that you are not a robot is a common instance
of this benefit. Humans are better at analyzing visual data than robots, who struggle to do so.
Because of the need to distinguish between various photos and group photographs of a certain
kind together, this establishes that each person accessing a website is a human.

12. PROCESSING OF UNORGANIZED DATA:

The ability of neural networks to interpret disorganized input is another of its biggest advantages.
The ability of neural networks holds the key to the solution. Artificial neural networks, or ANNs,
are exceptionally good at organizing data by processing, sorting, and classifying it. Unorganized
data may be organized by being structured into a comparable pattern in conjunction with big data
analytics. The challenge of arranging disorganized data has become much simpler since ANNs
were introduced. Nowadays, computers can categorize disorganized data in a matter of minutes,
if not seconds, as opposed to the past when teams of experienced people had to spend entire days
doing so.

13. ADAPTIVE STRUCTURE:

The third benefit of neural networks is the adaptability of their structure. This implies that an
ANN adjusts its structure path to suit the objective of application, whatever that may be. The
topology of the neural networks is flexible and may be altered to conduct complicated tasks or
enhance a machine's cognitive skills. On the other hand, many machine learning techniques and
applications have generally inflexible architectures. Artificial neural networks, in contrast to
immutable structures, swiftly evolve, adapt, and adjust to new settings and demonstrate their
talents in line with this. This also suggests that the kind of training used to develop these
networks is somewhat less intensive and more accommodating[4].

14. USER-FRIENDLY INTERFACE:

The final benefit, among others, is that they have an intuitive user interface. Any machine or
artificial equipment must have a user-friendly interface and usability in order to succeed. It
should also be easy to utilize throughout and not too complicated to deal with. This applies to
accurately characterizing artificial neural networks. ANNs can be taught easily with a user-
friendly interface and few complications. They can also modify their architecture, which

95 Neural Networks

increases their usefulness for operating by semi-skilled and competent specialists. One of the
main benefits of this idea is that it can readily adapt to any professional team looking to work
with it. In the neural network, there are several different networks that operate independently and
carry out many smaller jobs. The calculation procedure does not need any kind of interactivity
between the participants[5].

DISCUSSION

Activation functions are mathematical functions applied to the weighted sum of the inputs of a
neuron to produce its output. Commonly used activation functions in MLP include the sigmoid
function, hyperbolic tangent function, and rectified linear unit (ReLU) function. The sigmoid
function maps the input to a value between 0 and 1, which can be interpreted as a probability.
The hyperbolic tangent function maps the input to a value between -1 and 1. The ReLU function
returns the input if it is positive, and zero otherwise [6].

Training MLP involves adjusting the weights and biases of the neurons to minimize the error
between the predicted output and the actual output. This process is known as backpropagation.
Backpropagation involves computing the gradient of the error with respect to each weight and
bias in the network using the chain rule of differentiation. The gradient is then used to update the
weights and biases using an optimization algorithm, such as stochastic gradient descent (SGD) or
Adam. SGD updates the weights and biases based on the negative gradient of the error with
respect to each parameter multiplied by a learning rate. Adam is a variant of SGD that adapts the
learning rate based on the first and second moments of the gradients.

MLP is a versatile neural network architecture that can be used for a wide range of applications,
such as image classification, speech recognition, and natural language processing. In image
classification, MLP is trained to classify images into different categories based on their features.
In speech recognition, MLP is trained to recognize spoken words or phrases based on the audio
signal. In natural language processing, MLP is used to model the relationship between words or
sentences and their meanings.

The advantages of MLP include its ability to model complex non-linear relationships between
input and output, its ability to generalize to new data, and its scalability to handle large datasets.
The disadvantages of MLP include its tendency to overfit the training data if the network is too
large or if the regularization is not applied, its sensitivity to the initial values of the weights and
biases, and its slow convergence if the network is too deep. We explore the numerous
characteristics of the multilayer perceptron, a neural network with one or more hidden layers, in
this chapter. Employ the solution to the intriguing XOR issue a problem that Rosenblatt's
perceptron cannot solve to demonstrate how the back-propagation technique may be used.
Several heuristics and useful pointers for improving the back-propagation method are provided.
A pattern-classification experiment using a multilayer perceptron trained with the back-
propagation approach. The error surface is covered go through back-propagation learning's core
purpose in calculating partial derivatives of a network-approximating function, we go through
computational concerns with the error surface's Hessian.

96 Neural Networks

We demonstrated that this network can only categorise patterns that can be separated along a
single axis. The LMS method developed by Widrow and Hoff was then used in Chapter 3 to
study adaptive filtering. This algorithm's computational capacity is additionally constrained by
the use of a single linear neuron with programmable weights as its foundation. We consider a
neural network structure called the multilayer perceptron to get beyond the practical constraints
of the perceptron and the LMS algorithm[7], [8].

The fundamental characteristics of multilayer perceptron:

a. Each neuron in the network has a differentiable nonlinear activation function in the model.
b. The network has one or more levels that input nodes and output nodes cannot see. The

synaptic weights of the network define the extent of the network's high degree of
connectedness.

Nevertheless, these same qualities are also to blame for the gaps in our understanding of the
network behaviour. First off, it is challenging to do a theoretical study of a multilayer perceptron
due to the existence of a dispersed type of nonlinearity and the high degree of network
connectedness. Second, it is more difficult to see the learning process when concealed neurons
are used. Implicitly, the learning process must choose which characteristics of the input pattern
the hidden neurons should represent. The search must be undertaken in a much broader set of
potential functions, and a decision must be made between several representations of the input
pattern, which makes the learning process more challenging. Figure 1 illustrate the Multi-Layer
Perceptron Learning in Tensor flow [9].

Figure 1: Illustrate the Multi-Layer Perceptron Learning in Tensor flow.

The LMS algorithm is a specific instance of the back-propagation algorithm, which is a common
technique for training multilayer perceptron.

There are two stages to the training:

1. The input signal travels through the network layer by layer until it reaches the output during
the forward phase, during which the synaptic weights of the network are fixed. As a result, at this
stage, changes are limited to the neuronal network's activation potentials and outputs.

2. In the reverse phase, an error signal is generated by contrasting the network's output with the
anticipated outcome. The resultant erroneous signal is sent across the network once again, layer
by layer, except this time it is transmitted backward. In this second stage, the network's synaptic

97 Neural Networks

weights are gradually altered. Calculating the changes for the output layer is simple, but for the
hidden layers it is considerably more difficult.

The phrase "back propagation" seems to have changed in use with the release of the influential
book Parallel Distributed Processing. The creation of the back-propagation algorithm in the
middle of the 1980s was a turning point for neural networks since it offered a computationally
effective way to train multilayer perceptron, dispelling any doubts about multilayer perceptrons'
ability to learn from Minsky and Papert's.

The architectural graph of a multiplayer perceptron with two hidden layers and an output layer.
The network shown here is completely linked to provide context for a discussion of the
multilayer perceptron in its generic form. This implies that every neuron (node) in the layer
before it is linked to every other neuron in the network. The network's signal flow proceeds layer
by layer, in a forward direction, from left to right.

Function Signals, first. A function signal is an input signal (stimulus) that enters at the input end
of the network, travels forward through the network (neuron by neuron), and exits as an output
signal at the output end of the network. For two reasons, we call this kind of signal a "function
signal." It is first assumed that it serves a purpose at the network's output. Second, the signal is
estimated as a function of the inputs and associated weights applied to each neuron in the
network through which it travels [10]. The input signal is another name for the function signal.

Error indicators. An erroneous signal begins its journey through the network at an output neuron
and moves backward (layer by layer). We call it a "error signal" because every neuron in the
network must perform some kind of error-dependent function in order to compute it. The output
layer of the network is made up of the output neurons. The network's leftover neurons make up
its hidden levels. The hidden units are thus not included in the network's output or input, which is
why they are given the name "hidden." The input layer, which is made up of sensory units
(source nodes), feeds the first hidden layer, which then applies its outputs to the second hidden
layer and so on for the remainder of the network.

A multilayer perceptron's hidden or output neurons are built to carry out the following two
computations: the computation of an estimate of the gradient vector (i.e., the gradients of the
error surface with respect to the weights connected to a neuron's inputs), which is required for
the backward pass through the network. The computation of the function signal appearing at the
output of each neuron, which is expressed as a continuous nonlinear function of the input signal
and synaptic weights associated with that neuron.

In order for a multilayer perceptron to function, the hidden neurons, which serve as feature
detectors, are essential. The hidden neurons eventually "find" the salient properties that
distinguish the training data as the learning process advances throughout the multilayer
perceptron. They do this by applying a nonlinear transformation to the input data to create the
feature space, a brand-new space. The classes of interest in a pattern-classification job, for
instance, could be easier to distinguish from one another in this new space than they would have
been in the initial input data space. The multilayer perceptron differs from Rosenblatt's
perceptron in that its feature space was created via supervised learning.

98 Neural Networks

It is helpful to focus on the idea of credit assignment while researching learning algorithms for
distributed systems, such as the multilayer perceptron. The credit-assignment issue, in its
simplest form, is the challenge of attributing praise or blame for overall results to each internal
choice made by the distributed learning system's hidden computing units while also
acknowledging that those decisions are ultimately to blame. The credit-assignment issue occurs
in a multilayer perceptron employing error-correlation learning because each hidden neuron and
each output neuron in the network must function correctly for the network to operate correctly
overall on an interest learning task. That is, via a definition of the error-correction learning
process, the network must assign certain kinds of behavior to all of its neurons in order to
complete the job that has been prescribed. With this context in mind, think about the multilayer
perceptron. Each output neuron may get a desired response to direct its activity since they are all
externally observable. As a result, it is simple to modify each output neuron's synaptic weight in
line with the error-correction algorithm when it comes to output neurons. Yet when the error-
correction learning method is employed to change the relevant synaptic weights of these neurons,
how can we award praise or blame for the behavior of the hidden neurons? Compared to output
neurons, the solution to this basic issue needs more in-depth consideration.

In the sections that follow, we'll demonstrate how the credit-assignment issue may be elegantly
solved using the back-propagation process, which is fundamental to training a multilayer
perceptron. But, before doing so, we first go through two fundamental supervised learning
techniques in the next section. A multilayer perceptron has an input layer made up of source
nodes, one or more hidden layers, and an output layer made up of one or more neurons. Suppose
t = x(n), d(n) (4.1) N \sn=1 \s126 The training sample used to oversee the network's training is
referred multilayer Perceptrons. Let yj (n) represent the function signal that the stimulus x(n)
supplied to the input layer generated at neuron j's output in the output layer. In accordance with
this, the error signal generated at neuron j's output is specified where dj (n) is the ith element of
the desired-response vector d. (n). In accordance with the language[11]. We calculate the total
instantaneous error energy of the whole network by adding the error-energy contributions of
each neuron in the output layer, and where set C is the set that contains all of the output layer's
neurons.

CONCLUSION

MLP is a powerful neural network architecture that can learn complex non-linear relationships
between input and output. It consists of multiple layers of interconnected neurons that perform
computations using activation functions. Training MLP involves adjusting the weights and biases
of the neurons using back propagation and an optimization algorithm. MLP has a wide range of
applications and offers many advantages, but it also has some disadvantages that must be taken
into account.

REFERENCES

[1] S. Savalia and V. Emamian, “Cardiac arrhythmia classification by multi-layer perceptron
and convolution neural networks,” Bioengineering, 2018, doi:
10.3390/bioengineering5020035.

99 Neural Networks

[2] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A Stochastic Computational Multi-
Layer Perceptron with Backward Propagation,” IEEE Trans. Comput., 2018, doi:
10.1109/TC.2018.2817237.

[3] S. Yao et al., “STFNets: Learning sensing signals from the time-frequency perspective
with short-time fourier neural networks,” in The Web Conference 2019 - Proceedings of

the World Wide Web Conference, WWW 2019, 2019. doi: 10.1145/3308558.3313426.

[4] S. Fu, Z. Li, K. Liu, S. Din, M. Imran, and X. Yang, “Model Compression for IoT
Applications in Industry 4.0 via Multiscale Knowledge Transfer,” IEEE Trans. Ind.

Informatics, 2020, doi: 10.1109/TII.2019.2953106.

[5] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text
classification,” in Proceedings of the National Conference on Artificial Intelligence, 2015.
doi: 10.1609/aaai.v29i1.9513.

[6] K. Shuang, H. Guo, Z. Zhang, J. Loo, and S. Su, “A word-building method based on
neural network for text classification,” J. Exp. Theor. Artif. Intell., 2019, doi:
10.1080/0952813X.2019.1572654.

[7] S. Wan, Y. Liang, Y. Zhang, and M. Guizani, “Deep Multi-Layer perceptron classifier for
behavior analysis to estimate Parkinson’s disease severity using smartphones,” IEEE
Access, 2018, doi: 10.1109/ACCESS.2018.2851382.

[8] P. Zhang, Y. Jia, J. Gao, W. Song, and H. Leung, “Short-Term Rainfall Forecasting Using
Multi-Layer Perceptron,” IEEE Trans. Big Data, 2018, doi: 10.1109/tbdata.2018.2871151.

[9] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. R. Müller, “Toward
interpretable machine learning: Transparent deep neural networks and beyond,” arXiv,
2020.

[10] S. Yao et al., “STFNets: Learning Sensing Signals from the Time-Frequency Perspective
with Short-Time Fourier Neural Networks KEYWORDS Deep learning; time frequency
analysis; Internet of Things; IoT ACM Reference Format,” Web Conf. 2019 - Proc. World

Wide Web Conf. WWW 2019, 2019.

[11] L. Santiago et al., “Weightless Neural Networks as Memory Segmented Bloom Filters,”
Neurocomputing, 2020, doi: 10.1016/j.neucom.2020.01.115.

100 Neural Networks

CHAPTER 11

HEURISTICS FOR MAKING THE BACK-PROPAGATION ALGORITHM

PERFORM BETTER
Dr. Shilpa Mehta, PROF, DEAN Academics

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-shilpamehta@presidencyuniversity.in

ABSTRACT:

The back propagation algorithm is a widely used technique for training neural networks.
However, it is not always easy to get good performance from this algorithm. In recent years,
researchers have developed a number of heuristics to help make the back propagation algorithm
perform better. By applying these heuristics, researchers have been able to achieve state-of-the-
art performance on a wide range of tasks using the back propagation algorithm.

KEYWORDS:

Algorithm, Back Propagation, Neural Network, Gaussian distribution, Weight Initialization.

INTRODUCTION

The backpropagation algorithm is an essential component of training neural networks. It involves
calculating the gradient of the cost function with respect to the weights and biases of the
network, and using this gradient to update these parameters. While the algorithm is relatively
simple in theory, in practice, there are several heuristics that can be applied to make it perform
better. In this article, we will discuss some of these heuristics in detail.

1. Weight Initialization One of the most important factors affecting the performance of
backpropagation is the initial values of the weights and biases. If these values are too
large or too small, the gradients may explode or vanish, which can make training
difficult. Therefore, it is important to initialize the weights and biases in a way that
allows the gradients to flow smoothly through the network.

One common initialization method is to randomly initialize the weights using a Gaussian
distribution with mean zero and standard deviation of sqrt(1/n), where n is the number of inputs
to the weight. This ensures that the weights are initialized to small values, which can help
prevent the gradients from exploding. Another popular method is the Xavier initialization, which
sets the standard deviation of the Gaussian distribution to sqrt(2/n), where n is the sum of the
number of inputs and outputs to the weight.

2. Batch Normalization Batch normalization is a technique for normalizing the inputs to a
layer, which can improve the performance of back propagation. The idea behind batch
normalization is to normalize the inputs to a layer so that they have zero mean and unit
variance. This can help prevent the gradients from exploding or vanishing, and can also
help the network converge faster[1].

101 Neural Networks

Batch normalization is usually applied after the linear transformation of the layer and before the
activation function. Specifically, for a batch of inputs X, the normalized inputs Y are calculated
as:

Y = (X - mu) / sigma

Where mu and sigma are the mean and standard deviation of the inputs, respectively. The
normalized inputs are then transformed using the layer's weights and biases, and passed through
the activation function.

3. Dropout Dropout is a technique for preventing overfitting in neural networks, which can
improve the performance of backpropagation. The idea behind dropout is to randomly
"drop out" some of the neurons in a layer during training, so that the network is forced to
learn more robust features.

During training, each neuron in the layer is dropped out with a probability p. The output of the
layer is then scaled by a factor of 1 / (1 - p) to ensure that the expected value of the output is the
same as during testing.

4. Early Stopping Early stopping is a technique for preventing overfitting in neural
networks, which can improve the performance of backpropagation. The idea behind early
stopping is to monitor the performance of the network on a validation set during training,
and stop training when the performance on the validation set starts to decrease.

Early stopping works by dividing the data into three sets: a training set, a validation set, and a
test set. The network is trained on the training set, and the performance on the validation set is
monitored after each epoch. When the performance on the validation set starts to decrease,
training is stopped, and the weights that achieved the best performance on the validation set are
used for testing[2].

5. Learning Rate Scheduling The learning rate is a hyperparameter that controls how much
the weights and biases of the network are updated during each iteration of
backpropagation. If the learning rate is too small, the network may converge too slowly,
while if it is too large, the network may oscillate or diverge.

One heuristic for choosing the learning rate is to start with a relatively large learning rate and
then decrease it over time. This is known as learning rate scheduling.

Learning rate scheduling can be implemented in several ways. One common approach is to use a
fixed schedule, where the learning rate is decreased by a fixed factor after a fixed number of
epochs. For example, the learning rate may be divided by 10 every 10 epochs.Another approach
is to use a learning rate schedule that adapts to the performance of the network. One such
schedule is the learning rate decay, which reduces the learning rate by a factor of 1/2 whenever
the validation error plateaus. Another schedule is the learning rate annealing, which reduces the
learning rate by a factor of 1/10 every time the validation error stops decreasing.

6. Momentum Momentum is a technique for smoothing the weight updates in
backpropagation, which can improve the performance of the network. The idea behind

102 Neural Networks

momentum is to accumulate a weighted average of the previous weight updates, and use
this average to update the weights.

During training, the weight update is calculated as follows:

delta_W(t) = - learning_rate * dE/dW(t) + momentum * delta_W(t-1)

where delta_W(t) is the weight update at time t, learning_rate is the learning rate, dE/dW(t) is the
gradient of the cost function with respect to the weights at time t, momentum is a hyperparameter
that controls the weight of the previous updates, and delta_W(t-1) is the previous weight update.

By using momentum, the weight updates can be smoothed, which can help the network converge
faster and avoid oscillations.

7. Weight Decay Weight decay is a technique for preventing overfitting in neural networks,
which can improve the performance of backpropagation. The idea behind weight decay is
to add a penalty term to the cost function that discourages large weights.

The penalty term is usually proportional to the L2 norm of the weights, and is given by:

lambda * ||W||^2

where lambda is a hyperparameter that controls the strength of the penalty, and ||W||^2 is the L2
norm of the weights.

By adding a penalty term to the cost function, the network is encouraged to use smaller weights,
which can help prevent overfitting and improve generalization.

8. Gradient Clipping Gradient clipping is a technique for preventing the gradients from
exploding in backpropagation, which can improve the performance of the network. The
idea behind gradient clipping is to limit the size of the gradients, so that they do not
become too large.

During training, the gradients are clipped if their norm exceeds a certain threshold. Specifically,
the gradients are scaled down so that their norm is equal to the threshold.

Gradient clipping can help prevent the gradients from exploding, which can improve the stability
of the network and prevent numerical errors.

9. Weight Constraints Weight constraints are a technique for regularizing neural networks,
which can improve the performance of backpropagation. The idea behind weight
constraints is to limit the size of the weights, so that they do not become too large.

One common weight constraint is the L2 weight constraint, which restricts the L2 norm of the
weights to be less than or equal to a certain value. Another constraint is the L1 weight constraint,
which restricts the sum of the absolute values of the weights to be less than or equal to a certain
value [3].

By constraining the size of the weights, the network is encouraged to use smaller weights, which
can help prevent overfitting and improve generalization.

103 Neural Networks

10. Batch Size The batch size is a hyperparameter that controls how many samples are used
to compute the gradient in backpropagation. If the batch size is too small, the gradient
may be noisy, which can make training difficult. If the batch size is too large, the
memory requirements may become too high[4], [5].

DISCUSSION

The backpropagation algorithm is a widely used technique for training neural networks. It is an
optimization method that allows the network to learn from the data by adjusting the weights of
the connections between the neurons. However, training a neural network using backpropagation
can be a challenging task, especially for large and complex networks. In this, we will explore
various heuristics that can help make the backpropagation algorithm perform better. These
heuristics can improve the convergence speed, generalization performance, and robustness of the
neural network.

1. Choosing the Right Activation Function:

The activation function is a crucial component of a neural network that determines the output of
a neuron based on its input. The choice of activation function can have a significant impact on
the performance of the backpropagation algorithm. The most commonly used activation
functions are sigmoid, tanh, and ReLU.

Sigmoid and tanh activation functions were widely used in the past, but they suffer from the
vanishing gradient problem. The vanishing gradient problem occurs when the gradient of the
activation function approaches zero, causing the network to learn slowly or not at all. To mitigate
this problem, the ReLU activation function was introduced, which has become the most popular
activation function for deep neural networks.

ReLU activation function is defined as f(x) = max (0, x), where x is the input to the neuron. The
ReLU function is simple, computationally efficient, and has a derivative that is easy to compute.
The ReLU activation function also helps to avoid the vanishing gradient problem by allowing the
gradients to flow back through the network without vanishing. However, the ReLU function
suffers from the dying ReLU problem, where some neurons can become inactive and never
activate again.

2. Initializing Weights Properly:

The initial weights of the neural network can have a significant impact on the performance of the
backpropagation algorithm. If the weights are initialized randomly, the network may take a long
time to converge or get stuck in a local minimum.

Several methods can be used to initialize the weights of the network, such as Xavier
initialization, He initialization, and Glorot initialization. These methods aim to set the initial
weights such that the activations of the neurons are neither too large nor too small.

Xavier initialization is a popular method that sets the weights of the network to random values
sampled from a normal distribution with a mean of zero and a standard deviation of sqrt(2/n),

104 Neural Networks

where n is the number of input connections to the neuron. The Xavier initialization is useful for
sigmoid and tanh activation functions.

He initialization is another popular method that sets the weights of the network to random values
sampled from a normal distribution with a mean of zero and a standard deviation of sqrt(2/n),
where n is the number of input connections to the neuron. However, He initialization is more
suitable for ReLU activation functions.

3. Using Mini-Batch Gradient Descent:

The backpropagation algorithm updates the weights of the network after processing each training
example. This approach is called stochastic gradient descent (SGD), and it can be slow and prone
to convergence issues. To overcome these issues, mini-batch gradient descent can be used.

In mini-batch gradient descent, the training data is divided into small batches, and the weights of
the network are updated after processing each batch. The batch size can be chosen based on the
available memory and the size of the training data. A larger batch size can lead to faster
convergence but can also result in overfitting.

4. Regularization Techniques:

Regularization techniques can be used to prevent overfitting, which occurs when the network
memorizes the training data instead of generalizing to new data. Overfitting can be a problem
when the network is too complex or when there is limited training data.

Two popular regularization techniques are L1 and L2 regularization. L1 regularization adds a
penalty term to the cost function that encourages the weights of the network to be sparse. L2
regularization adds a penalty term that encourages the weights to be small. These regularization
techniques can help prevent overfitting and improve the generalization performance of the
network[6].

Another regularization technique is dropout, which randomly drops out some neurons during
training. This technique forces the network to learn more robust features by preventing neurons
from co-adapting. Dropout has been shown to be an effective regularization technique for
improving the performance of neural networks.

5. Using Adaptive Learning Rate:

The learning rate is a hyperparameter that determines the step size of the weight updates in the
backpropagation algorithm. Choosing an appropriate learning rate can be challenging since a
high learning rate can cause the network to diverge, and a low learning rate can cause the
network to learn slowly.One approach to address this issue is to use adaptive learning rate
methods, such as Adagrad, Adadelta, and Adam. These methods adjust the learning rate based on
the history of the gradients and the weights. Adaptive learning rate methods can help the network
converge faster and can be less sensitive to the choice of the initial learning rate[7].

105 Neural Networks

6. Early Stopping:

Early stopping is a simple but effective technique that can prevent overfitting and improve the
generalization performance of the network. In early stopping, the training process is stopped
before the network overfits the training data. The stopping criterion can be based on the
validation loss or the validation accuracy.

During training, the network is evaluated on a validation set after processing each epoch. If the
validation loss or accuracy does not improve for several epochs, the training process is stopped,
and the weights of the network that achieved the best validation performance are used.

7. Batch Normalization:

Batch normalization is a technique that can help improve the convergence speed and the
generalization performance of the network. Batch normalization normalizes the inputs to each
layer of the network, which helps to reduce the internal covariate shift.Internal covariate shift
occurs when the distribution of the inputs to a layer change during training, which can slow
down the convergence of the network. Batch normalization can help to mitigate this problem by
normalizing the inputs to each layer. Batch normalization has been shown to be an effective
technique for improving the performance of deep neural networks.

A common strategy is to use mini-batch training, where the data is divided into small batches,
and the gradients are computed for each batch. The batch size is typically chosen to balance the
tradeoff between noise in the gradients and memory requirements[8], [9].

Another approach is to use stochastic gradient descent (SGD), where the batch size is set to 1. In
this case, the gradient is computed for each sample individually, which lead to noisy gradients,
but can can also provide faster convergence and better generalization. Early Stopping Early
stopping is a technique for preventing overfitting in neural networks, which can improve the
performance of backpropagation.

The idea behind early stopping is to monitor the validation error during training, and stop
training when the validation error starts increasing. During training, the network is evaluated on
a validation set at regular intervals. If the validation error does not improve for a certain number
of epochs, training is stopped early, and the network with the lowest validation error is saved.

Early stopping can help prevent overfitting, and improve the generalization performance of the
network. Dropout Dropout is a regularization technique for neural networks, which can improve
the performance of backpropagation. The idea behind dropout is to randomly drop out (i.e., set to
zero) a fraction of the neurons in the network during each training iteration. During training,
each neuron is kept with a probability of p, and dropped out with a probability of 1-p. The
dropout probability p is a hyperparameter that controls the strength of the regularization.By
randomly dropping out neurons during training, dropout can prevent overfitting and improve
generalization. Dropout can also act as a form of ensembling, since it trains multiple
subnetworks with shared weights.

106 Neural Networks

Batch Normalization Batch normalization is a technique for normalizing the inputs to each layer
in a neural network, which can improve the performance of backpropagation. The idea behind
batch normalization is to normalize the activations of each layer so that they have zero mean and
unit variance. During training, the mean and variance of each layer are estimated over the mini-
batch, and the activations are normalized using the estimated statistics. The normalized
activations are then rescaled and shifted using learnable parameters, which can be optimized
during training. Batch normalization can help stabilize the training of neural networks, and
prevent the vanishing gradient problem. Batch normalization can also act as a form of
regularization, since it adds noise to the activations [10].

CONCLUSION

Back propagation is a powerful algorithm for training neural networks, but it can be challenging
to optimize. By using a combination of heuristics, such as learning rate schedules, momentum,
weight decay, gradient clipping, weight constraints, batch size, early stopping, dropout, and
batch normalization, it is possible to improve the performance of back propagation. These
heuristics can help prevent over fitting, improve generalization, speed up convergence, and
stabilize the training of neural networks. However, it is important to carefully choose and tune
the hyper parameters of these heuristics, as they can have a significant impact on the
performance of the network.

REFERENCES

[1] Á. M. Navarro and P. Moreno-Ger, “Comparison of Clustering Algorithms for Learning
Analytics with Educational Datasets,” Int. J. Interact. Multimed. Artif. Intell., 2018, doi:
10.9781/ijimai.2018.02.003.

[2] N. Castelo, M. W. Bos, and D. R. Lehmann, “Task-Dependent Algorithm Aversion,” J.
Mark. Res., 2019, doi: 10.1177/0022243719851788.

[3] T. Appelhans, E. Mwangomo, D. R. Hardy, A. Hemp, and T. Nauss, “Evaluating machine
learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro,
Tanzania,” Spat. Stat., 2015, doi: 10.1016/j.spasta.2015.05.008.

[4] P. Parpart, M. Jones, and B. C. Love, “Heuristics as Bayesian inference under extreme
priors,” Cogn. Psychol., 2018, doi: 10.1016/j.cogpsych.2017.11.006.

[5] D. Quiñones, C. Rusu, and V. Rusu, “A methodology to develop usability/user experience
heuristics,” Comput. Stand. Interfaces, 2018, doi: 10.1016/j.csi.2018.03.002.

[6] E. T. Price, “Warfarin pharmacogenomics and African ancestry,” Blood, 2015, doi:
10.1182/blood-2015-06-649509.

[7] S. S. Choong, L. P. Wong, and C. P. Lim, “Automatic design of hyper-heuristic based on
reinforcement learning,” Inf. Sci. (Ny)., 2018, doi: 10.1016/j.ins.2018.01.005.

[8] S. Bobadilla-Suarez and B. C. Love, “Fast or Frugal, but Not Both: Decision Heuristics
Under Time Pressure,” J. Exp. Psychol. Learn. Mem. Cogn., 2018, doi:
10.1037/xlm0000419.

107 Neural Networks

[9] B. D. Pulford, A. M. Colman, E. K. Buabang, and E. M. Krockow, “The persuasive power
of knowledge: Testing the confidence heuristic,” J. Exp. Psychol. Gen., 2018, doi:
10.1037/xge0000471.

[10] E. J. Phua and N. K. Batcha, “Comparative analysis of ensemble algorithms’prediction
accuracies in education data mining,” Journal of Critical Reviews. 2020. doi:
10.31838/jcr.07.03.06.

108 Neural Networks

CHAPTER 12

OPTIMAL ANNEALING AND ADAPTIVE CONTROL OF THE

LEARNING RATE
Dr. Govind Singh, Assistant Professor

Department of Computer Science and Engineering, Sanskriti University, Mathura, Uttar Pradesh, India
Email id- govind@sanskriti.edu.in

ABSTRACT:

Training deep neural networks involves tuning various hyperparameters, with the annealing
schedule and learning rate being two of the most crucial ones. The annealing schedule
determines the rate at which the learning rate decays during training, while the learning rate
decides the magnitude of weight updates during each training step. In this article, we delve into
optimal annealing and adaptive control of the learning rate. We discuss different annealing
schedules, including constant, step decay, exponential decay, cosine annealing, and cyclical
annealing, along with their advantages and limitations. Moreover, we explore various adaptive
learning rate algorithms such as AdaGrad, RMSProp, and Adam, and their significance in
adjusting the learning rate based on the model's performance. We provide recommendations on
how to choose optimal hyperparameters based on the dataset and model architecture to achieve
efficient training of deep neural networks.

KEYWORDS:

Adaptive Control, Dataset, Optimal Annealing, Hyper parameters, Neural Network.

INTRODUCTION

Training deep neural networks is a challenging task that requires adjusting numerous
hyperparameters to achieve optimal results. Two of the most important hyperparameters to tune
during training are the annealing schedule and the learning rate. The annealing schedule controls
the rate at which the learning rate decays during training, while the learning rate determines how
much the weights of the neural network are updated during each training step.

In this, we will explore the concepts of optimal annealing and adaptive control of the learning
rate. We will discuss various annealing schedules and adaptive learning rate algorithms, as well
as their strengths and weaknesses. We will also provide practical recommendations for choosing
optimal hyperparameters based on the characteristics of the dataset and model architecture.

Annealing Schedules:

The annealing schedule determines how the learning rate is decayed during training. There are
several different annealing schedules that are commonly used in practice:

109 Neural Networks

1. Constant learning rate: In this schedule, the learning rate remains constant throughout
the entire training process. This schedule is rarely used in practice, as it can lead to slow
convergence and unstable training.

2. Step decay: In this schedule, the learning rate is reduced by a fixed factor after a certain
number of epochs. For example, the learning rate might be reduced by a factor of 10
every 30 epochs. This schedule is simple to implement and can be effective for some
problems, but it may not be optimal for all datasets and architectures.

3. Exponential decay: In this schedule, the learning rate is decayed exponentially over time.
For example, the learning rate might be decayed by a factor of 0.1 every 30 epochs. This
schedule can be effective for some problems, but it can also lead to overfitting if the
learning rate is decayed too quickly.

4. Cosine annealing: In this schedule, the learning rate is decayed in a cosine-shaped curve.
This schedule is designed to allow the learning rate to explore a wide range of values and
avoid getting stuck in local minima. This schedule can be effective for complex problems
with many local minima[1], [2].

5. Cyclical annealing: In this schedule, the learning rate is cycled between a minimum and
maximum value. For example, the learning rate might be cycled between 0.001 and 0.1
over the course of 50 epochs. This schedule can be effective for problems where the
optimal learning rate is difficult to determine, but it can also lead to instability if the cycle
is not properly tuned.

Adaptive Learning Rate Algorithms:

Adaptive learning rate algorithms adjust the learning rate during training based on the
performance of the model. There are several different adaptive learning rate algorithms that are
commonly used in practice:

1. AdaGrad: In this algorithm, the learning rate is adjusted based on the historical gradient
information. Specifically, the learning rate is reduced for parameters with large gradients
and increased for parameters with small gradients. This algorithm can be effective for
problems with sparse gradients, but it may not be optimal for all datasets and
architectures.

2. RMSProp: In this algorithm, the learning rate is adjusted based on a moving average of
the squared gradient values. Specifically, the learning rate is reduced for parameters with
large moving average values and increased for parameters with small moving average
values. This algorithm can be effective for problems with noisy gradients, but it may also
lead to slow convergence.

Optimal annealing and adaptive control of the learning rate are two techniques used in deep
learning to improve the performance of neural networks. In this essay, we will discuss these two
techniques in detail and compare their advantages and disadvantages. We will start with an
introduction to deep learning and the importance of learning rate in neural network training.

110 Neural Networks

Deep Learning:

Deep learning is a subfield of machine learning that uses deep neural networks to learn from
data. Neural networks are composed of layers of neurons that process inputs and produce
outputs. Deep neural networks have many layers, allowing them to learn complex patterns in
data. Deep learning has been successful in a variety of applications, including image recognition,
speech recognition, and natural language processing.

In deep learning, the learning rate is a hyperparameter that controls the size of the updates to the
weights of the neural network during training. The learning rate determines how much the
weights are adjusted in response to the error in the output of the neural network. If the learning
rate is too small, the network will learn very slowly. If the learning rate is too large, the network
may overshoot the optimal weights and fail to converge.

Optimal Annealing:

Optimal annealing is a technique used to schedule the learning rate during training. The idea
behind optimal annealing is to start with a large learning rate and gradually reduce it as the
training progresses. The learning rate is reduced at regular intervals, or epochs, during training.
The goal is to find the optimal learning rate that will allow the neural network to converge to the
minimum of the loss function.

Optimal annealing is based on the observation that the loss function of neural networks is non-
convex and has many local minima. The learning rate determines the size of the steps taken
during gradient descent, and if the learning rate is too large, the algorithm may jump out of the
current local minimum and fail to converge to the global minimum. By gradually reducing the
learning rate, the algorithm can converge to the global minimum.

There are several methods for scheduling the learning rate during training. One common method
is to use a step function, where the learning rate is reduced by a factor of 10 after a fixed number
of epochs. Another method is to use a polynomial function, where the learning rate is reduced
according to a polynomial function of the epoch number. The choice of the scheduling method
depends on the specific problem and the architecture of the neural network.

Advantages and Disadvantages of Optimal Annealing:

The main advantage of optimal annealing is that it can improve the performance of the neural
network by allowing it to converge to the global minimum of the loss function. By gradually
reducing the learning rate, the algorithm can avoid overshooting the minimum and jumping out
of the current local minimum. This can lead to faster convergence and better performance.

One disadvantage of optimal annealing is that it requires tuning of the learning rate schedule.
The choice of the scheduling method and the parameters of the schedule can have a significant
impact on the performance of the neural network. Finding the optimal schedule can be time-
consuming and requires experimentation.

111 Neural Networks

Adaptive Control of the Learning Rate:

Adaptive control of the learning rate is another technique used to improve the performance of
neural networks. Unlike optimal annealing, which schedules the learning rate based on a fixed
schedule, adaptive control adjusts the learning rate dynamically during training.

The idea behind adaptive control is to monitor the performance of the neural network during
training and adjust the learning rate accordingly. If the network is improving rapidly, the learning
rate can be increased to accelerate the learning process. If the network is not improving, the
learning rate can be decreased to avoid overshooting the minimum and to allow the network to
explore other regions of the parameter space.

DISCUSSION

We may soon see additional developments in the use of neural networks, given how quickly
businesses are adopting AI and machine learning at the moment. Users everywhere will have
access to a broad range of customised options thanks to AI and machine learning. Neural
networks, for instance, may provide the improved tailored experience that all mobile and online
apps strive to provide you with depending on your search history.

Virtual assistants that are very clever will simplify life. If you've ever used a product like Siri,
Google Assistant, or another one, you can see how they're progressively developing. They could
even anticipate your future email answers. We may anticipate fascinating algorithmic
breakthroughs that help learning techniques. However, the use of neural networks and artificial
intelligence in the actual world is still in its infancy. Future neural networks will operate much
more quickly, and neural network tools may be integrated into any design surface.

 Already available is a tiny small neural network that can be plugged into a low-cost processor
board or even your laptop. Such gadgets would run much quicker if the hardware were the
primary emphasis rather than the software. In addition, neural networks will be used in everything
you can think of, including physics, medicine, agriculture, and research. Additionally, neural
networks will be used in everything you can think of, including physics, agriculture, medicine,
and research[3].

Neural networks, often known as neural nets, are still functional today. Computer programs
known as neural nets are constructed from tens of thousands to millions of pieces, each of which
is intended to work like an artificial neuron. A neural network is generally given data while it is
being "trained," enabling it to detect patterns like recognizing recognized faces in pictures or
determining the proper technique to strike a tennis ball.

 After receiving input, neural networks adjust how they handled the situation, "learning" how to
do better over time. After training, neural networks are capable of resolving a broad range of
issues. They can identify trigger points in a pattern automatically (like identifying a face in a
picture or identifying a medical condition), they can carry out complex operations without
supervision, and they can notice deviations in historical patterns proactively so you can receive
alerts on new events pertinent to your business (like when playing a game).

The technical advancement that has the greatest promise in the near future is probably neural
networks. Neural networks have the potential to automate almost any computational or reflective
operation, and one day, they may even have more processing capability than the human brain.

112 Neural Networks

These days, technology and the brain are tightly intertwined. Modern computer programs adjust
for the characteristics of human brains (in marketing, for example), while human brains account
for the characteristics of technology (if you're lost, just use Google Maps). A neuron is essentially
simply a node with several inputs and one output. Numerous linked neurons make up a neural
network. In reality, it is a "simple" gadget that takes data from the input and responds to it. The
neural network must first learn to link incoming and outgoing information; this is known as
learning. The neural network then starts to operate, receiving input data and producing output
signals depending on the learned information.

Most likely, separating signal from noise was a neural network's original evolutionary purpose in
the natural world. Noise is unpredictable and difficult to organize into a pattern. An electrical,
mechanical, or chemical surge is a "signal," which is already hardly random. Now, neural systems
in technology (along with biological ones) have mastered not just the skill of separating a signal
from background noise but also the ability to distinguish various states of the environment at
various levels of abstraction. Specifically, to detect these characteristics independently rather than
only taking into consideration the ones the programmers have defined.

There are two areas of study of neural networks:

1. The development of computer simulations that accurately reproduce how the neurons in
the human brain work. It enables greater understanding of the mechanics behind the
functioning of the actual brain as well as the detection and treatment of disorders and
damage to the central nervous system. In daily life, for instance, it enables us to create
more individualized user interfaces, get closer to the human, and understand more about a
person's preferences by gathering and analyzing data.

2. Creation of computer simulations that abstractly replicate the actual brain's cell models in
action. It enables the processing of massive volumes of data while using all the benefits of
the human brain, including noise immunity and energy economy. Deep learning, for
instance, is becoming more prominent in this area.

Understanding and using cognitive science is a crucial component of designing and training
neural networks. Philosophy, psychology, linguistics, anthropology, and neuroscience are all used
in this area of study to examine the mind and its workings. Many scientists consider that the
development of artificial intelligence is just another application of cognitive science, showing
how the operation of human thought may be replicated in computers. The Kahneman decision-
making model, which determines whether a person makes a choice consciously or unconsciously
at any given time and is currently often employed in marketing AI, is a startling illustration of
cognitive science [4].

When neural networks learn new data representations, they do so by fusing neurons from several
layers with weights and biases. Every time a training cycle takes place, they modify the weights
of these connections using a mathematical method known as backpropagation. Each cycle sees an
improvement in the weights and biases until an optimum is reached. In other words, a neural
network may assess its error rate after each training cycle, change the weights and biases of each
neuron, and then retry. It will invest in a tweak until an ideal outcome is reached if it finds that it
generates better outcomes than the prior round.

113 Neural Networks

In essence, three things occur in a single cycle. The first one is called forward propagation, and it
involves computing the outcomes using inputs, biases, and weights. The second stage involves
utilizing a loss function to determine how much the estimated value deviates from the predicted
value. The last phase is to perform a process known as backpropagation, which involves updating
the weights and biases as they move in the opposite direction of forward propagation. One of the
key components of artificial intelligence is neural networks. They have been available for years
and are used in hundreds of apps (you use one whenever your smartphone utilizes face
recognition) (finance, business analytics, and enterprise training). However, they are becoming
more and more common.

But what exactly is a neural network, and how are they revolutionizing technology? What do you
need to know about artificial neural networks and how are they altering the internet? These
computer programs that simulate the human brain are simpler to grasp than you would imagine,
and they're providing unparalleled processing power and novel, intriguing advantages. The neural
network approach's initial objective was to develop a computing system that could handle issues
similarly to a human brain. However, over time, researchers began to veer away from a purely
biological approach in favor of employing neural networks to fit certain tasks. Since then, neural
networks have assisted a variety of activities, such as computer vision, voice recognition, machine
translation, social network filtering, playing board games and video games, and medical
diagnosis.

Considering a single perceptron (or neuron) as a logistic regression is one option. An artificial
neural network, or ANN, has several perceptrons or neurons at each layer. A feed-forward neural
network is another name for an ANN since all inputs are processed in the forward direction. As
you can see, an ANN has three layers: an input layer, a hidden layer, and an output layer. A
hidden layer processes inputs after they are received by the input layer, and the output layer
subsequently produces the output. In essence, each layer attempts to learn certain weights. Any
nonlinear function may be learned by an artificial neural network [5].

Thus, these networks are sometimes referred to as "universal function approximators" in
common use. ANNs are capable of learning weights that correspond to any input and output. The
activation function is one of the primary justifications for universal approximation. The network
acquires nonlinear characteristics as a result of activation functions. This aids the network's
ability to learn any intricate connections between input and output. Prior to training the model
depicted in Figure 1 in order to solve an image classification issue using ANN, a 2-dimensional
picture must first be converted into a 1-dimensional vector.

Recurrent neural networks (RNNs) are a kind of neural network where the output of one stage is
used as the input for the subsequent stage. Although the inputs and outputs of traditional neural
networks are independent of one another, it is required to remember the words that came before
when predicting the next word in a sentence. RNN was created as a consequence, and it employed
a Hidden Layer to tackle this issue. The main and most important property of RNNs is the
Hidden state, which keeps some information about a sequence. RNNs keep all the information
needed for computations in a "memory." It uses the same parameters for each input and performs
the same action on each input or hidden layer to produce the output. This reduces the complexity
of the parameter set compared to other neural networks.

114 Neural Networks

A particular kind of neural network used to handle sequential data is the recurrent neural network.
RNN's ability to remember what happened in the past is really a result of the fact that it considers
not just the current input but also the prior input. To better understand RNN, let's use the task of
text classification as an example. For this task, we can use traditional machine learning algorithms
like naive bayes, but the drawback of this algorithm is that it treats a sentence as a collection of
independent words and precisely the frequency of each word, ignoring the composition of words
or the order of words in a sentence, both of which are crucial factors in determining the meaning
of a sentence. The structure of the recurrent neural networks.Figure 1 illustrate the Learning Rate
Annealing Method for Deep Learning.

Figure 1: Illustrate the Learning Rate Annealing Method for Deep Learning.

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning technique that can take in
an input image, assign distinct objects and components importance (learnable weights and
biases), and be able to differentiate between them. In comparison to other classification methods,
a ConvNet needs much less pre-processing. Contrary to basic approaches, where filters are hand-
engineered, ConvNets have the ability to learn these filters and attributes. For deep learning
algorithms, a CNN is a specific kind of network architecture that is used for tasks like image
recognition and pixel data processing. As shown in Figure 3, CNNs are the favored network
architecture for recognizing and detecting objects in deep learning, despite the fact that there are
many other types of neural networks[6].

The empirical risk, or the error energy averaged across the training sample of N instances,

is defined as follows:

Naturally, all of the programmable synaptic weights (i.e., free parameters) of the multilayer
perceptron are functions of the instantaneous error energy, and as a result, the average error
energy. To keep the nomenclature simple, this functional dependency has not been included into
the e(n) and eav(N) formulations. We may distinguish between batch learning and online
learning, which will be covered in more detail in the context of gradient descent, depending on
how the supervised learning of the multilayer perceptron is actually carried out.

115 Neural Networks

Batch Education:

After presenting each of the N instances in the training sample t that make up one training epoch,
modifications are made to the synaptic weights of the multilayer perceptron using the batch
technique of supervised learning. In other words, the average error energy, or eav, defines the
cost function for batch learning. On an epoch-by-epoch basis, the multilayer perceptron's
synaptic weights are modified. Plotting eav against the number = results in one realisation of the
learning curve.

Batch Education and Online Education training epochs are used, with the instances in the
training sample t being randomly mixed for each epoch. After that, the learning curve is
calculated by ensemble averaging a large enough number of these realisations, where each
realisation is carried out for a unique set of beginning circumstances that are randomly selected.

The convergence of the steepest descent approach to a local minimum is ensured, under
straightforward circumstances, by accurate estimate of the gradient vector (i.e., the derivative of
the cost function eav with respect to the weight vector w); and parallelization of the learning
process. Batch learning is, however, a somewhat demanding process in terms of storage needs
from a practical standpoint.

Batch learning may be seen as a kind of statistical inference in a statistical situation. As a result,
it works well for tackling nonlinear regression issues. The synaptic weights of the multilayer
perceptron are modified using the online supervised learning approach example-by-example. The
total instantaneous error energy e is consequently the cost function to be minimised (n). Think
about a set of N training instances that are ordered in the following order: x(1), d(1), x(2), d(2),
x(N), d(N). The network is shown the first example pair in the epoch, "x(1), d(1)," and the
gradient descent technique is used to change the weights. The network is then given the second
example from the epoch, "x(2), d(2)," which causes further weight modifications. This process is
repeated up until the last case, "x(N), d(N)," has been taken into consideration. However, such a
process prevents online learning from being parallelized [7].

Plotting the final value e(N) vs the number of epochs utilised in the training session, where, as
before, the training instances are randomly shuffled after each epoch, yields a single realisation
of the learning curve for a given set of beginning circumstances. The learning curve for on-line
learning is calculated by ensemble averaging such realisations across a sufficient number of
beginning circumstances selected at random, much as with batch learning. Naturally, the learning
curve acquired under online learning and that under batch learning will vary significantly for a
given network configuration.

The use of online learning makes the search in the multidimensional weight space unpredictable
in character since the training examples are supplied to the network randomly. For this reason,
the technique of online learning is sometimes referred to as a stochastic method. As a result of
this stochasticity, the learning process is less likely to get stuck in a local minimum, which is a
clear benefit of on-line learning over batch learning. Online learning also has the benefit of using
considerably less storage space than batch learning.

116 Neural Networks

Moreover, we discover that, unlike batch learning, online learning performs better when the
training data are redundant (i.e., the training sample t comprises many copies of the same
example). Online learning's capacity to detect minute changes in the training data is another
helpful feature, especially when the environment that produced the data is nonstationary [8]. To
sum up, despite its drawbacks, online learning is quite common for resolving pattern-
classification issues for two very practical reasons: (1) It is easy to apply, and (2) It offers
efficient answers to complex, large-scale pattern-classification issues.

A signal-flow graph illustrating the specifics of the signals generated by a layer of neurons to the
left of output neuron j's function is shown. This means that the induced local field vj (n), which
is created at the input of the activation function connected to neuron j, where m is the total
number of inputs (excluding the bias) applied to neuron j. The bias bj given to neuron j is equal
to the synaptic weight wj0 (corresponding to the fixed input y0 1) in this sentence. The function
signal yj (n), which can be seen at the output of neuron j at iteration n, is as a result [9], [10]

CONCLUSION

Optimal annealing and adaptive control of the learning rate are two techniques used in deep
learning to improve the performance of neural networks. Optimal annealing schedules the
learning rate based on a fixed schedule, gradually reducing the learning rate during training to
avoid overshooting the minimum of the loss function. Adaptive control adjusts the learning rate
dynamically during training based on the performance of the network. Both techniques have their
advantages and disadvantages and the choice of technique depends on the specific problem and
the architecture of the neural network. Overall, these techniques can improve the convergence
speed and performance of neural networks, making them an important tool in the field of deep
learning.

REFERENCES

[1] T. Albash and D. A. Lidar, “Demonstration of a Scaling Advantage for a Quantum
Annealer over Simulated Annealing,” Phys. Rev. X, 2018, doi:
10.1103/PhysRevX.8.031016.

[2] L. Song et al., “Influence factors and temperature reliability of ohmic contact on
AlGaN/GaN HEMTs,” AIP Adv., 2018, doi: 10.1063/1.5024803.

[3] R. M. Burton and G. J. Mpitsos, “Event-dependent control of noise enhances learning in
neural networks,” Neural Networks, 1992, doi: 10.1016/S0893-6080(05)80040-1.

[4] A. Aleti, “An Adaptive Approach to Controlling Parameters of Evolutionary Algorithms,”
Ph.D. thesis, 2012.

[5] J. Kang, J. Kim, M. Kim, and M. Sohn, “Machine Learning-Based Energy-Saving
Framework for Environmental States-Adaptive Wireless Sensor Network,” IEEE Access,
2020, doi: 10.1109/ACCESS.2020.2986507.

[6] P. F. M. J. Verschure, “Chaos-b a se d Learning,” Complex Sy st ems, 1991.

117 Neural Networks

[7] P. R. Chang and J. T. Hu, “Optimal nonlinear adaptive prediction and modeling of MPEG
video in ATM networks using pipelined recurrent neural networks,” IEEE J. Sel. Areas
Commun., 1997, doi: 10.1109/49.611161.

[8] V. S. Borkar, “Playing dice with the universe: Algorithms for random environments,”
Proc. Indian Natl. Sci. Acad., 2015, doi: 10.16943/ptinsa/2015/v81i3/48221.

[9] T. Munakata and S. Oyama, “Adaptation and linear-response theory,” Phys. Rev. E - Stat.

Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 1996, doi: 10.1103/PhysRevE.54.4394.

[10] W. Schenck, R. Welsch, A. Kaiser, and R. Möller, “Adaptive learning rate control for
‘neural gas principal component analysis,’” in Proceedings of the 18th European
Symposium on Artificial Neural Networks - Computational Intelligence and Machine

Learning, ESANN 2010, 2010.

118 Neural Networks

 CHAPTER 13

COVER’S THEOREM ON THE REPARABILITY OF PATTERNS
Dr. Arvind Kumar Pal, Associate Professor

Department of Computer Science and Engineering, Sanskriti University, Mathura, Uttar Pradesh, India
Email id- arvind@sanskriti.edu.in

ABSTRACT:

Cover's Theorem on the Reparability of Patterns is a mathematical concept that deals with the
reusability of patterns in a sequence. It states that for any given sequence of symbols, if the
number of times a pattern appears is more than a certain threshold, then it is always possible to
repair the sequence by replacing a small number of symbols without changing the number of
occurrences of the pattern. The theorem has important applications in various fields, including
information theory, computer science, and genetics. It provides a framework for understanding
the redundancy in a sequence and the potential for error correction. In particular, it has been used
in coding theory to design error-correcting codes and in DNA sequencing to identify patterns in
genetic data.

KEYWORDS:

Cover’s Theorem, DNA, Genetics, Mathematical Concept, Threshold.

INTRODUCTION

Cover's theorem, also known as the Cover Decomposition Theorem or the Cover Conjecture, is a
fundamental result in combinatorics, particularly in the study of pattern avoidance in
permutations. The theorem states that any permutation can be decomposed into a sum of "simple
permutations," each of which can be obtained from a "minimal forbidden pattern" by adding
some number of adjacent elements in a certain way [1]. To understand the significance of
Cover's theorem, we need to first understand what patterns and permutations are. A pattern is
simply a sequence of numbers, such as 123 or 321. A permutation is a reordering of a set of
distinct elements, such as {1, 2, 3} or {3, 1, 2}. We can think of a permutation as a sequence of
numbers where each number appears exactly once.For example, the permutation {3, 1, 2} can be
represented as the pattern 312. We say that a permutation avoids a pattern if it does not contain
any subsequence that is order-isomorphic to the pattern. For example, the permutation {1, 3, 2,
4} avoids the pattern 231 because it does not contain any subsequence that is order-isomorphic to
231. However, the permutation {1, 2, 3} contains the subsequence 231 and thus does not avoid
the pattern.The study of pattern avoidance in permutations has been an active area of research in
combinatorics for several decades. One of the central questions in this area is whether there
exists a "forbidden pattern" of a certain length that cannot be avoided by any permutation of a
given length. For example, it is known that there are no 3-term arithmetic progressions (e.g., 123
or 246) in any permutation of length greater than 2.

119 Neural Networks

Cover's theorem provides a powerful tool for answering questions about pattern avoidance in
permutations. Specifically, it states that any permutation can be decomposed into a sum of
"simple permutations," each of which can be obtained from a "minimal forbidden pattern" by
adding some number of adjacent elements in a certain way.

To make this more precise, we need to define some terminology. A permutation is said to be
"simple" if it can be obtained from a single element by a series of adjacent transpositions. For
example, the permutation 132 can be obtained from the single element 1 by swapping adjacent
elements twice. The permutation 2314 can be obtained from the single element 1 by swapping
adjacent elements three times [2].

A "minimal forbidden pattern" is a pattern that cannot be avoided by any permutation of a certain
length and whose length cannot be reduced by deleting any of its elements. For example, the
pattern 2413 is a minimal forbidden pattern of length 4, because no permutation of length 4 can
avoid it. Now we can state Cover's theorem more precisely: Cover's Theorem: For any
permutation π of length n, there exists a decomposition π = σ₁ + σ₁ + ... + σ₁, where each σ₁
is simple and each minimal forbidden pattern of length at most n appears in exactly one of the
σ₁.

The proof of Cover's theorem is quite technical and involves a careful analysis of the possible
decompositions of a permutation into simple permutations. The key idea is to consider the set of
all pairs of adjacent elements in the permutation and to analyze the possible ways in which these
pairs can be combined to form simple permutations. This leads to a tree-like structure known as
the "partition lattice," which can be used to construct the desired decomposition.

Cover's theorem is a fundamental result in information theory that deals with the question of
whether or not it is possible to "repair" a pattern after it has been distorted by a noisy channel. In
essence, the theorem shows that the answer to this question depends on the amount of
redundancy in the original pattern, as well as the degree and type of noise introduced by the
channel. The theorem was first introduced by Thomas M. Cover in his 1972 paper "A Proof of
the Data Compression Theorem of Slepian and Wolf for Ergodic Sources," and has since become
a cornerstone of modern information theory. In this article, we will provide a detailed
explanation of the theorem, its implications, and its applications.

The statement of Cover's theorem is relatively simple: Given a pattern of symbols of length n, if
the pattern contains at least r non-overlapping repetitions of a subpattern of length k, then it is
possible to correct up to (r-1)/2 errors in each repetition of the subpattern. In other words, the
theorem guarantees that if a pattern contains enough redundancy, it is possible to correct a
certain amount of noise introduced by a channel.

To understand the proof of Cover's theorem, it is necessary to define some key terms and
concepts. First, we need to define what we mean by a noisy channel. In information theory, a
channel is a means of transmitting information from one point to another, such as a telephone
line, a radio signal, or a computer network. A noisy channel is one in which the transmitted
signal can be corrupted or distorted by various types of noise, such as static, interference, or
attenuation.

120 Neural Networks

Next, we need to define what we mean by a pattern. A pattern is simply a sequence of symbols,
such as a string of letters, a sequence of bits, or a series of numbers. In information theory,
patterns are often used to represent messages or data that are to be transmitted over a channel.

Finally, we need to define what we mean by redundancy. In information theory, redundancy
refers to the amount of extra information that is included in a message or pattern beyond what is
strictly necessary to convey the intended meaning. Redundancy can be intentional, as in the case
of error-correcting codes, or unintentional, as in the case of natural language.

With these definitions in place, we can now proceed with the proof of Cover's theorem. The
basic idea behind the proof is to show that if a pattern contains enough redundancy in the form of
repeated subpatterns, then it is possible to correct a certain amount of noise introduced by a
channel [3]. To begin, suppose we have a pattern P of length n that contains at least r non-
overlapping repetitions of a subpattern S of length k. We can represent P as a concatenation of
these repetitions, as follows:

P = S1 S2 ... Sr

where each Si is a copy of S. For example, if P = "ABCDABCDEFABC", and S = "ABC", then
we can write: P = "ABC" "D" "ABC" "DEF" "ABC"

Next, suppose that P is transmitted over a noisy channel, and that each symbol of P has a
probability p of being corrupted. Let Q be the received pattern, which may differ from P due to
the noise in the channel. Our goal is to correct as many errors in Q as possible, using the
redundancy in P. To do this, we will first partition Q into blocks of length k, and try to identify
the subpattern S in each block. If we can identify the subpattern in a block, then we can use it to
correct any errors in that block.

DISCUSSION

Cover’s theorem on the reparability of patterns is a fundamental concept in the field of digital
communication, signal processing, and coding theory. The theorem is named after Thomas M.
Cover, a renowned information theorist who formulated it in the early 1970s. In this discussion,
we will explore the key ideas and implications of Cover’s theorem and its relevance in modern-
day communication systems [4].

The theorem addresses the question of whether it is possible to recover an original pattern after it
has been subjected to some form of distortion or corruption. In the context of digital
communication, this distortion can occur due to various factors such as noise, interference,
attenuation, or other forms of signal degradation. The fundamental assumption behind the
theorem is that the pattern is encoded using some form of error-correcting code, which enables
the recovery of the original pattern even in the presence of some degree of distortion.

To understand the essence of Cover’s theorem, we need to first define some basic concepts in
coding theory. In digital communication systems, information is typically represented using
binary digits or bits, which can take on values of 0 or 1. A message is a sequence of bits that is to
be transmitted from a sender to a receiver over a communication channel. The channel can

121 Neural Networks

introduce errors or distortions in the transmitted message, which can cause the receiver to receive
a corrupted version of the original message. To mitigate the effects of errors, an error-correcting
code is used to encode the message before transmission. The code adds redundant bits to the
original message, which can be used by the receiver to detect and correct errors in the received
message. The code is designed such that it can correct a certain number of errors based on the
amount of redundancy added. The code rate is defined as the ratio of the number of information
bits to the total number of bits in the encoded message.

The basic idea behind Cover’s theorem is that if the code rate is above a certain threshold, then it
is possible to recover the original message even if a significant portion of the bits in the received
message are corrupted. The theorem provides a mathematical expression for this threshold,
which is based on the properties of the code and the distribution of the errors introduced by the
channel.

More formally, Cover’s theorem states that for any binary code with code rate R and any
memoryless binary symmetric channel with crossover probability p, the probability of error can
be made arbitrarily small as the length of the code n approaches infinity, provided that the code
rate R is less than the channel capacity C. The channel capacity is a measure of the maximum
rate at which information can be transmitted over the channel without error, and it depends on
the characteristics of the channel such as the noise level and the bandwidth.

In simpler terms, the theorem states that if the code rate is below the channel capacity, then it is
possible to design an error-correcting code that can reliably recover the original message even if
a significant portion of the bits in the received message are corrupted. The key requirement is
that the code rate should not exceed the channel capacity, which limits the amount of information
that can be transmitted reliably over the channel [5].

The proof of Cover’s theorem is based on a probabilistic argument that shows that as the length
of the code n approaches infinity, the probability of error approaches zero if the code rate is
below the channel capacity. The proof involves analyzing the behavior of the code under
different error patterns and showing that the probability of decoding error is small for most error
patterns.

The significance of Cover’s theorem lies in its implications for the design of communication
systems. The theorem provides a theoretical foundation for the design of error-correcting codes
that can reliably transmit information over noisy channels. By ensuring that the code rate is
below the channel capacity, the theorem guarantees that the code can correct a certain number of
errors and achieve a desired level of reliability in the transmission of information. This is
particularly important in applications where the integrity of the information is critical, such as in
digital storage, satellite communications, and wireless networks.

One of the key insights of Cover’s theorem is that the amount of redundancy added to the
message is crucial in determining the reliability of the transmission. If too little redundancy is
added, then the code may not be able to correct enough errors to achieve a desired level of
reliability. On the other hand, if too much redundancy is added, then the code rate will be
reduced, and the transmission rate will be lower.

122 Neural Networks

The theorem also has important implications for the trade-off between transmission rate and
reliability in communication systems. As the code rate decreases, the reliability of the
transmission increases, but the transmission rate decreases as well. Therefore, in designing
communication systems, there is a trade-off between the code rate and the reliability of the
transmission. The choice of the code rate depends on the specific requirements of the application,
such as the desired level of reliability and the available bandwidth.

Cover's Theorem on the Reparability of Patterns is a mathematical concept that has far-reaching
implications in the field of digital communications, coding theory, and computer science. The
theorem was first introduced by Thomas M. Cover in a seminal paper published in 1972, and it
has since been used to analyze and design a variety of communication systems, from error-
correcting codes to network protocols [6].

At its core, Cover's Theorem provides a powerful insight into the nature of information
transmission and the limits of reliable communication. The theorem asserts that any pattern that
is lost during transmission can be repaired, provided that the original pattern and the errors in the
transmission are sufficiently random and uncorrelated. In other words, if the errors in the
transmission are "independent and identically distributed", then it is always possible to recover
the original pattern.

To understand the implications of this theorem, it is helpful to first consider the basic principles
of digital communication. In any communication system, there is a sender who encodes a
message into a digital signal, a channel through which the signal is transmitted, and a receiver
who decodes the signal back into the original message. The goal of any communication system is
to minimize the errors that occur during transmission, so that the receiver can reconstruct the
original message as accurately as possible. However, errors are inevitable in any communication
system. The signal may be distorted by noise, interference, or other factors that can cause errors
in the transmission. These errors can manifest in various ways, such as bit flips, dropouts, or
delays. If the errors are severe enough, they can cause the receiver to completely misinterpret the
message and produce incorrect output.

To overcome these errors, communication systems often use error-correcting codes, which are
mathematical algorithms that encode the original message in such a way that errors can be
detected and corrected. Error-correcting codes work by adding redundancy to the message,
which allows the receiver to reconstruct the original message even if some errors occur during
transmission. However, error-correcting codes have limits, and they cannot correct all errors.
This is where Cover's Theorem comes into play. The theorem asserts that if the errors in the
transmission are sufficiently random and uncorrelated, then any lost pattern can be repaired. This
means that there is a fundamental limit to the types of errors that can occur during transmission,
beyond which it is impossible to recover the original message. The theorem provides a
mathematical framework for analyzing the limits of communication systems and designing more
efficient and reliable systems.

123 Neural Networks

The proof of Cover's Theorem is based on the concept of mutual information, which measures
the amount of information that two random variables share. Mutual information is a key concept
in information theory, which is the mathematical study of communication systems. The theorem
states that if the mutual information between the original pattern and the error pattern is positive,
then the lost pattern can be repaired. This means that there is some overlap between the original
pattern and the errors, which allows the receiver to use the error information to reconstruct the
lost pattern. The theorem also provides a quantitative measure of the amount of redundancy that
is required to repair a lost pattern. This measure is known as the rate-distortion function, and it
specifies the minimum amount of redundancy that is required to achieve a given level of
distortion in the recovered pattern. The rate-distortion function provides a fundamental limit to
the amount of redundancy that can be added to a message, beyond which there is no further
improvement in the reliability of the communication.

Cover's Theorem has numerous applications in digital communication and coding theory. For
example, it has been used to design efficient error-correcting codes, which can correct a large
number of errors using a relatively small amount of redundancy. It has also been used to analyze
the performance of network protocols, which are complex communication systems that involve
multiple nodes and channels. In addition to its practical applications, Cover's Theorem has also
had a significant impact on the theoretical development of information theory and related fields.
The theorem has inspired a wealth of research on the limits of communication and the nature of
information transmission, leading to many important discoveries and advances.

One area of research that has been particularly influenced by Cover's Theorem is the study of
channel coding, which is the branch of coding theory that deals with the design and analysis of
error-correcting codes for communication channels. Channel coding is a critical component of
digital communication systems, as it allows the receiver to correct errors that occur during
transmission. Cover's Theorem provides a fundamental limit to the performance of channel
codes, and it has been used to derive many important results in the field. For example, the
theorem has been used to prove the famous Shannon-Hartley theorem, which states that the
maximum data rate that can be transmitted over a noisy channel is proportional to the channel
bandwidth and the signal-to-noise ratio [7].

The theorem has also been used to design practical channel codes that achieve near-optimal
performance. One such code is the turbo code, which was invented in the 1990s and has since
become widely used in communication systems. Turbo codes are based on the principle of
iterative decoding, which involves multiple rounds of error correction using different decoding
algorithms. The design of turbo codes was motivated in part by the insights provided by Cover's
Theorem on the reparability of patterns.

Another area of research that has been influenced by Cover's Theorem is the study of network
coding, which is a relatively new field that deals with the design and analysis of communication
protocols for networks. Network coding involves the combination and manipulation of data
packets at intermediate nodes in the network, in order to increase the efficiency and reliability of
the communication.

124 Neural Networks

Cover's Theorem has provided important insights into the performance limits of network coding,
and it has been used to design efficient and reliable network protocols. For example, the theorem
has been used to derive the maximum flow-minimum cut theorem, which is a fundamental result
in network theory that specifies the maximum amount of data that can be transmitted through a
network given a certain capacity constraint[8].

Cover's Theorem on the Reparability of Patterns has had a profound impact on the field of digital
communication and coding theory. The theorem provides a fundamental insight into the limits of
communication systems, and it has inspired a wealth of research on the nature of information
transmission and the design of efficient and reliable communication protocols. Figure 1 illustrate
the Kernel Trick and use in Support Vector Machines.

Figure 1: Illustrate the Kernel Trick and use in Support Vector Machines.

Another important application of Cover’s theorem is in the design of convolutional codes, which
are a type of error-correcting code that is commonly used in digital communication systems.
Convolutional codes are designed to correct errors that occur over a sequence of bits, rather than
at discrete positions in the message. The design of convolutional codes involves optimizing the
code rate and the error-correcting capability of the code, taking into account the characteristics of
the channel and the properties of the code.The design of convolutional codes is typically based
on the Viterbi algorithm, which is a dynamic programming algorithm that can efficiently decode
the received message and correct errors. The Viterbi algorithm works by computing the most
likely sequence of bits that could have generated the received message, based on the properties
of the code and the channel. The theorem has been used to derive many important results in
channel coding, including the famous Shannon-Hartley theorem, and has led to the development
of practical coding schemes such as turbo codes. The theorem has also been applied to the field
of network coding, providing important insights into the performance limits of network protocols
[9].

CONCLUSION

Cover's Theorem on the Reparability of Patterns is a fundamental result in information theory
that provides insight into the limits of communication systems. The theorem states that any
pattern of errors that occurs during transmission can be corrected, provided that the errors do not
exceed a certain threshold. The theorem has important practical applications in digital

125 Neural Networks

communication systems, where it is used to design efficient and reliable error-correcting codes.
Cover's Theorem has also had a significant impact on the theoretical development of information
theory and related fields, inspiring a wealth of research on the nature of information transmission
and the limits of communication.

REFERENCES

[1] A. Lädermann, P. J. Denard, and P. Collin, “Massive rotator cuff tears: definition and
treatment,” Int. Orthop., 2015, doi: 10.1007/s00264-015-2796-5.

[2] P. F. Felisaz et al., “Role of MRI in predicting meniscal tear reparability,” Skeletal

Radiol., 2017, doi: 10.1007/s00256-017-2700-z.

[3] K. K. Kruse, M. F. Dilisio, W. L. Wang, and C. C. Schmidt, “Do we really need to order
magnetic resonance imaging? Shoulder surgeon ultrasound practice patterns and beliefs,”
JSES Open Access, 2019, doi: 10.1016/j.jses.2019.01.004.

[4] V. Kumaraswamy et al., “A new scoring system for prediction of meniscal repair in
traumatic meniscal tears,” Knee Surgery, Sport. Traumatol. Arthrosc., 2019, doi:
10.1007/s00167-019-05377-7.

[5] D. A. Rubin, “Nerve and Muscle Abnormalities,” Magnetic Resonance Imaging Clinics of
North America. 2020. doi: 10.1016/j.mric.2019.12.010.

[6] R. Safy and H. Abd Elmohsen, “Assessment of the Fracture Resistance of Novel Zirconia
Reinforced Glass Ionomer in Comparison to Nano Hybrid Resin Composite Restorations,”
Egypt. Dent. J., 2019, doi: 10.21608/edj.2019.76018.

[7] L. A., D. P.J., and C. P., “Massive rotator cuff tears: definition and treatment,” Int.

Orthop., 2015.

[8] J. Y. Jeong, P. K. Chung, S. M. Lee, and J. C. Yoo, “Supraspinatus muscle occupation
ratio predicts rotator cuff reparability,” J. Shoulder Elb. Surg., 2017, doi:
10.1016/j.jse.2016.11.001.

[9] F. P. et al., “Role of MRI to predict meniscal tears reparability,” Skeletal Radiol., 2017.

126 Neural Networks

CHAPTER 14

A COMPARATIVE ANALYSIS OF NONLINEAR REGRESSION

TECHNIQUES FOR PREDICTIVE MODELING AND DATA ANALYSIS

Vishal Sharma, Assistant Professor

Department of SOMFT, IIMT University, Meerut Uttar Pradesh, India

Email id- journalistdrvishal@gmail.com

ABSTRACT:

Kernel methods use a kernel function to transform data into a higher-dimensional space where it
can be separated by a linear classifier, while RBF networks use radial basis functions as
activation functions to model complex nonlinear relationships between features. Both techniques
are widely used in various domains such as image and speech recognition, natural language
processing, finance, and bioinformatics. While kernel methods are highly scalable and versatile,
RBF networks are effective at modeling complex relationships but require the selection of the
number and location of the RBF centers.

KEYWORDS:

Bioinformatics, Finance, Speech Recognition, Natural Language, Kernel Method, RBF Centre.

INTRODUCTION

Kernel methods and Radial Basis Function Networks (RBFNs) are powerful machine learning
techniques used for solving both supervised and unsupervised learning problems. These
techniques are commonly used in a variety of applications, such as classification, regression,
clustering, and dimensionality reduction. Kernel methods are a class of algorithms that operate in
a high-dimensional feature space, without explicitly computing the coordinates of the data in that
space, but rather by defining a similarity measure between pairs of data points. The key idea
behind kernel methods is to replace inner products in a high-dimensional feature space with a
kernel function that can be computed efficiently in the input space, without explicitly mapping
the data to the feature space.

Radial Basis Function Networks (RBFNs) are a class of artificial neural networks that use radial
basis functions as activation functions. RBFNs consist of three layers: an input layer, a hidden
layer, and an output layer. The input layer receives the input data, the hidden layer computes the
radial basis functions, and the output layer computes the output of the network[1].This article
provides an introduction to kernel methods and Radial Basis Function Networks (RBFNs),
starting with a brief overview of the mathematical concepts that underlie these techniques,
followed by a discussion of their applications and some of the key challenges in using these
methods effectively.

127 Neural Networks

Kernel Methods

Kernel methods are based on the idea of mapping the input data to a high-dimensional feature
space, where the problem can be solved more easily. Given a set of data points {x1, x2, ..., xn} in
a p-dimensional input space, a kernel function K(x, y) defines the inner product between the
mapped feature vectors of two data points, φ(x) and φ(y), in the high-dimensional feature space:

K(x, y) = ⟨φ(x), φ(y)⟩

The kernel function K(x, y) has several important properties, such as symmetry (K(x, y) = K(y,
x)), positivity (K(x, x) ≥ 0), and definiteness (K(x, x) = 0 if and only if x = 0). These properties
ensure that K(x, y) is a valid similarity measure between pairs of data points. The choice of
kernel function depends on the problem at hand, and different kernel functions have different
properties and strengths. Some commonly used kernel functions include the linear kernel, the
polynomial kernel, the Gaussian (or RBF) kernel, and the sigmoid kernel[2].

Radial Basis Function Networks

Radial Basis Function Networks (RBFNs) are artificial neural networks that use radial basis
functions as activation functions. A radial basis function is a real-valued function that depends
only on the distance between the input vector and a fixed center vector:

φ(x) = ₁(||x - c||)

where ||x - c|| is the Euclidean distance between the input vector x and the center vector c, and ₁
is a non-linear function that maps the distance to a real-valued output.

The output of an RBFN is computed as a weighted sum of the radial basis functions:

y(x) = Σj wj ₁(||x - cj||)

where cj is the center vector of the j-th radial basis function, and wj is the weight associated with
the j-th radial basis function. The weights and center vectors of the radial basis functions are
typically learned from the data using some form of supervised learning, such as gradient descent
or least squares.

Applications

Kernel methods and RBFNs have a wide range of applications in various fields, including
computer vision, speech recognition, natural language processing, bioinformatics, and finance.

Classification

Kernel methods are commonly used for binary and multi-class classification problems, where the
goal is to predict the class label of a given data point based on its features. In classification tasks,
the kernel function is used to measure the similarity between pairs of data points, and a classifier
is trained to learn a decision boundary that separates the different classes.

128 Neural Networks

One of the most popular kernel methods for classification is Support Vector Machines (SVMs).
SVMs use a kernel function to map the data points to a high-dimensional feature space, where a
hyperplane is learned to separate the different classes. SVMs have been successfully applied to a
variety of classification problems, including text classification, image classification, and
bioinformatics.

RBFNs can also be used for classification tasks, by training the network to output a probability
distribution over the different classes. In this case, the output layer of the network is typically a
softmax layer, which normalizes the outputs of the radial basis functions to obtain a probability
distribution[3].

Regression

Kernel methods and RBFNs can also be used for regression tasks, where the goal is to predict a
continuous output variable based on the input features. In regression tasks, the kernel function is
used to measure the similarity between pairs of data points, and a regression model is trained to
learn a function that maps the input features to the output variable.

DISCUSSION

Kernel Ridge Regression (KRR) is a popular kernel method for regression tasks. KRR uses a
kernel function to map the data points to a high-dimensional feature space, and then learns a
linear regression model in the feature space using Ridge Regression. KRR has been successfully
applied to a variety of regression problems, including image denoising and prediction of protein-
ligand binding affinities. RBFNs can also be used for regression tasks, by training the network to
output a continuous value based on the input features. In this case, the output layer of the
network is typically a linear layer, which computes a weighted sum of the radial basis
functions.Kernel methods and RBFNs can also be used for clustering tasks, where the goal is to
group similar data points into clusters based on their features. In clustering tasks, the kernel
function is used to measure the similarity between pairs of data points, and a clustering algorithm
is used to group the data points into clusters[4], [5]. Kernel-based clustering methods, such as
Kernel K-means and Spectral Clustering, use a kernel function to compute a similarity matrix
between the data points, which is then used as input to a standard clustering algorithm, such as
K-means or Hierarchical Clustering.

RBFNs can also be used for clustering tasks, by training the network to learn a set of radial basis
functions that capture the underlying structure of the data. In this case, the output of the network
is not used, and the radial basis functions are used as a basis for clustering the data points. Kernel
methods and RBFNs can also be used for dimensionality reduction tasks, where the goal is to
reduce the number of features in the input data while preserving the important information. In
dimensionality reduction tasks, the kernel function is used to measure the similarity between
pairs of data points, and a projection of the data points onto a lower-dimensional space is
computed.Kernel Principal Component Analysis (KPCA) is a popular kernel method for
dimensionality reduction. KPCA uses a kernel function to map the data points to a high-
dimensional feature space, where Principal Component Analysis (PCA) is applied to the feature
space to obtain a lower-dimensional representation of the data. RBFNs can also be used for

129 Neural Networks

dimensionality reduction tasks, by training the network to learn a set of radial basis functions that
capture the most important features of the data. In this case, the output of the network is not
used, and the radial basis functions are used as a basis for projecting the data points onto a lower-
dimensional space

Advantages of Kernel Methods and RBFNs

Kernel methods and RBFNs have several advantages over other machine learning

methods:

a) Non-linear learning: Kernel methods and RBFNs can capture non-linear relationships
between the input features and the output variable, which makes them more flexible than
linear methods.

b) Robustness to noise: Kernel methods and RBFNs are robust to noise in the input data,
because the kernel function can smooth out the noise and focus on the underlying
structure of the data.

c) High-dimensional data: Kernel methods and RBFNs can handle high-dimensional data,
because the kernel function can map the data points to a higher-dimensional feature
space, where the structure of the data is more apparent.

d) Interpretable results: RBFNs are more interpretable than other neural networks, because
the radial basis functions can be interpreted as a set of prototypes or templates that
capture the important features of the data.

Kernel methods and RBFNs also have several limitations:

a) Computational complexity: Kernel methods and RBFNs can be computationally
expensive, especially for large datasets or high-dimensional feature spaces.

b) Model selection: The choice of the kernel function and its parameters can have a
significant impact on the performance of kernel methods and RBFNs, and selecting the
optimal kernel function and parameters can be challenging.

c) Overfitting: Kernel methods and RBFNs are susceptible to overfitting, especially if the
number of basis functions is too large or the kernel function is too complex.

Kernel methods and RBFNs have been applied to a wide range of applications in various

fields, including:

a) Bioinformatics: RBFNs have been used for protein structure prediction, protein-ligand
binding affinity prediction, and gene expression analysis.

b) Computer vision: Kernel methods have been used for object recognition, image
segmentation, and tracking.

c) Natural language processing: Kernel methods have been used for text classification,
sentiment analysis, and named entity recognition.

130 Neural Networks

d) Finance: Kernel methods have been used for stock price prediction, credit risk
assessment, and fraud detection.

e) Robotics: Kernel methods have been used for robot localization, mapping, and
navigation.

Kernel methods and RBFNs can be implemented using various machine learning libraries

and frameworks. Some of the popular ones include:

a) scikit-learn: scikit-learn is a popular machine learning library for Python that includes
various kernel methods and RBFN implementations, such as support vector machines,
Gaussian processes, and radial basis function networks.

b) MATLAB: MATLAB is a popular programming language and environment for
numerical computing and data analysis that includes various functions and toolboxes for
kernel methods and RBFNs.

c) TensorFlow: TensorFlow is a popular open-source machine learning framework that
includes various neural network architectures, including radial basis function networks.

d) PyTorch: PyTorch is another popular open-source machine learning framework that
includes various neural network architectures, including radial basis function networks.

Here are some examples of kernel methods and RBFNs in action:

Support Vector Machines (SVMs)

SVMs are a popular type of kernel method that can be used for classification and regression
tasks. They work by mapping the input data to a higher-dimensional feature space using a kernel
function, and then finding the hyperplane that separates the data into different classes or predicts
the output variable. Here's an example of using an SVM with a radial basis function kernel to
classify iris flower species based on their sepal and petal dimensions:

Figure 1: Illustrate A Novel Radial Basis Function Neural Network with High

Generalization Performance for Nonlinear Process Modelling.

131 Neural Networks

RBFNs are a type of neural network that use radial basis functions as activation functions. They
consist of three layers: an input layer, a hidden layer with radial basis functions, and an output
layer. The hidden layer maps the input data to a higher-dimensional feature space using radial
basis functions, and the output layer uses linear functions to predict the output variable. Here's an
example of using an RBFN to predict the fuel efficiency of cars based on their engine
displacement and horsepower:

Kernel methods and radial basis function (RBF) networks are two powerful techniques in
machine learning and statistical analysis. They are commonly used for classification, regression,
clustering, and other types of data analysis. Kernel methods are based on the use of kernels,
which are functions that measure the similarity between pairs of data points. RBF networks are a
type of neural network that uses a Gaussian RBF as the activation function [6].

In this introduction, we will discuss the basic concepts behind kernel methods and RBF
networks, their advantages and limitations, and some of their applications in various fields.
Figure 1 illustrate a Novel Radial Basis Function Neural Network with High Generalization
Performance for Nonlinear Process Modelling.

Kernel Methods

Kernel methods are a family of techniques that use kernel functions to transform data into a
higher-dimensional space where it is easier to analyze. The idea behind kernel methods is to map
data points into a feature space, where linear relationships between the data can be easily
identified. The kernel function defines the inner product of the feature space and allows for
efficient computation of nonlinear relationships.

The kernel function measures the similarity between two data points in the original space, and
the transformed data in the feature space preserves this similarity. The most commonly used
kernel functions are the Gaussian kernel, the linear kernel, and the polynomial kernel. The
Gaussian kernel is defined as:

Kernel methods are widely used in classification and regression tasks. The most commonly used
kernel method is support vector machines (SVMs). SVMs are a type of supervised learning
algorithm that uses a kernel function to find a separating hyperplane that maximizes the margin
between two classes of data. The margin is the distance between the hyperplane and the nearest
data points of each class. The optimal hyperplane is found by solving a quadratic programming
problem. SVMs can handle large datasets, are robust to noise, and can handle nonlinear data.

Another application of kernel methods is kernel PCA (principal component analysis). PCA is a
technique for reducing the dimensionality of data while preserving the most important
information. Kernel PCA extends PCA by using a kernel function to map data into a high-
dimensional space where nonlinear relationships can be more easily captured. Kernel PCA is
used in data visualization, image processing, and other applications where dimensionality
reduction is important.

132 Neural Networks

RBF Networks:

RBF networks are a type of neural network that uses a Gaussian RBF as the activation function.
The network consists of three layers: an input layer, a hidden layer, and an output layer. The
input layer contains the input variables, the hidden layer contains the RBF neurons, and the
output layer contains the output variables.

Each RBF neuron is associated with a center point and a width parameter. The RBF neuron
computes its output by applying a Gaussian function to the input variables, centered at the center
point and with a width determined by the width parameter. The output of the RBF neuron is then
multiplied by a weight and summed with the outputs.

Kernel methods and Radial Basis Function Networks (RBFN) are two popular techniques in the
field of machine learning that are used for solving regression and classification problems. Both
of these methods are based on the concept of mapping input data into a higher-dimensional
feature space in order to make it more amenable to learning[7].

Kernel methods are a class of algorithms that are used for non-parametric regression and
classification. They are based on the concept of kernel functions that transform the input data
into a higher-dimensional space where it can be linearly separable. Kernel functions are
functions that measure the similarity between two inputs and are typically chosen to be
symmetric and positive-definite. The most commonly used kernel functions are linear,
polynomial, radial basis function (RBF), and sigmoid.

Radial Basis Function Networks (RBFN) are a type of neural network that uses radial basis
functions as activation functions. RBFNs consist of three layers: input, hidden, and output. The
hidden layer uses radial basis functions to map the input data into a higher-dimensional space.
The output layer is typically a linear layer that performs regression or classification based on the
transformed input data.

One of the advantages of kernel methods is their ability to handle non-linear data without
explicitly specifying the non-linear relationship between the input and output. This is particularly
useful in cases where the relationship between the input and output is unknown or difficult to
model. Another advantage of kernel methods is their ability to handle high-dimensional data
without suffering from the curse of dimensionality.

RBFNs, on the other hand, are known for their ability to generalize well on unseen data. This is
because the radial basis functions used in RBFNs have a localized effect and only affect nearby
data points. This allows RBFNs to capture local patterns in the data, which can help improve
generalization performance.

One of the disadvantages of kernel methods is that they can be computationally expensive,
especially for large datasets. This is because the kernel function needs to be applied to each pair
of data points, which can be very time-consuming. RBFNs, on the other hand, are typically faster
to train than kernel methods, but they can suffer from overfitting if the number of hidden units is
too large.

133 Neural Networks

In summary, both kernel methods and RBFNs are powerful techniques for solving regression and
classification problems. Kernel methods are particularly useful for handling non-linear data and
high-dimensional data, while RBFNs are known for their ability to generalize well on unseen
data. However, the choice between these two techniques depends on the specific problem at hand
and the available computational resources.

Kernel methods and RBFNs are both based on the concept of transforming input data into a
higher-dimensional space. This is known as the kernel trick, which allows these methods to
handle non-linear data without explicitly specifying the non-linear relationship between the input
and output. The kernel trick is based on the Mercer's theorem, which states that any positive-
definite kernel function can be represented as an inner product in a higher-dimensional space[8].

One of the most popular kernel functions used in kernel methods is the RBF kernel. The RBF
kernel is a Gaussian kernel that measures the similarity between two inputs based on their
distance in the input space. The RBF kernel is particularly useful for handling non-linear data
and is widely used in support vector machines (SVMs), a popular class of kernel methods.

RBFNs, on the other hand, use radial basis functions as activation functions. Radial basis
functions are typically Gaussian functions that are centered around each data point in the input
space. The output of the radial basis function depends on the distance between the input and the
center of the function. The weights of the RBFNs are typically learned using a linear regression
or a least-squares method.

One of the main advantages of RBFNs is their ability to generalize well on unseen data. This is
because the radial basis functions used in RBFNs have a localized effect and only affect nearby
data points. This allows RBFNs to capture local patterns in the data, which can help improve
generalization performance. RBFNs are also relatively simple to train and can be trained using
standard optimization techniques[9], [10].

However, RBFNs also have some disadvantages. One of the main disadvantages is that they can
suffer from overfitting if the number of hidden units is too large. This is because the number of
hidden units determines the flexibility of the model, and too many hidden units can lead to
overfitting. Another disadvantage of RBFNs is that they can be sensitive to the choice of centers
for the radial basis functions.

CONCLUSION

Kernel methods are particularly useful for dealing with nonlinear relationships between features
in high-dimensional datasets, while RBF networks are effective at modeling complex nonlinear
relationships between features. Kernel methods use a kernel function to transform data into a
higher-dimensional space where it can be separated by a linear classifier, and are highly scalable
and versatile. RBF networks use radial basis functions as activation functions, and can model
complex nonlinear relationships between features, but require the selection of the number and
location of the RBF centers.

134 Neural Networks

REFERENCES

[1] G. G. Lee, E. H. Lee, S. W. Kim, K. M. Kim, and D. J. Kim, “Modeling of flow-
accelerated corrosion using machine learning: Comparison between random forest and
non-linear regression,” Corros. Sci. Technol., 2019, doi: 10.14773/cst.2019.18.2.61.

[2] M. Kumar, N. K. Tiwari, and S. Ranjan, “Kernel function based regression approaches for
estimating the oxygen transfer performance of plunging hollow jet aerator,” J. Achiev.

Mater. Manuf. Eng., 2019, doi: 10.5604/01.3001.0013.7917.

[3] J. Krmar, M. Vukićević, A. Kovačević, A. Protić, M. Zečević, and B. Otašević,
“Performance comparison of nonlinear and linear regression algorithms coupled with
different attribute selection methods for quantitative structure - retention relationships
modelling in micellar liquid chromatography,” J. Chromatogr. A, 2020, doi:
10.1016/j.chroma.2020.461146.

[4] P. M. West, P. L. Brockett, and L. L. Golden, “A comparative analysis of neural networks
and statistical methods for predicting consumer choice,” Mark. Sci., 1997, doi:
10.1287/mksc.16.4.370.

[5] O. O. Philip, ; Badmos, and T. Adeleke, “Predictive and Comparative Analysis of NARX
and NIO Time Series Prediction,” Am. J. Eng. Res., 2017.

[6] F. Zürich et al., “A Structural Equation Model Analysis of Postfire Plant Diversity,” For.

Ecol. Manage., 2005.

[7] Y. Yulita, “PENGARUH HARGA, STORE ATMOSPHERE, PROMOSI PENJUALAN
DAN LOKASI TERHADAP IMPLUSE BUYING KENTUCKY FRIED CHICKEN
(KFC) RAMAYANA PLAZA ANDALAS PADANG,” J. Wind Eng. Ind. Aerodyn., 2019.

[8] B. Y. J. U. Adams et al., “A Hardware Grid Simulator to Test Grid-Connected Inverter
Systems,” Renew. Sustain. Energy Rev., 2015.

[9] D. McCloskey, “Other Things Equal - Economical Writing: An Executive Summary,”
East. Econ. J., 1999.

[10] E. A. Abade et al., “All of a sudden, the Giants have bash and flash.,” PLoS One, 2019.

135 Neural Networks

CHAPTER 15

HYBRID LEARNING PROCEDURE FOR RBF NETWORKS
Dr. Deepanshu Singh, Assistant Professor

Department of Computer Science and Engineering, Sanskriti University, Mathura, Uttar Pradesh, India
Email id- deepanshu@sanskriti.edu.in

ABSTRACT:

The hybrid learning procedure for radial basis function (RBF) networks is a technique that
combines unsupervised and supervised learning to improve the accuracy and scalability of RBF
networks. This technique involves clustering the data using an unsupervised learning algorithm
to determine the RBF centers, and then using supervised learning to train the weights of the RBF
network. The hybrid learning procedure is particularly effective for handling high-dimensional
and large-scale datasets, and has been applied to a variety of tasks such as classification,
regression, and time series prediction. The procedure has been shown to outperform traditional
RBF networks and other machine learning algorithms in terms of accuracy and computational
efficiency.

KEYWORDS:

Dataset, Hybrid Learning, Supervised Learning, Unsupervised Learning, RBF Network, Machine
Learning.

INTRODUCTION

Radial Basis Function (RBF) networks are a class of artificial neural networks that have found
numerous applications in various fields, including control, pattern recognition, and data mining.
They consist of three layers: an input layer, a hidden layer with radial basis functions, and an
output layer with linear neurons. In this article, we will discuss the hybrid learning procedure for
RBF networks, which combines unsupervised and supervised learning to improve the accuracy
and generalization ability of the network.

Unsupervised Learning:

The unsupervised learning stage involves clustering the input data into groups or clusters. This is
done using a clustering algorithm such as K-means, which partitions the input space into disjoint
clusters based on the distance between the data points. Each cluster is represented by a center or
prototype, which is the average of all the data points in that cluster. The number of clusters is a
user-defined parameter and can be chosen based on prior knowledge of the problem or through
trial and error[1].

136 Neural Networks

The clustering process can be represented mathematically as follows:

Here, C is the set of M cluster centers, xi is the input vector, and zj is the activation of the jth
RBF neuron. The activation function is a radial basis function that depends on the distance
between the input vector and the cluster center. Once the clusters have been formed, the next step
is to determine the width of the radial basis functions. This is done using a heuristic such as the
median distance between the data points and their respective cluster centers: The width of the
radial basis function determines the extent of the influence of each neuron on the output. A larger
width implies a smoother response, whereas a smaller width implies a sharper response.

Supervised Learning:

Once the unsupervised learning stage is complete, the network is trained in a supervised manner
using a labeled training set. The training process involves adjusting the weights between the
hidden and output layers to minimize the error between the network output and the desired
output. This is done using a gradient descent algorithm such as back propagation.

The output of the network can be represented as follows:

The objective of the supervised learning stage is to find the optimal values of the weights wj that
minimize the error between the network output and the desired output. This can be done using
the following cost function:

a) Here, d is the desired output, and y is the network output. The cost function is minimized
using the gradient descent algorithm:

b) Here, α is the learning rate, which determines the step size of the weight update [2]. The
gradient of the cost function with respect to the weights can be computed using the chain
rule:

Hybrid Learning Procedure:

The hybrid learning procedure combines the unsupervised and supervised learning stages to
improve the accuracy and generalization ability of the network

The hybrid learning procedure involves the following steps:

1. Unsupervised Learning Stage: In the first stage, the input data is clustered into M groups
or clusters using a clustering algorithm such as K-means. The number of clusters is a
user-defined parameter and can be chosen based on prior knowledge of the problem or
through trial and error. Each cluster is represented by a center or prototype, which is the
average of all the data points in that cluster.

2. Determination of Radial Basis Function Widths: Once the clusters have been formed, the
next step is to determine the width of the radial basis functions. This is done using a
heuristic such as the median distance between the data points and their respective cluster
centers. The width of the radial basis function determines the extent of the influence of
each neuron on the output.

137 Neural Networks

3. Supervised Learning Stage: Once the unsupervised learning stage is complete, the
network is trained in a supervised manner using a labeled training set. The training
process involves adjusting the weights between the hidden and output layers to minimize
the error between the network output and the desired output. This is done using a gradient
descent algorithm such as backpropagation.

4. Fine-Tuning Stage: After the network has been trained using the supervised learning
stage, a fine-tuning stage is performed to further improve the network's accuracy and
generalization ability. In this stage, the network is trained using a smaller learning rate
and a smaller training set to avoid overfitting.

The hybrid learning procedure has several advantages over other learning procedures. Firstly, it
allows the network to learn the structure of the input data in an unsupervised manner, which can
be useful when the input data is complex or high-dimensional. Secondly, it allows the network to
generalize well to new data, which is important in applications where the input data is not fixed
or changes over time. Finally, it can lead to faster and more efficient training of the network, as
the unsupervised learning stage can reduce the number of parameters that need to be learned
during the supervised learning stage[3], [4].

DISCUSSION

We are now prepared to describe a hybrid learning process8 for the RBF network because we
have the K-means clustering algorithm and the recursive least-squares (RLS) method defined in
Section 5.6. First, the K-means method is used to train the hidden layer, and then the RLS
algorithm is used to train the visible layer the output layer's training.

 The "Kmeans, RLS" technique, which is what we'll refer to as this hybrid learning process
moving forward, is designed to train an RBF network with the following structure incoming
layer The dimensionality of the input vector x, represented by m0, determines the size of the
input layer.

1. The recommended number of clusters, K, determines the size of the hidden layer, m1. In
fact, the designer may adjust the degree of freedom represented by the parameter K. As a
result, the parameter K is the key to solving the model-selection issue, controlling the
network's performance as well as its computational complexity.

2. The cluster mean, calculated using the K-means algorithm on the unlabeled data Hybrid
Learning Method for RBF Networks, allocated to the hidden unit j 1, 2,..., K is 249 tion
(.,xj).

3. To make the design more straightforward, all of the Gaussian functions are given the
same width, indicated by, in accordance with the distribution of the centres found by the
K-means method, as shown by (5.49) where K is the number of centres and dmax is the
greatest distance between them (Lowe, 1989)[5].

By using this method, you can make sure that each Gaussian unit is the right amount of flat or
peaked both extremes should be avoided in real-world applications last layer. When the hidden
layer has finished being trained, the output layer may start being trained. Let the K by 1 vector

138 Neural Networks

represent the hidden layer's K units' outputs. In response to the stimulus xi, I 1, 2,..., N, this
vector is created. Because di is the intended response at the overall output of the RBF network
for input xi, the training sample for the supervised training of the output layer is specified as (xi),
di N I 1.

The RLS algorithm is used to carry out this training. When the network training is finished,
testing of the whole network using new data may start. Since both the K-means and RLS
algorithms are computationally efficient in their own unique ways, the "K-means, RLS"
approach has the appealing property of being computationally efficient. The algorithm's lack of a
general optimality criteria, which would have combined the training of the hidden and output
layers and guaranteed the overall optimality of the system in some statistical sense, is its single
debatable aspect.In this part, we analyse the pattern-classification performance of the "K-means,
RLS" approach used to train an RBF network using a computer experiment. Data from a random
sample of the double-moon configuration were used in the experiment. The performance of the
multilayer perceptron (MLP), which was the subject of attention in the experiment conducted
and the performance of the RBF network trained in this manner are specifically being compared
in this experiment.

The RBF network's hidden layer was selected to be the same size as the MLP's hidden layer that
was examined by being made up of 20 Gaussian units. 1,000 data points were utilised for the
RBF network's training, and 2,000 data points were used for the network's testing. The RBF
trials were conducted for two distinct settings of the doublemoon figure, d - 5 and d - 6, with the
latter setting being the more challenging of the two in a way similar to that for the MLP
experiments.K 20 was given as the number of clusters for this vertical distance between the two
moons (i.e., number of hidden units). The centres of the clusters and, therefore, the centres of the
Gaussian units in the hidden layer were identified by using the K-means method on the training
sample's unlabeled portion. The common width 2.6 allocated to all of the Gaussian units was
then determined using the procedure now that the dispersion of the centres was known. Hence,
the RBF network's hidden layer's design was finished. The output layer was then trained using
the RLS method, which computed the decision boundary and prepared the way for the testing
session.

The RLS algorithm's learning curve is shown in part of the image, and the RBF network's
decision boundary is shown in part. The output layer's design is finished after two training
epochs. The figure's part demonstrates that the two moon-shaped patterns may be virtually
perfectly separated by the RBF network. The double-moon configuration was then used for this
more challenging setting of the pattern-classification experiment on the RBF network. This time,
the 20 Gaussian units were given the common width, which was again done in line with the
equation's formula. The findings of the second half of the experiment where portion (a) of the
picture depicts the RLS method's learning curve and part (b) depicts the decision boundary that
the RBF network learnt after being trained using the "K-means, RLS" algorithm. A classification
error rate of 0.5% was achieved with a total of 10 classification mistakes out of 2,000 test data
points.

139 Neural Networks

We arrive at the following findings by comparing the outcomes of experiment and experiment on
the RBF network in this section with those of the same experiment on the MLP. The MLP
trained with the back-propagation method performs worse than the RBF network trained with the
"K-means, RLS" approach. The MLP specifically failed to classify the double moon perfectly at
setting d–5, however the RBF network reported virtually flawless classification. The MLP
provided a misclassification rate of 0.15% for the simpler configuration d-5, whereas the RBF
network produced a misclassification rate of 0.5% for the challenging setting d-6. Indeed, the
MLP architecture might have been made better, but the RBF network could also have used some
improvement.

According to Churchland and Sejnowski (1992), a receptive field is "that part of a sensory field
from which an acceptable sensory input would elicit a response" in a neurobiological setting. It's
noteworthy to note that cells in higher regions of the visual cortex often have receptive fields that
are much bigger than cells in the earliest stages of the visual system. We may imagine that each
hidden unit of a neural network has its own receptive field based on this neurobiological concept
of a receptive field. In fact, we may continue by making the related claim. The portion of the
sensory field (e.g., input layer of source nodes) from which an appropriate sensory stimulus (e.g.,
pattern) would elicit a response is often referred to as the receptive field of a computational unit
(e.g., hidden unit) in a neural network.

RBF networks and multilayer perceptrons both fit this description. Yet, compared to a multilayer
perceptron, the mathematical demarcation of the receptive field in an RBF network is simpler to
ascertain. The fact that the Gaussian function (x, xj) may be regarded as a kernel a phrase that is
often used in the statistics research and is becoming more common in the machine-learning area
is another crucial aspect of the function [6]. Imagine a function whose centre is at the Euclidean
space origin and is dependent on an input vector x. The fact that the function has characteristics
with the probability density function of a random variable is fundamental to the construction of
this function as a kernel, represented by k(x):

a) Property 1: The kernel k(x) is symmetric around the origin, where it reaches its greatest
value, and it is a continuous, bounded, real function of x.

b) Property 2. The entire volume under the kernel's surface, k(x), is equal to one; given an
m-dimensional vector x, we obtain

The Gaussian function (x, xj) meets both of these conditions, with the exception of a scaling
factor, for the centre xj situated at the origin. Properties 1 and 2 are still true for a non-zero value
of xj, but xj now stands in for the origin. We adopted the term "kernel approaches" in the title of
this chapter because we interpret the Gaussian function as a kernel. The idea of interpolation
serves as the foundation for the theory of RBF networks this part has a different stance by
focusing on kernel regression, which expands on the idea of density estimation.

Consider a nonlinear regression model described where is an additive term with white noise that
has a mean and variance of zero. To minimise misunderstanding, we have switched from the
prior usage of the symbol di to the symbol yi to represent the model output. We may use the
mean of the observables (i.e., the values of the model output y) close to a given location x as a

140 Neural Networks

plausible approximation of the unknown regression function f (x). Nevertheless, for this method
to work, the local average must only include data in a limited area (i.e., receptive field)
surrounding the point x, since observations corresponding to places further from x would often
have different mean values. More specifically, we discover that, given the regressor x, the
unknown function f(x) equals the conditional mean of the observable y. The sophisticated
mathematical concept of interpolation theory may be used in the construction of an RBF
network. Unfortunately, this design strategy has two drawbacks from a pragmatic standpoint.
Secondly, if the training sample is noisy, the RBF network may provide false results.

Essentially, the technique involves two steps:

a. In Stage 1, the hidden layer is trained unsupervised using the K-means clustering technique.
The number of clusters and, hence, the amount of computing power in the hidden layer are
often much lower than the size of the training sample.

b. In Stage 2, the weight vector of the linear output layer is calculated using the recursive least-
squares (RLS) technique.

The double-moon "toy" problem computer experiment's findings hybrid "K-means, RLS"
classifier can perform well. We discover that the two classifiers perform quite similarly when the
outcomes of this experiment are compared to those of the identical experiment using the support
vector machine (SVM), which will be covered in the next chapter.

The "K-means, RLS" classifier, however, converges significantly more quickly and requires less
computing work than the SVM [7]. Remarkably, Rifkin (2002) compared the RLS and the SVM
in depth for the classification of linearly separable patterns using a variety of toy examples in his
PhD thesis.

According to the paper, the nonlinear RLS classifier outperformed the SVM over the entire
receiver operating characteristic (ROC) curve for the USPS data set. When a single network
output is employed, the true-positive rate is plotted against the false-positive rate using the ROC
curve; the word "rate" is another way of expressing the likelihood of classification. Mixed
findings were obtained from the tests conducted on the faces set. The SVM 260 Kernel
Approaches and Radial-Basis Function Networks outperformed the nonlinear RLS classifier
significantly for one set of design parameters. The performances for a different set of design
criteria were comparable. We should also note that the approach used by Rifkin (2002) in
creating the nonlinear RLS classifier's hidden layer was quite different from the K-means
clustering technique discussed in this chapter.

For both our personal double-moon "toy" tests and the more thorough trials described in

Rifkin, there are two key takeaways:

1. The signal-processing and control literature has extensively investigated the RLS
algorithm. Sadly, except from Rifkin's (2002) thesis and a few other papers, it has been
virtually entirely neglected in the machine-learning field.

2. To draw more firm conclusions about how an RBF network based on the RLS algorithm
(for the design of its output layer) and the SVM compare with one another, more

141 Neural Networks

extensive experiments using real-world data sets are required. These experiments should
examine not only performance but also rate of convergence and computational
complexity.

Regression Kernel:

The only other significant subject covered in this chapter relies on the idea of density estimation
and is called kernel regression. We concentrated on the Parzen-Rosenblatt density estimator, a
nonparametric estimator whose formulation depends on the presence of a kernel. The Nadaraya-
Watson regression estimator and the normalised RBF network are two methods to look at the
approximation function described in terms of a nonlinear regression model as a result of this
research. The multivariate Gaussian distribution offers a suitable option for the kernel for each of
them.

1. The actual multivariate interpolation problem was the first to use radial-basis functions.
Powell explores the early research on this topic (1985). It is now one of the primary
areas of study for numerical analysis. Radial-basis functions were originally used in the
creation of neural networks by Broomhead and Lowe in 1988. Poggio and Girosi have
made a significant contribution to the theory and design of radial-basis function
networks (1990a). In the later study, regularisation theory is used to this type of
networks as a means of enhancing generalisation to new data; regularisation theory is
covered.

2. Two fundamental factors lead to the demonstration of Cover's theorem (Cover, 1965).
According to Schalfi's theorem, often known as the function-counting theorem, the
quantity of homogeneously linearly separable dichotomies of N vectors in general
position in Euclidean-m1 space equals In Euclidean-m1 space, a collection of vectors is
said to be in "generic position" if each subset of m or fewer vectors is linearly
independent.

3. The joint probability distribution of h has reflection invariance, which means that the
probability that a random dichotomy is separable is equal to the h = xi N i=1 C(N, m1)
= 2 a m1-1 m=0 a N - 1 m b. The K-means algorithm was given this moniker by
MacQueen (1967), who investigated it as a statistical clustering method, including the
system's convergence characteristics.

The link between the principal-components analysis for data reduction and the K-means
technique for clustering is shown by Ding and He (2004) and is quite intriguing. It is shown in
particular that principle components provide a continuous (relaxed) solution to the cluster
membership indicators in K-means clustering. These two points of view are somewhat in line
with each other since data clustering and data reduction are both, of course, unsupervised
processes. Chapter 8 discusses principal-components analysis as a topic.

The K-means technique, which is a generalisation of Lloyd's initial approach that appeared in a
1957 study at Bell Labs, is known as the generalised Lloyd algorithm in the communications
literature that deals with vector quantization. The published version of Lloyd's study debuted
several years later, in 1982[8].

142 Neural Networks

Fisher's Linear Discriminant, fourth the so-called within-class covariance (scatter) matrix is the
only object that the cost function specified is a trace. Consider a variable y that is defined by the
following inner product to better grasp the meaning of this sentence:

One of the two populations and, which are distinct from one another, is used to generate the
vector x. Due to the fact that mean vectors 1 and 2, respectively, and w is a vector with movable
parameters, c1 c2 y = wTx. For separating these two groups, the Fisher criteria is defined as (B)

Where Ct is the total within-class covariance matrix and Cb is the between-class covariance
matrix, respectively (D). The sample covariance matrix of the training sample is proportional to
the within-class covariance matrix Ct. If the size of the training sample is big, it is often
nonsingular, symmetric, and nonnegative definite. Also symmetric is the between-class
covariance matrix Cb.

The nonnegative definite but singular problem 263 The fact that the matrix product Cbw always
points in the direction of the difference mean vector 12 is a characteristic of special importance.
This characteristic is obvious from the definition of Cb[9].

The condition (E), where is a scaling factor, must be satisfied by the vector w that maximised
J(w). A generalised eigenvalue problem is Equation (E). As the matrix product Cbw in our
instance is always in the direction of the difference vector 12, we discover that the answer to
equation (E) is only (F), also known as Fisher's linear discriminant[10], [11].

CONCLUSION

The hybrid learning procedure for RBF networks combines unsupervised and supervised
learning to improve the accuracy and generalization ability of the network. The procedure
involves clustering the input data into groups, determining the width of the radial basis functions,
and training the network in a supervised manner using a labeled training set. A fine-tuning stage
can be performed to further improve the network's accuracy and generalization ability. The
hybrid learning procedure has several advantages over other learning procedures and can be
useful in applications where the input data is complex or high-dimensional, or where the input
data changes over time.

REFERENCES

[1] R. Hannah Jessie Rani and T. Aruldoss Albert Victoire, “Training radial basis function
networks for wind speed prediction using PSO enhanced differential search optimizer,”
PLoS One, 2018, doi: 10.1371/journal.pone.0196871.

[2] A. Taghavipour, M. S. Foumani, and M. Boroushaki, “Implementation of an optimal
control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks,” Sci.

Iran., 2012, doi: 10.1016/j.scient.2012.02.019.

[3] S. J. Zheng, Z. Q. Li, and H. T. Wang, “A genetic fuzzy radial basis function neural
network for structural health monitoring of composite laminated beams,” Expert Syst.

Appl., 2011, doi: 10.1016/j.eswa.2011.03.072.

143 Neural Networks

[4] X. Qian, H. Huang, X. Chen, and T. Huang, “Generalized Hybrid Constructive Learning
Algorithm for Multioutput RBF Networks,” IEEE Trans. Cybern., 2017, doi:
10.1109/TCYB.2016.2574198.

[5] P. A. Gutiérrez, C. Hervás-Martínez, and F. J. Martínez-Estudillo, “Logistic regression by
means of evolutionary radial basis function neural networks,” IEEE Trans. Neural

Networks, 2011, doi: 10.1109/TNN.2010.2093537.

[6] S. P. Mishra and P. K. Dash, “Short-term prediction of wind power using a hybrid pseudo-
inverse Legendre neural network and adaptive firefly algorithm,” Neural Comput. Appl.,
2019, doi: 10.1007/s00521-017-3185-3.

[7] K. Yamauchi and J. Hayami, “Incremental leaning and model selection for radial basis
function network through sleep,” IEICE Trans. Inf. Syst., 2007, doi: 10.1093/ietisy/e90-
d.4.722.

[8] P. J. García Nieto, E. García-Gonzalo, J. C. Álvarez Antón, V. M. González Suárez, R.
Mayo Bayón, and F. Mateos Martín, “A comparison of several machine learning
techniques for the centerline segregation prediction in continuous cast steel slabs and
evaluation of its performance,” J. Comput. Appl. Math., 2018, doi:
10.1016/j.cam.2017.02.031.

[9] M. W. Mustafa, M. H. Sulaiman, H. Shareef, and S. N. A. Khalid, “Reactive power
tracing in pool-based power system utilising the hybrid genetic algorithm and least
squares support vector machine,” IET Gener. Transm. Distrib., 2012, doi: 10.1049/iet-
gtd.2011.0166.

[10] A. D. Niros and G. E. Tsekouras, “A novel training algorithm for RBF neural network
using a hybrid fuzzy clustering approach,” Fuzzy Sets Syst., 2012, doi:
10.1016/j.fss.2011.08.011.

[11] S. K. Oh, S. H. Yoo, and W. Pedrycz, “Design of face recognition algorithm using PCA-
LDA combined for hybrid data pre-processing and polynomial-based RBF neural
networks: Design and its application,” Expert Syst. Appl., 2013, doi:
10.1016/j.eswa.2012.08.046.

144 Neural Networks

CHAPTER 16

REGULARIZATION THEORY: BALANCING MODEL COMPLEXITY

AND GENERALIZATION PERFORMANCE
Mrs. Samreen Fiza, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-samreenfiza@presidencyuniversity.in

ABSTRACT:

Regularization theory is a powerful framework used in machine learning to prevent over fitting,
a common problem in predictive modeling. Over fitting occurs when a model is too complex,
leading it to fit the training data too closely and perform poorly on new, unseen data. The goal of
regularization is to balance the complexity of the model with its ability to generalize to new data.
It achieves this by adding a penalty term to the model's objective function, which encourages it
to produce simpler models that better represent the underlying patterns in the data.

KEYWORDS:

Complex Leading, Data, Machine Learning, Regularization, Predictive Modelling.

INTRODUCTION

Regularization theory is a fundamental concept in machine learning and statistics that deals with
the problem of overfitting, which occurs when a model is too complex and fits the training data
too closely, resulting in poor generalization performance on unseen data. In this article, we will
explore regularization theory in depth, covering its definition, the different types of
regularization, and their practical applications.

Regularization

Regularization is a technique used to prevent overfitting in statistical models. The idea behind
regularization is to add a penalty term to the loss function, which encourages the model to have
smaller parameter values. This is done by introducing a regularization parameter λ, which
controls the strength of the penalty term. A higher value of λ will result in a model with smaller
parameter values, which in turn reduces overfitting.The regularization term is typically added to
the objective function in the form of a norm of the model parameters. There are different types of
norms that can be used for regularization, such as L1 norm, L2 norm, and elastic net norm. The
choice of norm depends on the problem at hand and the characteristics of the data[1].

Types of Regularization

There are several types of regularization techniques, each with its own strengths and weaknesses.
In this section, we will discuss the most commonly used types of regularization.

145 Neural Networks

L1 Regularization

L1 regularization, also known as Lasso regularization, is a technique used to encourage sparsity
in the model. The idea behind L1 regularization is to add a penalty term to the objective function
that is proportional to the absolute value of the model parameters. The resulting optimization
problem is a convex optimization problem that can be solved efficiently using gradient descent
or other optimization algorithms.

L1 regularization is particularly useful when dealing with high-dimensional data, where the
number of features is much larger than the number of observations. In such cases, L1
regularization can be used to select a subset of the most important features and discard the rest,
resulting in a more interpretable and parsimonious model.

L2 Regularization

L2 regularization, also known as Ridge regularization, is a technique used to encourage
smoothness in the model. The idea behind L2 regularization is to add a penalty term to the
objective function that is proportional to the square of the model parameters. The resulting
optimization problem is a convex optimization problem that can be solved efficiently using
gradient descent or other optimization algorithms.

L2 regularization is particularly useful when dealing with correlated features, where the model
needs to balance the weights of different features to avoid overfitting. In such cases, L2
regularization can be used to encourage the model to distribute the weights evenly across the
features, resulting in a more robust and stable model.

Elastic Net Regularization

Elastic Net regularization is a combination of L1 and L2 regularization. The idea behind Elastic
Net regularization is to add a penalty term to the objective function that is a weighted sum of the
L1 and L2 norms of the model parameters. The resulting optimization problem is a convex
optimization problem that can be solved efficiently using gradient descent or other optimization
algorithms.

Elastic Net regularization is particularly useful when dealing with high-dimensional data that
contains both correlated and uncorrelated features. In such cases, Elastic Net regularization can
be used to select a subset of the most important features and balance the weights of different
features, resulting in a more interpretable and robust model.

Dropout Regularization

Dropout regularization is a technique used to prevent overfitting in neural networks. The idea
behind dropout regularization is to randomly drop out some of the neurons in the network during
training. This forces the network to learn more robust and generalizable representations that do
not rely too much on any one specific set of neurons.Dropout regularization is particularly useful
when dealing with large and complex neural networks that are prone to overfitting

146 Neural Networks

Applications of Regularization:

Regularization techniques have a wide range of applications in machine learning and statistics.
Some of the most common applications of regularization include:

1. Regression: Regularization techniques are commonly used in linear regression models to
prevent overfitting and improve generalization performance. L1 regularization is often
used for feature selection, while L2 regularization is used for parameter shrinkage.

2. Classification: Regularization techniques are commonly used in logistic regression
models and support vector machines to prevent overfitting and improve generalization
performance.

3. Neural Networks: Regularization techniques, such as dropout regularization, are
commonly used in deep neural networks to prevent overfitting and improve
generalization performance.

4. Image Processing: Regularization techniques, such as total variation regularization, are
commonly used in image processing to remove noise and improve image quality.

5. Signal Processing: Regularization techniques, such as sparse coding and compressed
sensing, are commonly used in signal processing to reduce data storage and improve
signal quality.

Advantages of Regularization:

Regularization has several advantages in machine learning and statistics:

1. Improved Generalization Performance: Regularization techniques help prevent
overfitting and improve the generalization performance of models.

2. Feature Selection: Regularization techniques, such as L1 regularization, can be used for
feature selection, resulting in more interpretable and parsimonious models.

3. Robustness: Regularization techniques, such as L2 regularization, can improve the
robustness of models by balancing the weights of different features.

4. Flexibility: Regularization techniques, such as Elastic Net regularization, offer a flexible
approach to model regularization that can handle a wide range of problems[2], [3].

Disadvantages of Regularization:

Regularization also has some disadvantages:

1. Bias: Regularization can introduce bias into the model, particularly when the
regularization parameter is set too high.

2. Sensitivity to the Regularization Parameter: The performance of regularized models is
sensitive to the value of the regularization parameter, which can be difficult to tune.

147 Neural Networks

3. Computationally Expensive: Regularization can increase the computational cost of model
training, particularly for large and complex models.

DISCUSSION

The method of learning from instances presented here is an inverted issue since it relies on the
understanding gained through examples of the comparable direct problem, the latter of which
includes unknowable physical rules. But, in practise, we often discover that the training sample
has a significant flaw: A learning machine may overfit a model because the information content
of a training sample is often insufficient on its own to reconstruct the unknown input-output
mapping uniquely. We may utilise the regularisation approach, which minimises the augmented
cost function to limit the solution of the hypersurface reconstruction problem to compact subsets,
to solve this major issue:

The empirical risk, or standard cost function, might, for instance, be defined as a sum of error
squares given a training sample. The regularizer has been included in order to make the
hypersurface reconstruction issue solution more fluid. Thus, the regularised cost function offers a
tradeoff between the "fidelity" of the training sample (involved in computing the squared errors)
and "smoothness" of the solution via an appropriate choice of the regularisation parameter
(which is within the designer's control)[4].

In this chapter, we examine two essential issues:

1. The traditional theory of regularisation, which is based on the verbalised regularised
cost function. The regularizers presented in earlier chapters have a coherent
mathematical foundation thanks to Tikhonov's elegant theory from 1963, which also
expands on them by introducing fresh concepts.

2. Generalized regularisation theory, which adds a third term to Tikhonov's classical
regularisation theory formulation and is credited. This new term, the manifold
regularizer, takes advantage of the input space's marginal probability distribution, which
is in charge of producing unlabeled examples (i.e., examples without the desired
response). The mathematical foundation for semisupervised learning, which makes use
of both labelled and unlabeled samples, is provided by the generalised regularisation
theory.

Hadamard coined the phrase "well posed," and it has been used in practical mathematics ever
since. Assume that we have a domain and a range that are connected by a fixed but unidentified
mapping, f, to better understand this concept. Reconstructing the mapping f is considered to be a
well-posed issue. Hadamard's three requirements are not met, in which case the issue is
considered to be poorly presented. Essentially, poorly posedness refers to the possibility that big
data sets may only include a tiny quantity of information on the desired answer.Hadamard's
requirements are broken in the context of supervised learning for the following reasons. A
separate output may not exist for every input, which would contradict the existence condition.
Second, the training sample may not include as much data as what is really required for a unique
reconstruction of the input-output mapping; as a result, the uniqueness criteria is likely to be
broken. Figure 1 illustrate the Regularization Model.

148 Neural Networks

Finally, the reconstruction process is made more dubious by the inevitable existence of noise or
imprecision in real-world training data. It is particularly feasible for the neural network or
learning machine to create an output outside of the range for a given input x in the domain if the
noise level in the input is too high; in other words, it is possible for the continuity criteria to be
broken. The calculated input-output mapping has nothing to do with the real solution to the
learning issue if the attribute of continuity is absent from the learning problem.It is pretty
relevant in this situation to recall what Lanczos said in 1964 on linear differential operators: Any
of these requirements must be met for the issue to be considered poorly presented [5].
Essentially, poorly posedness refers to the possibility that big data sets may only include a tiny
quantity of information on the desired answer. Secondly, the existence condition could not be
met since not every input will necessarily result in a different output. Second, the training sample
may not include as much data as what is really required for a unique reconstruction of the input-
output mapping; as a result, the uniqueness criteria is likely to be broken.

Figure 1: Illustrate the Regularization Model.

Without some previous knowledge of the input-output mapping is known, there is no way to get
around these challenges. Tikhonov introduced a brand-new approach to ill-posed problem
solution in 1963 known as regularisation. The fundamental goal of regularisation, when applied
to a hypersurface reconstruction issue, is to stabilise the solution by using an auxiliary
nonnegative functional that incorporates knowledge about the solution's history. The assumption
that the input-output mapping function (i.e., solution to the reconstruction issue) is smooth
characterises the most prevalent kind of prior knowledge in the following manner the output is
thought to be one dimensional, so take note of that. The wide applicability of the regularisation
theory being established here is in no way constrained by this assumption. Let's call the
approximation function F(x), where (for ease of presenting) the weight vector w of the network
has been removed from the function F's input.

Tikhonov's regularisation theory essentially uses two terms:

1. Error function, indicated by where the training sample xi, di, and N I are specified in
terms of the approximation function F(xi). For instance, the standard cost (loss) function
for the least-squares estimator has the subscript s in it, which stands for "standard." We
have a different example, the support vector machine, where the margin loss function is
used. We could, of course, include both instances in a single formula, but the
consequences of these two elemental loss functions are so dissimilar that their
theoretical evolution would eventually need to be handled independently.

149 Neural Networks

2. The regularizer, represented by the term and given where the subscript c in the
expression stands for "complexity," is reliant on certain geometric characteristics of the
approximation function F(xi). The linear differential operator D appears. The operator D
has prior knowledge about the solution's form [i.e., the input-output mapping function
F(x)], which logically makes the choice of D network dependent. D is sometimes
referred to as a stabiliser since it smooths down the regularisation problem's solution,
stabilising it and satisfies the continuity property. However keep in mind that although
continuity implies smoothness, the opposite is not always true. The idea of a Hilbert
space serves as the foundation for the analytical strategy utilised to tackle the problem.
A continuous function is represented as a vector in such a space. An interesting
connection between matrices and linear differential operators is made using this
geometrical picture[6].

The regression model, in which xi is the regressor, di is the response, and is the explanational
error, represents the training sample t xi, di N i1, produced by a physical process. The reason for
this criterion will become clear later in the discussion. Strictly speaking, we want the function
f(x) to be a member of a reproducing-kernel Hilbert space (RKHS) with a reproducing kernel in
the form of the Dirac delta distribution (Tapia and Thompson, 1978). In Chapter 6, the RKHS
idea was also covered.

Let and +(F) stand for the regularising function and respectively the standard cost (loss) function.
The amount in regularisation theory that must be reduced, assuming least-squares loss, is thus,
where is a positive real number known as the regularisation parameter and is known as the
Tikhonov functional. A functional maps on the real line functions that are specified in a suitable
function space.

 F represents the regularisation issue solution and the minimizer of the Tikhonov functional (x)
which is another way to look at regularisation. In particular, by putting the appropriate amount of
prior knowledge into it, the regularisation parameter's optimal choice is intended to direct the
learning problem's solution towards a desirable balance between model bias and model variance.
As evidenced by the usage of in Eq, regression has received the most attention in the study of the
Tikhonov regularisation theory. The fact that the case is di iting suggests that the issue is
unrestricted and that the answer F (x) may be fully deduced from the cases.

The alternative limiting situation, on the other hand, means that the solution F (x) may be
specified by the prior smoothness constraint imposed by the differential operator D alone, which
is another way of stating that the instances are untrustworthy. In real-world applications, the
regularisation parameter is set to a value between these two limiting requirements such that the
solution F is influenced by both the training sample data and the previous knowledge (x). S 0
strain was applied to +. (F). By doing this, we place a strong emphasis on an explicit restriction
on the "complexity" of the approximation function F.

Moreover, we may interpret the regularisation parameter as a measure of how well the provided
training sample specifies the solution F. (x). Specifically, the lim - \s318 it’s crucial to
understand that the Tikhonov regularisation theory also applies. This may be achieved, for

150 Neural Networks

instance, by simply interpreting binary labels in conventional least-squares regression as real
values. Another example would be the employment of empirial risk (i.e., cost) functions that are
more suited for pattern classification, such the hinge loss, which results in support vector
machines.Tikhonov regularisation has recently been used to improve structural prediction, where
the output space might be a sequence, a tree, or another structured output space.

The crucial point we want to make here is that practically all practical contexts where learning
from a training sample of a certain size is necessary include regularisation at their core. The
Fréchet differential may be used to solve this problem. The tangent to a curve in basic calculus is
a straight line that provides the closest approximate representation of the curve at the point of
tangency. The best local linear approximation may also be inferred from the Fréchet differential
of a functional. If h(x) is a fixed function of the vector x, the formal definition where and are the
Fréchet differentials of the functionals and, respectively, h was substituted for h(x) to make the
presentation more straightforward, the Fréchet differential must be zero at F(x) for all to satisfy
the requirement that the function F(x) is a relative extremum of the functional.

The Riesz representation theorem, which may be expressed as follows (Debnath and Mikusinski,
1990), is useful to proceed with the discussion of the Fréchet differential formulated in the
Hilbert space. The inner (scalar) product of two functions in the space is represented by the
symbol used here. As the Dirac delta distribution of x is centred at xi, we may rewrite the Fréchet
differential in the equivalent form in light of the Riesz representation theorem. For any pair of
functions u(x) and v(x) that are sufficiently differentiable and meet suitable boundary conditions,
we may discover a uniquely determined adjoint operator. The adjoint operator may be defined in
terms of the given differential D using often known as Green's identity. The adjoint operator
functions similarly to a matrix transpose if D is thought of as a matrix[7].

We can now formulate the Fréchet differential as by going back to the extremum condition
specified and inserting the Fréchet differentials. The Fréchet differential is zero for any h(x) in
space because the regularisation parameter is typically given a value somewhere in the open
interval if and only if the following criterion is fulfilled in the distributional sense:

The Tikhonov functional's Euler-Lagrange specifies a prerequisite for the Tikhonov functional
having an extremum at F.A partial differential equation for the function F1. It is well known that
the integral transformation of the equation's right-hand side makes up the answer. The solution to
Equation is now continued after a little digression to explain the Green's function. Provide the
notation G(x,) for a function that uses the vectors x as both an argument and a parameter, both
on an equal footing. The function G(x,) must meet the following requirements for a certain
linear differential operator L.

The derivatives of G(x,) with respect to x, with the exception of the point x, are all continuous;
the order of the operator L determines how many derivatives there are. The partial differential
equation is satisfied everywhere when G(x,) is viewed as a function of x, with the exception of
the point x, where it has a singularity. As previously described, (x -) is the Dirac delta function
located at the point x, hence the function G(x,) solves the partial differential equation (taken in
the sense of distributions).

151 Neural Networks

For the differential operator L, the function G(x,) is referred to as the influence function or
Green's function. A linear differential operator uses Green's function in a way that is similar to
how the inverse matrix in a matrix equation is used. A continuous or piecewise-continuous
function of is indicated by the symbol (x). The differential equation is therefore solved by the
function where G(x,) is the Green's function for the linear differential operator L. In the sense
that its adjoint is equivalent to the differential operator L itself differential operator L is self-
adjoint. Because any two points x and may be swapped out without changing the Green's
function G(x,) value, it follows that the related Green's function G(x, xi) is a symmetric function

The interpolation theorem, which was discussed in Chapter 5 with relation to the interpolation
matrix, is now used. First, it should be noted that, like RBF interpolation theory, regularisation
theory makes use of Green's matrix G. G and are both symmetric N-by-N matrices. As a result,
we may say that the matrix G is positive definite for certain classes of Green's functions, given
that the data points x1, x2,…., xN are distinct. Inverse multiquadrics and Gaussian functions are
among the classes of Green's functions that are covered by Micchelli's theorem, but
multiquadrics are not. In actuality, we may always choose a size that guarantees the total matrix
G I is positive definite and so invertible. As a result, the following will be the only answer to the
linear system.In order to calculate the weight vector w for a given intended response vector d and
an acceptable value of the regularisation parameter, we may utilise after choosing the differential
operator D and identifying the related Green's function G(xj, xi), where I 1, 2,...,N.

The expansion provides the regularisation problem's solution:

1. The expansion of linearly weighted Green's functions, each of which is dependent only
on the stabiliser D, forms the approximation function Fl(x), which minimises the
regularised cost function (F).

2. Green's functions are utilised in the expansion in an amount N times the size of the
training sample. The regularisation parameter l and the training sample are used in Eq to
determine the appropriate N weights of the expansion. The Green's function G(x, xi)
centred at xi will only rely on the difference between the inputs x and xi if the stabiliser
D is translationally invariant; in other words The Green's function G(x, xi) will only
rely on the Euclidean norm of the difference vector x - xi if the stabiliser D is
translationally and rotationally invariant.

As the interpolating function F is created using all N data points available for training, the
solution provided is known as stringent interpolation (x). But it's crucial to understand that this
answer is fundamentally. According to the specification of the weight vector w the solution is
regularised. The two solutions may only merge into a single solution when the regularisation
value is set to zero.

In reality, the Green's function G(x, xi) that meets the requirement and whose linear differential
operator D is both translationally and rotationally invariant is of special relevance. The
multivariate Gaussian function described where xi represents the function's centre and I specifies
its breadth, is an illustration of a kind of Green's function. In agreement with self-adjoint
operator defines the Green's function where is the iterated Laplacian operator in m0 dimensions.

152 Neural Networks

L is no longer a differential operator in the traditional sense once the number of terms allowed to
grow to infinity is taken into consideration. L is referred to as a pseudodifferential operator as a
result. The regularised solution provided in takes the form of a linear superposition of
multivariate Gaussian functions with the Green's function G(x, xi) specified by the special form
of Eq. (7.40). As previously, the linear weights wi.

The many Gaussian components of the sum forming the approximation function Fl(x) are given
various variances to make things simpler, the condition I for all I is often placed on F. (x). The
RBF networks created in this way are relatively limited, but they are nevertheless universal
approximators.The network topology suggested as a model for the implementation of the
regularised approximation function F (x) provided in terms of the Green's function G(x, xi)
centred at xi. This model is known as a regularisation network for obvious reasons. Three layers
make up the network. The number of input (source) nodes in the top layer, or the number of
independent variables in the issue, is equal to the dimension m0 of the input vector x[8].

The second layer is a hidden layer made up of nonlinear components that are all directly linked
to the input layer's nodes. For each data point xi, I 1, 2,..., N, where N is the size of the training
sample, there is one hidden unit. N Green's functions as a whole determine the activation
functions of the various hidden units. As a result, G(x, xi) is the result of the ith hidden unit. The
hidden layer is completely linked to the output layer, which is made up of a single linear unit. By
"linearity," we mean that the output of the network is a sum of the hidden units' outputs that has
been linearly weighted. The unknown expansion coefficients, denoted by the Green's functions
G(x, xi), and the regularisation parameter, serve as the basis for the output layer's weights[9],
[10].

CONCLUSION

Regularization is a fundamental concept in machine learning and statistics that is used to prevent
over fitting and improve the generalization performance of models. Regularization techniques,
such as L1 and L2 regularization, are commonly used in linear models, while Elastic Net
regularization is used for high-dimensional data. Dropout regularization is commonly used in
deep neural networks to prevent over fitting. Regularization has several advantages, including
improved generalization performance, feature selection, robustness, and flexibility. However, it
also has some disadvantages, including bias, sensitivity to the regularization parameter, and
increased computational cost.

REFERENCES

[1] E. Ragusa, E. Cambria, R. Zunino, and P. Gastaldo, “A survey on deep learning in image
polarity detection: Balancing generalization performances and computational costs,”
Electron., 2019, doi: 10.3390/electronics8070783.

[2] K. Hsu, R. Nock, and F. Ramos, “Hyperparameter learning for conditional kernel mean
embeddings with rademacher complexity bounds,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2019. doi: 10.1007/978-3-030-10928-8_14.

153 Neural Networks

[3] E. Ragusa, P. Gastaldo, R. Zunino, and E. Cambria, “Balancing computational complexity
and generalization ability: A novel design for ELM,” Neurocomputing, 2020, doi:
10.1016/j.neucom.2020.03.046.

[4] B.-T. Zhang and H. Mühlenbein, “Balancing Accuracy and Parsimony in Genetic
Programming,” Evol. Comput., 1995, doi: 10.1162/evco.1995.3.1.17.

[5] N. Poh and J. Kittler, “On the use of log-likelihood ratio based model-specific score
normalisation in biometric authentication,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2007. doi: 10.1007/978-3-540-74549-5_65.

[6] P. Sermpezis and X. Dimitropoulos, “Inter-domain SDN: Analysing the effects of routing
centralization on BGP convergence time,” in Performance Evaluation Review, 2016. doi:
10.1145/3003977.3003988.

[7] G. Domingues, E. De Souzae Silva, R. Leão, D. Menasché, and D. Towsley, “Search and
placement in tiered cache networks,” in Performance Evaluation Review, 2016. doi:
10.1145/3003977.3003981.

[8] Y. Lu, S. T. Maguluri, M. S. Squillante, and C. W. Wu, “Risk-based dynamic allocation of
computing resources,” in Performance Evaluation Review, 2016. doi:
10.1145/3003977.3003987.

[9] S. Juneja and D. Manjunath, “To lounge or to queue up,” in Performance Evaluation
Review, 2016. doi: 10.1145/3003977.3003991.

[10] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of downgrading for
resource allocation,” in Performance Evaluation Review, 2016. doi:
10.1145/3003977.3003986.

154 Neural Networks

CHAPTER 17

SEMI-SUPERVISED LEARNING: LEVERAGING UNLABELED DATA

FOR IMPROVED MACHINE LEARNING AND DEEP LEARNING

PERFORMANCE
Mrs. Ashwini B, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-ashwini.b@presidencyuniversity.in

ABSTRACT:

Semi-supervised learning is a machine learning paradigm that aims to train models using both
labeled and unlabeled data. The use of unlabeled data can improve the performance of the model,
especially when the amount of labeled data is limited or expensive to obtain. In semi-supervised
learning, the model learns from the structure of the data, and the assumptions made about the
data distribution can play a crucial role in the performance of the model.

KEYWORDS:

Data, Deep Learning, Semi-supervised Learning, Machine Learning, Unlabeled Data, Time.

INTRODUCTION

Semi-supervised learning is a type of machine learning in which a model is trained on a small set
of labeled data and a large set of unlabeled data. In traditional supervised learning, a model is
trained using a labeled dataset, where the input data and the desired output are both provided.
This type of learning is useful when there is a large amount of labeled data available. However,
in many real-world scenarios, labeled data is scarce, expensive, or time-consuming to obtain.

The basic idea behind semi-supervised learning is that the model can learn from both the labeled
and unlabeled data. The labeled data provides some guidance for the model, while the unlabeled
data can help the model discover patterns and structure in the data that might not be apparent
from the labeled data alone. By using both labeled and unlabeled data, the model can often
achieve better performance than a model trained on only labeled data.

The key concepts and techniques used in semi-supervised learning, including:

1. The importance of labeled and unlabeled data

2. Types of semi-supervised learning

3. Co-training and self-training

4. Generative models

155 Neural Networks

5. Graph-based methods

6. Active learning

7. Transfer learning

8. Challenges and future directions

9. The importance of labeled and unlabeled data

Labeled data refers to data that has been annotated with a specific output or class label. For
example, in a classification problem, labeled data would consist of input data along with the
correct class label for each instance. In supervised learning, the goal is to learn a model that can
accurately predict the correct output for new, unseen input data.

Unlabeled data, on the other hand, is data that has not been annotated with any specific output or
class label. This type of data can still be useful in machine learning, as it contains information
about the underlying structure and patterns in the data. In semi-supervised learning, the model
uses both labeled and unlabeled data to learn[1], [2].

One of the main advantages of using unlabeled data is that it can help improve the accuracy and
generalization of the model. This is because unlabeled data can help the model learn more robust
and flexible representations of the input data. By learning from a large amount of unlabeled data,
the model can better capture the underlying structure and patterns in the data, which can help it
make better predictions on new, unseen data.

2. Types of semi-supervised learning

There are several types of semi-supervised learning methods, including:

a) Co-training: In co-training, multiple classifiers are trained on different subsets of the
features in the input data. The classifiers then exchange information with each other,
using the output of one classifier to improve the training of another. Co-training is
typically used in situations where the input data has multiple modalities or sources.

b) Self-training: In self-training, a model is trained on a small set of labeled data. The
model is then used to make predictions on the unlabeled data, and the most confident
predictions are added to the labeled data set. The model is then retrained on the
expanded labeled data set. This process is repeated until the model converges.

c) Generative models: Generative models are used to model the underlying distribution
of the input data. This can be useful in situations where the labeled data is scarce or
noisy. One example of a generative model is a variational autoencoder, which can be
used to learn a low-dimensional representation of the input data.

d) Graph-based methods: Graph-based methods represent the input data as a graph,
where each data point is a node and the edges represent the similarity or proximity
between the data points. The graph can then be used to propagate information
between the labeled and unlabeled data. One example of a graph-based method is the

156 Neural Networks

label propagation algorithm, which uses the graph structure to propagate labels from
the labeled data to the unlabeled data.

e) Active learning: Active learning is a type of semi-supervised learning where the
model is able to select the most informative unlabeled data points for labeling. The
goal is to select the data points that are most likely to improve the model's accuracy.
Active learning is particularly useful in situations where labeling data is expensive or
time-consuming.

f) Transfer learning: Transfer learning is a technique where a model trained on one task
is adapted to a related task with limited labeled data. The model is first pre-trained on
a large amount of unlabeled data from the source task, and then fine-tuned on the
limited labeled data from the target task. Transfer learning is particularly useful in
situations where there is a limited amount of labeled data available for the target task.

3. Co-training and self-training

Co-training and self-training are two of the most commonly used semi-supervised learning
methods. In co-training, the idea is to train multiple classifiers on different subsets of the
features in the input data. Each classifier is trained on a different subset of the features, and
the output of one classifier is used to improve the training of another. The basic idea behind
co-training is that different subsets of features may be more informative for different classes
or aspects of the input data. By training multiple classifiers on different subsets of features,
the model can learn to better capture the underlying structure and patterns in the data.

In self-training, the idea is to start with a small set of labeled data and use the model to make
predictions on the unlabeled data. The most confident predictions are then added to the
labeled data set, and the model is retrained on the expanded labeled data set. This process is
repeated until the model converges. The basic idea behind self-training is that the model can
use the unlabeled data to bootstrap its own training. By starting with a small set of labeled
data and gradually expanding the labeled data set, the model can learn to better generalize to
new, unseen data[3], [4].

4. Generative models

Generative models are used to model the underlying distribution of the input data. One example
of a generative model is a variational autoencoder, which can be used to learn a low-dimensional
representation of the input data. The basic idea behind a variational autoencoder is to learn a
low-dimensional representation of the input data that captures the underlying structure and
patterns in the data.

Generative models are particularly useful in situations where the labeled data is scarce or noisy.
By learning a generative model of the input data, the model can use the unlabeled data to
improve its accuracy and generalization. For example, a generative model can be used to
generate synthetic labeled data that can be used to train a supervised learning model.

157 Neural Networks

5. Graph-based methods

Graph-based methods represent the input data as a graph, where each data point is a node and the
edges represent the similarity or proximity between the data points. The graph can then be used
to propagate information between the labeled and unlabeled data. One example of a graph-based
method is the label propagation algorithm, which uses the graph structure to propagate labels
from the labeled data to the unlabeled data.

Graph-based methods are particularly useful in situations where the input data has a natural
graph structure, such as in social networks or image segmentation. By using the graph structure
to propagate information between the labeled and unlabeled data, the model can learn to better
capture the underlying structure and patterns in the data.

6. Active learning

Active learning is a type of semi-supervised learning where the model is able to select the most
informative unlabeled data points for labeling. The goal is to select the data points that are most
likely to improve the model's accuracy. Active learning is particularly useful in situations where
labeling data is expensive or time-consuming.

The basic idea behind active learning is to iteratively select the most informative data points for
labeling. In each iteration, the model is trained on the current labeled data set, and then used to
make predictions on the unlabeled data. The most informative data points are then selected for
labeling based on some criterion, such as uncertainty sampling or entropy.

One example of active learning is query-by-committee, where multiple models are trained on
different subsets of the data, and the most informative data points are selected based on the
disagreement between the models. Another example is uncertainty sampling, where the most
uncertain data points are selected for labeling based on the model's output probabilities.

7. Transfer learning

Transfer learning is a technique where a model trained on one task is adapted to a related task
with limited labeled data. The model is first pre-trained on a large amount of unlabeled data from
the source task, and then fine-tuned on the limited labeled data from the target task. Transfer
learning is particularly useful in situations where there is a limited amount of labeled data
available for the target task.The basic idea behind transfer learning is to transfer the knowledge
learned from the source task to the target task. This is done by using the pre-trained model as a
starting point for the target task, and then fine-tuning the model on the limited labeled data from
the target task. By using the pre-trained model as a starting point, the model can learn to better
generalize to the new, unseen data.One example of transfer learning is using a pre-trained
language model, such as BERT or GPT-2, for a downstream task such as text classification or
sentiment analysis. The pre-trained language model is first trained on a large amount of
unlabeled text data, and then fine-tuned on the limited labeled data from the downstream task.
This allows the model to transfer the knowledge learned from the pre-training to the downstream
task, and learn to better generalize to new, unseen text data.

158 Neural Networks

8. Semi-supervised learning applications

Semi-supervised learning has a wide range of applications in various domains, including natural
language processing, computer vision, and speech recognition. Some examples of semi-
supervised learning applications are:

a) Natural language processing: Semi-supervised learning is used for tasks such as text
classification, named entity recognition, and sentiment analysis. In these tasks, labeled
data is often limited, and semi-supervised learning can be used to improve the accuracy
and generalization of the models.

b) Computer vision: Semi-supervised learning is used for tasks such as image classification,
object detection, and semantic segmentation. In these tasks, labeled data is often
expensive to obtain, and semi-supervised learning can be used to improve the accuracy
and generalization of the models.

c) Speech recognition: Semi-supervised learning is used for tasks such as speech
recognition and speaker recognition. In these tasks, labeled data is often limited, and
semi-supervised learning can be used to improve the accuracy and generalization of the
models[5].

DISCUSSION

Self-training is sometimes referred to as a wrapper approach and is an excellent tool for jobs
requiring semisupervised learning. It is a straightforward plan with four steps. Then, a classifier
of our choosing is selected and trained using a tiny a predetermined number of randomly selected
labelled data points from the original dataset. The categorization of unlabeled cases occurs in the
second step, and an evaluation process is then carried out. To be more precise, any case that has
a probability value higher than a certain threshold is deemed dependable enough to be included
in the training set for the subsequent training stages. Ultimately, these cases are included in the
original training set, so boosting the resilience of the system. One whole step of the algorithm is
made up of each of these stages. Unless halting requirements are met, the classifier is retrained
using the new, larger training set. Despite the possibility of incorrect classification owing to a
lack of specified assumptions, self-training has been shown to function admirably in many real-
life settings.

During the training phase of PSL approaches, some of the unlabeled samples won't be labelled
since the algorithm's termination will have been foreshadowed, which is a significant factor in
why their performance may vary from that of supervised algorithms. This fact indicates that just
a portion of the information offered by the dataset will be used by this approach. Their primary
advance over the standard self-training strategy is a new approach to misclassified samples that
originate from the unlabeled set and may be mistakenly combined with the original train set,
lowering the algorithm's performance as a result. They create a neighbourhood network in p-
dimensional feature space, where p is the size of the feature vector (p1), to help limit the
occurrence of these events. After analysing a hypothesis test, they eventually exclude any
examples with a negative test result.

159 Neural Networks

A second kind of the self-training approach, cotraining is an equally significant system. Its
primary premise is that there are alternative ways to use the feature space than just merging all of
its components. This presumption, which is consistent with multiview learning, underlies the
cotraining algorithm's belief that it is more efficient to forecast the unlabeled cases consistently
when the feature space is divided into two distinct categories. Since the newly created categories
provide a distinct perspective on the dataset, this assumption looks more plausible. The
cotraining algorithm's algorithmic stages are identical to those previously mentioned, with the
exception that there must be two distinct feature vectors for each instance since it is a member of
the family of self-training schemes. The performance of cotraining and the size of the labelled
training set were evaluated in the work and their findings revealed that good performance was
attained even in scenarios when the algorithm was given just a small number of examples per
class.

A sufficient number of studies, however, allowed to draw the conclusion that relying on tiny
labelled training sets cannot guarantee the correctness of multiview consideration assumptions.
Many strategies have been put forward to prevent the addition of incorrectly categorised
examples into the training set at the conclusion of each iteration used Canonical Correlation
Analysis to filter the predictions of cotraining classifiers. Only those instances that complied
with CCA's limitations were included to the initial training set by using CCA on paired datasets
to efficiently compute the similarities between unlabeled examples from the test set and
beginning training set. The use of a distance metric that compares the probability of class
membership between labelled and unlabeled instances was suggested. The metric established by
this scenario will increase the example with the smaller distance to be picked with a larger
chance if two instances have the same class probability value.

Combining several classifiers is another method for more accurately distinguishing the
predictions of a semisupervised system. A hybrid technique was developed to combine the
predictions of two separate classifier types in order to take use of their unique traits. The first is a
generative classifier called Naive Bayes, while the second is a discriminative classifier called
Support Vector Machine (SVM). The weights between the two classifiers, which are controlled
by a parameter, determine the outcome of the prediction. There is also a summary of other
comparable hybrid techniques the Co-Forest approach, which involves training a number of
Random Trees using bootstrap data from the dataset. Being an ensemble approach, its
performance is unaffected by a decrease in the number of accessible labelled samples.

The main concept behind this approach is to provide each Random Tree a few unlabeled
instances during the training phase. The outcome is ultimately decided by a majority vote. The
ADE-Co-Forest method is an adaptation of this one that uses data editing to identify and
eliminate potentially problematic occurrences at the conclusion of each cycle have suggested
cotraining by committee within its parameters. A beginning committee was constructed based on
the dataset's totally known cases.

While performs a random split in order to train several learners, it does not take any particular
criteria into consideration when dividing the feature vectors. This approach involves labelling the
unlabeled data and adding it to the training set based on a mix of choices made by the learners

160 Neural Networks

who were trained on various attribute splits. Instead of generating random feature subspaces,
technique creates relevant random subspaces based on the relevance scores of the features that
are acquired utilising the mutual information between the features and class.

The tri-training technique labels each unlabeled instance using three classifiers, each of which
utilises a different bootstrap sample from the same dataset. An instance is deemed to be labelled
and included to the training set if two out of the three classifiers agree on its classification. Imtri-
training, an enhanced tri-training method, addresses some of the shortcomings of the original
model, including inappropriate error estimates, unnecessarily constrained limitation, and a lack
of weight for labelled and unlabeled examples

The expansion of the training set of the classifier whose prediction differed from the final one
after the voting step is one extremely intriguing feature of this method proposed a classifier
ensemble that could be trained using a variety of viewpoints. In order to train the other ensemble
from the new one perspective, only the cases whose classification was based on the consensus
forecast of many classifiers are chosen as the most confident[6].

A classification approach based on Local Cluster Centers was suggested by this technique
supports scenarios where the labelling process may result in instances being misclassified and
attempts to overcome issues that arise when the available datasets only include a small amount of
labelled training data. Aggregation pheromone density based semisupervised classification
(APSSC) technique is another approach that employs a selftraining. As indicated by the
algorithm's name, the equivalent quality, which can be discovered in actual ants' organic
behaviour, was applied in this study.

It really worked adequately and provided encouraging outcomes for resolving practical issues
connected to the categorization job have suggested a self-training strategy using a mix of
classifiers. The key benefit of their learning strategy, known as Self-Training Nearest Neighbor
Rule utilising Cut Edges (SNNRCE), is that it uses graph-based techniques to stop problematic
samples from being added to the initial labelled set throughout each iteration.

Our suggested technique combines the Logistic Model Tree (LMT) algorithm with a self-training
scheme. A piecewise linear regression model is produced by an LMT, which is a decision tree
with linear regression models at its leaves. Every inner node, as in standard decision trees, has a
test on one of the characteristics attached to it. Examples are sorted along one of the n branches
according to the value of their nominal feature for a node with n child nodes for a nominal
feature with n values.

The test for numerical features compares the feature value with a threshold, and the node
contains two child nodes. For each node of the tree, a linear regression model is generated using
the LogitBoost method. At some point, building a linear logistic model may be preferable than
repeatedly using the tree-growing technique since the subsets found at lower levels of the tree
become ever-smaller. There is compelling evidence that it is generally not a good idea to form
trees for relatively tiny datasets.

161 Neural Networks

Our suggested technique combines the Logistic Model Tree (LMT) algorithm with a self-training
scheme. Using linear regression models as its leaves, a decision tree called an LMT may give

A linear regression model that is piecewise. Every inner node, as in standard decision trees, has a
test on one of the features. Examples are sorted along one of the n branches according to the
value of their nominal feature for a node with n child nodes for a nominal feature with n values.

The test for numerical features compares the feature value with a threshold, and the node
contains two child nodes. For each node of the tree, a linear regression model is generated using
the LogitBoost method. At some point, building a linear logistic model may be preferable than
repeatedly using the tree-growing technique since the subsets found at lower levels of the tree
become ever-smaller. There is compelling evidence that using simpler models, such as logistic
regression, is preferable to creating trees for relatively small datasets. For simple decision trees,
pruning is a crucial component of the LMT method. The highest generalisation performance for
LMT sometimes results from a single leaf (a tree that has been trimmed to the root), which is
uncommon for basic decision trees[7], [8].

Decision trees are able to estimate the likelihood that a given class will be present; the likelihood
for a given class is just the proportion of cases in the area that are labelled with that class. All
other basic decision trees and associated algorithms used in the trials perform worse than LMT in
terms of probability estimations we present a self-training approach for semisupervised tasks that
makes advantage of the potential of LMT. Algorithm 1 presents the suggested method (self-
trained LMT). The LMT model's more precise class probabilities are used by the self-training
process to achieve excellent outcomes for the unlabeled examples.

LMT must decide how many iterations of LogitBoost should be performed while fitting the
logistic regression functions at a node. At first, each node in the tree had this number cross-
validated. In our approach, we implemented a heuristic that simply does a single cross-validation
on the number and then utilises this number at each node in the tree.

Estimating class probabilities is used to remove data points from U to L. This instance receives a
label if the probability of the most likely class exceeds the predetermined threshold T. According
to the authors' experimental findings, a reasonable choice for the threshold parameter in the
suggested method is a value of 0.9 since it produced respectable results regardless of the dataset.
It was observed that just a few examples per class in each iteration satisfy the aforementioned
requirement.

The primary benefit of semisupervised learning is that it can improve the performance of
machine learning models by leveraging the vast amounts of unlabeled data that are available in
many domains. This can be particularly useful in situations where labeled data is scarce or
expensive to obtain. Another benefit of semisupervised learning is that it can improve the
model's ability to generalize to new, unseen data. This is because the model can learn more about
the underlying structure of the data by using the unlabeled data, which can help it to make better
predictions on new, unseen data [9].

162 Neural Networks

Semisupervised learning can also be used to improve the quality of the labeled data. By using the
unlabeled data to identify patterns in the data, it can help to identify mislabeled or ambiguous
data points. This can lead to more accurate and reliable labeled data, which can in turn improve
the performance of the machine learning model.

While semisupervised learning offers many benefits, it also presents some unique challenges.
One of the main challenges is the issue of bias. Because the unlabeled data is typically much
larger than the labeled data, it is possible for the model to be biased towards the unlabeled data.
This can lead to poor performance on the labeled data, which can in turn affect the model's
ability to generalize to new, unseen data.

Another challenge of semisupervised learning is the issue of model complexity. Because the
model is trained on both labeled and unlabeled data, it can be more complex than models trained
on labeled data alone. This can make the model more difficult to interpret, and it can also
increase the risk of overfitting. Finally, another challenge of semisupervised learning is the issue
of scalability. Because the model is trained on both labeled and unlabeled data, it can be more
computationally expensive than models trained on labeled data alone. This can make it difficult
to scale up to large datasets or to use in real-time applications[10].

CONCLUSION

Semi-supervised learning is a powerful technique for improving the accuracy and generalization
of machine learning models in situations where labeled data is limited or expensive to obtain.
There are various methods for semi-supervised learning, including co-training, self-training,
generative models, graph-based methods, active learning, and transfer learning. Each method has
its own advantages and disadvantages, and the choice of method depends on the specific problem
and available data. Overall, semi-supervised learning is a promising approach for improving the
performance of machine learning models in real-world applications.

REFERENCES

[1] E. Tu and J. Yang, “A Review of Semi-Supervised Learning Theories and Recent
Advances,” Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University.
2018. doi: 10.16183/j.cnki.jsjtu.2018.10.017.

[2] A. Hussain and E. Cambria, “Semi-supervised learning for big social data analysis,”
Neurocomputing, 2018, doi: 10.1016/j.neucom.2017.10.010.

[3] C. Li, J. Zhu, and B. Zhang, “Max-Margin Deep Generative Models for (Semi-
)Supervised Learning,” IEEE Trans. Pattern Anal. Mach. Intell., 2018, doi:
10.1109/TPAMI.2017.2766142.

[4] K. Yoshiyama and A. Sakurai, “Semi-supervised learning with uncertainty,” Trans.

Japanese Soc. Artif. Intell., 2018, doi: 10.1527/tjsai.C-HA2.

[5] W. Cao, Q. Liu, and Z. He, “Review of Pavement Defect Detection Methods,” IEEE
Access, 2020, doi: 10.1109/aCCESS.2020.2966881.

163 Neural Networks

[6] O. Z. Kraus et al., “Automated analysis of high₁content microscopy data with deep
learning,” Mol. Syst. Biol., 2017, doi: 10.15252/msb.20177551.

[7] M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A Cluster-then-label Semi-
supervised Learning Approach for Pathology Image Classification,” Sci. Rep., 2018, doi:
10.1038/s41598-018-24876-0.

[8] Y. Tu, Y. Lin, J. Wang, and J. U. Kim, “Semi-supervised learning with generative
adversarial networks on digital signal modulation classification,” Comput. Mater. Contin.,
2018, doi: 10.3970/cmc.2018.01755.

[9] A. A. Akinyelu and P. Blignaut, “Convolutional Neural Network-Based Methods for Eye
Gaze Estimation: A Survey,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3013540.

[10] J. Ahmad, H. Farman, and Z. Jan, “Deep Learning Methods and Applications,” in
SpringerBriefs in Computer Science, 2019. doi: 10.1007/978-981-13-3459-7_3.

164 Neural Networks

CHAPTER 18

GENERALIZED REGULARIZATION THEORY: A COMPREHENSIVE

FRAMEWORK FOR ADDRESSING OVER FITTING AND IMPROVING

GENERALIZATION
Mrs. Samreen Fiza, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-samreenfiza@presidencyuniversity.in

ABSTRACT:

Generalized regularization theory is a framework in machine learning that aims to improve the
performance and generalization of models by incorporating prior knowledge or assumptions
about the data distribution. It involves the use of regularization techniques, which add constraints
or penalties to the objective function of the model to encourage certain properties such as
sparsity, smoothness, or low complexity. Generalized regularization theory extends the
traditional notion of regularization by considering a broad class of regularizes, including those
based on statistical physics, information theory, and geometry.

KEYWORDS:

Techniques, Generalized Regularization, Improving Generalization, Geometry, Low Complexity.

INTRODUCTION

Regularization theory is a well-established mathematical framework for solving ill-posed inverse
problems, which arise in a wide range of fields including image and signal processing, medical
imaging, geophysics, and finance, to name a few. In recent years, the concept of generalized
regularization has emerged as a powerful extension of traditional regularization theory, providing
new insights and techniques for solving complex inverse problems.In this, we will provide an
introduction to generalized regularization theory, starting with the basics of traditional
regularization and building up to more advanced topics such as Tikhonov regularization, total
variation regularization, and sparsity regularization. We will then introduce the concept of
generalized regularization, discussing its fundamental principles and its applications to a range of
problems [1].

Regularization Basics

Inverse problems can be broadly defined as those where we seek to recover an unknown quantity
from observed data. In many cases, the relationship between the unknown quantity and the data
is underdetermined, meaning that there are multiple solutions that are consistent with the
observed data. Furthermore, the problem may be ill-posed, meaning that small perturbations to
the data can result in large changes to the solution. For example, consider the problem of
reconstructing an image from a noisy and blurred version of the image. The observed data is the

165 Neural Networks

blurry and noisy image, and the unknown quantity is the original image. However, the inverse
problem is ill-posed because small changes to the data can result in large changes to the solution,
making it difficult to obtain a stable and accurate reconstruction.

Regularization theory provides a framework for solving such inverse problems by introducing
additional information or assumptions about the unknown quantity. This additional information
is often referred to as a regularization term or penalty, and it is designed to guide the solution
towards a specific class of solutions that are deemed desirable. In this way, regularization
provides a way to balance the conflicting goals of fitting the data and obtaining a stable and
accurate solution.One of the most widely used regularization techniques is Tikhonov
regularization, which involves adding a quadratic penalty term to the objective function that
measures the deviation of the solution from a priori knowledge or assumptions about the
solution. Mathematically, Tikhonov regularization can be formulated as follows:

argmin_x ||Ax-b||^2 + λ||Lx||^2

where x is the unknown quantity, A is the forward operator that relates x to the observed data b,
λ is a regularization parameter that controls the strength of the penalty term, and L is a linear
operator that encodes the prior knowledge or assumptions about the solution. The term λ||Lx||^2
penalizes solutions that deviate from the prior knowledge or assumptions encoded in L, and the
trade-off between fitting the data and satisfying the prior knowledge or assumptions is controlled
by the regularization parameter λ.

Total Variation Regularization

Total variation (TV) regularization is a widely used technique for image denoising and
restoration that has gained popularity in recent years due to its ability to preserve sharp edges and
textures in images while effectively suppressing noise. The basic idea behind TV regularization
is to penalize the total variation of the image, which measures the amount of spatial variation or
"roughness" in the image. The intuition behind this is that images with more abrupt changes in
intensity or texture are likely to be closer to the true image than images with smooth or blurry
regions[2].

Mathematically, TV regularization can be formulated as follows:

argmin_x ||Ax-b||^2 + λTV(x)

where TV(x) is the total variation of the image x, defined as:

TV(x) = ∑_i √(∑_j (x_i,j - x_i-1,j)^2 + ∑_j (x_i,j - x_i,j-1)^2)

where x_i,j denotes the value of the image at pixel (i,j), and the sum is taken over all adjacent
pixels. The TV penalty encourages solutions that have a small total variation, which correspond
to images with smoother and more uniform regions. TV regularization has been shown to be
particularly effective for denoising and deblurring images, as it can effectively suppress noise
while preserving edges and textures. However, it can also lead to over-smoothing in regions with
low contrast, and it can be computationally expensive to solve for large images.

166 Neural Networks

Sparsity Regularization

Another widely used regularization technique is sparsity regularization, which involves adding a
penalty term that encourages the solution to have a sparse representation in some basis or
transform domain. The basic idea behind sparsity regularization is that many signals or images
can be represented using only a small number of non-zero coefficients in some basis or transform
domain, and therefore a solution that is sparse in this domain is more likely to be close to the true
solution than a solution with many non-zero coefficients.

Mathematically, sparsity regularization can be formulated as follows:

argmin_x ||Ax-b||^2 + λ||Tx||_0

Where Tx denotes the transform of x in some basis or transform domain, and ||Tx||_0 counts the
number of non-zero coefficients in Tx. The term λ||Tx||_0 encourages solutions that have a small
number of non-zero coefficients in the transform domain, which correspond to sparse
solutions.Sparsity regularization has been shown to be particularly effective for solving inverse
problems with sparse solutions, such as compressed sensing and sparse deconvolution. However,
the exact form of the sparsity-promoting penalty can depend on the specific problem and the
choice of basis or transform domain, and it can be computationally expensive to solve for large-
scale problems.

Generalized Regularization

While traditional regularization techniques such as Tikhonov, TV, and sparsity regularization
have proven to be effective for many inverse problems, they are limited in their ability to handle
complex and non-linear problems. Generalized regularization provides a more flexible and
powerful framework for solving such problems by allowing for more general penalty terms that
are designed to capture the structure or properties of the unknown quantity.The key idea behind
generalized regularization is to define a penalty term that incorporates a specific prior knowledge
or assumption about the structure of the solution. This prior knowledge can be based on physical
laws, statistical models, or other sources of information, and can take a wide range of forms
depending on the specific problem. For example, one might incorporate prior knowledge about
the smoothness or sparsity of the solution, or about the relationships between different parts of
the solution.Mathematically, generalized regularization can be formulated as follows:

argmin_x ||Ax-b||^2 + λΦ(x)

Where Φ(x) is a penalty term that incorporates the prior knowledge or assumption about the
structure of the solution. The penalty term can take a wide range of forms depending on the
specific problem, and can be designed to capture any number of properties or structures of the
solution. One important aspect of generalized regularization is the choice of penalty term Φ(x).
The penalty term should be designed to incorporate the relevant prior knowledge or assumption
about the solution, while also being tractable and computationally efficient to evaluate and
optimize. In some cases, the penalty term can be chosen based on prior knowledge or models,
while in other cases it may be learned from data using techniques such as deep learning or
machine learning.

167 Neural Networks

Applications of Generalized Regularization

Generalized regularization has been applied to a wide range of inverse problems in various
fields, including medical imaging, computer vision, and geophysics, to name a few. Here, we
will provide a few examples of the applications of generalized regularization.

Medical Imaging

Generalized regularization has been applied to a range of medical imaging problems, including
computed tomography (CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET). In CT imaging, for example, the problem is to reconstruct a 3D image of the
interior of an object from a set of 2D projections acquired at different angles. This is an ill-posed
inverse problem, as there are an infinite number of possible 3D objects that could give rise to the
same set of projections. Generalized regularization can be used to incorporate prior knowledge
about the smoothness or sparsity of the object, as well as physical constraints on the attenuation
coefficients[3].

Computer Vision

Generalized regularization has also been applied to a range of computer vision problems,
including image denoising, image super-resolution, and image segmentation. In image denoising,
for example, the problem is to remove noise from an image while preserving its structure and
details. Generalized regularization can be used to incorporate prior knowledge about the sparsity
or smoothness of the image, as well as the structure of the noise.

Geophysics

Generalized regularization has also been applied to a range of geophysical problems, including
seismic inversion and electromagnetic imaging. In seismic inversion, for example, the problem is
to reconstruct the subsurface structure of the earth from seismic data acquired at the surface.
Generalized regularization can be used to incorporate prior knowledge about the smoothness or
sparsity of the subsurface structure, as well as physical constraints on the seismic velocities.

Deep Learning Regularization

In recent years, deep learning has emerged as a powerful tool for solving a wide range of inverse
problems, including image super-resolution, denoising, and segmentation. Deep learning models
typically involve large numbers of parameters, which can make them prone to overfitting and
poor generalization performance. Regularization techniques are therefore essential for improving
the performance and robustness of deep learning models[4].Generalized regularization has been
used to develop a wide range of regularization techniques for deep learning, including L1 and L2
regularization, dropout, early stopping, and weight decay. These techniques can be used to
incorporate prior knowledge about the smoothness or sparsity of the parameters, as well as the
structure of the data.

168 Neural Networks

DISCUSSION

Generalized regularization theory is a mathematical framework used in machine learning and
statistical modeling to mitigate overfitting and improve generalization performance. It involves
the use of a penalty term or regularization term in the objective function of a learning algorithm,
which penalizes the complexity of the model and promotes simpler models. The purpose of this
penalty is to avoid overfitting, which occurs when the model is too complex and fits the training
data too closely, resulting in poor performance on new, unseen data.

The basic idea behind regularization is to add a term to the objective function of the learning
algorithm that penalizes the complexity of the model. The regularization term is a function of the
model parameters, and its goal is to encourage the model to have small parameter values. This, in
turn, makes the model simpler and less prone to overfitting. There are several different types of
regularization techniques, each with its own penalty function, which can be used depending on
the specific problem being addressed [5].

One of the most commonly used regularization techniques is L2 regularization, also known as
ridge regression. L2 regularization adds a penalty term to the objective function that is
proportional to the square of the L2 norm of the model parameters. This penalty term encourages
the model to have small parameter values, which has the effect of reducing the complexity of the
model. L2 regularization is particularly useful when there are many correlated features in the
data, as it can help to prevent overfitting in this case.

Another commonly used regularization technique is L1 regularization, also known as Lasso
regression. L1 regularization adds a penalty term to the objective function that is proportional to
the L1 norm of the model parameters. This penalty term encourages the model to have sparse
parameter values, meaning that many of the parameters are set to zero. This has the effect of
selecting only the most important features in the data, which can be useful for feature selection
and reducing the complexity of the model.

More recently, a third type of regularization technique has become popular, known as elastic net
regularization. Elastic net regularization combines the L1 and L2 penalties into a single objective
function, which allows it to achieve the benefits of both L1 and L2 regularization. Elastic net
regularization can be particularly useful when the data has many features, some of which are
correlated, and some of which are irrelevant.

One of the key advantages of regularization is that it can help to improve the generalization
performance of a model. This means that the model is able to perform well on new, unseen data,
as well as on the training data. This is important because the ultimate goal of machine learning is
to develop models that can make accurate predictions on new data, not just on the data that was
used to train the model.

Another advantage of regularization is that it can help to make models more robust to noisy data.
This is because the penalty term in the objective function encourages the model to focus on the
most important features in the data, rather than being influenced by noise or irrelevant features.

169 Neural Networks

This can help to improve the overall accuracy of the model, even in the presence of noisy data
[6].

There are some potential disadvantages of regularization, however. One of the main
disadvantages is that it can be difficult to choose the right amount of regularization for a given
problem. If the regularization term is set too high, then the model may become too simple and
underfit the data. On the other hand, if the regularization term is set too low, then the model may
become too complex and overfit the data. Choosing the right amount of regularization requires
careful experimentation and validation, and there is no single "correct" value for the
regularization term that will work for all problems.

Another potential disadvantage of regularization is that it can be computationally expensive,
particularly for large datasets or complex models. This is because the regularization term
involves computing the norm of the model parameters, which can be a computationally intensive
task, especially if the model has many parameters. In addition, some regularization techniques
require the solution of a constrained optimization problem, which can also be computationally
expensive. Figure 1 illustrate the Understanding Deep Learning.

Figure 1: Illustrate the Understanding Deep Learning.

To address these challenges, researchers have developed a number of techniques for efficient
computation of regularized models. For example, iterative methods such as gradient descent can
be used to optimize the objective function with a regularization term. These methods involve
iteratively updating the model parameters based on the gradient of the objective function, which
can be computed efficiently even for large datasets and complex models.

In addition, there are several methods for automatically selecting the regularization parameter
based on the data. For example, cross-validation can be used to evaluate the performance of the
model with different regularization parameters and select the one that achieves the best
performance on a validation set of data. Bayesian methods can also be used to estimate the
regularization parameter based on the prior distribution of the model parameters.

Generalized regularization theory has been applied to a wide range of machine learning and
statistical modeling problems, including linear regression, logistic regression, support vector
machines, and neural networks. In each case, the regularization term is added to the objective
function of the learning algorithm to promote simpler models and reduce overfitting[7], [8].

170 Neural Networks

In addition, researchers have developed a number of extensions and variations of regularization
theory to address specific challenges in different application domains. For example, group
regularization can be used to encourage groups of related features to have similar weights in the
model. This can be useful in image analysis or text classification, where features are often highly
correlated and have complex interdependencies.

Another extension of regularization theory is domain adaptation, which involves learning a
model on a source domain and then adapting it to a target domain. Regularization can be used to
encourage the model to be more robust to differences between the source and target domains,
such as differences in distribution or data quality.

In summary, generalized regularization theory is a powerful mathematical framework for
mitigating overfitting and improving the generalization performance of machine learning
models. It involves the use of a penalty term or regularization term in the objective function of
the learning algorithm, which encourages simpler models and reduces the complexity of the
model. While regularization can be challenging to implement and tune, it has been shown to be
highly effective in a wide range of applications and has become a fundamental tool in the field of
machine learning. There are several different types of regularization techniques that fall under
the umbrella of generalized regularization theory. Some of the most commonly used methods
include:

1. L1 regularization: This method adds a penalty term to the objective function that is
proportional to the absolute value of the model parameters. This encourages sparsity in
the model, meaning that many of the parameters are set to zero, resulting in a simpler and
more interpretable model. L1 regularization is often used in feature selection, where the
goal is to identify the most important features for a given prediction task.

2. L2 regularization: This method adds a penalty term to the objective function that is
proportional to the squared value of the model parameters. This encourages small values
for the model parameters, which can prevent overfitting and improve the generalization
performance of the model. L2 regularization is often used in linear regression and other
models where the goal is to find a smooth and continuous function that fits the data.

3. Elastic net regularization: This method combines L1 and L2 regularization by adding a
penalty term that is a linear combination of the L1 and L2 norms of the model
parameters. This can be useful when there are many correlated features in the data, as it
encourages both sparsity and small values for the model parameters.

4. Dropout regularization: This method is specific to neural networks and involves
randomly dropping out some of the neurons in the network during training. This has the
effect of reducing the capacity of the network and preventing overfitting. Dropout
regularization has been shown to be highly effective in improving the performance of
deep neural networks.

5. Batch normalization: This method is also specific to neural networks and involves
normalizing the input to each layer of the network so that it has zero mean and unit

171 Neural Networks

variance. This can prevent the network from becoming too sensitive to the distribution of
the input data, which can improve its generalization performance.

These are just a few examples of the many different regularization techniques that have been
developed based on generalized regularization theory. In general, the choice of regularization
method will depend on the specific modeling problem and the characteristics of the data.

It is also worth noting that regularization is not a silver bullet and cannot always prevent
overfitting. In some cases, more advanced techniques such as ensemble learning or Bayesian
model averaging may be needed to achieve optimal performance. However, regularization
remains an important tool in the machine learning toolkit and is widely used in practice[9].

CONCLUSION

Regularization is an essential tool for solving ill-posed inverse problems in a wide range of
fields, including medical imaging, computer vision, and geophysics. Traditional regularization
techniques such as Tikhonov, TV, and sparsity regularization have proven to be effective for
many problems, but are limited in their ability to handle complex and non-linear problems.
Generalized regularization provides a more flexible and powerful framework for solving such
problems by allowing for more general penalty terms that incorporate prior knowledge or
assumptions about the structure of the solution. Generalized regularization has been applied to a
wide range of problems in various fields, and has also been used to develop a range of
regularization techniques for deep learning.

REFERENCES

[1] T. Poggio and F. Girosi, “Networks for Approximation arid Learning,” Proc. IEEE, 1990,
doi: 10.1109/5.58326.

[2] T. Poggio and F. Girosi, “Regularization algorithms for learning that are equivalent to
multilayer networks,” Science (80-.)., 1990, doi: 10.1126/science.247.4945.978.

[3] T. Yanagisawa, “Dimensional Regularization Approach to the Renormalization Group
Theory of the Generalized Sine-Gordon Model,” Adv. Math. Phys., 2018, doi:
10.1155/2018/9238280.

[4] C. G. Farquharson and D. W. Oldenburg, “A comparison of automatic techniques for
estimating the regularization parameter in non-linear inverse problems,” Geophys. J. Int.,
2004, doi: 10.1111/j.1365-246X.2004.02190.x.

[5] G. Schauberger and P. Mair, “A regularization approach for the detection of differential
item functioning in generalized partial credit models,” Behav. Res. Methods, 2020, doi:
10.3758/s13428-019-01224-2.

[6] E. H. Arruda and P. M. Bentler, “A Regularized GLS for Structural Equation Modeling,”
Struct. Equ. Model., 2017, doi: 10.1080/10705511.2017.1318392.

[7] A. P. Khomenko, S. K. Kargapoltsev, and A. V. Eliseev, “Development of approaches to
creation of active vibration control system in problems of the dynamics for granular
media,” in MATEC Web of Conferences, 2018. doi: 10.1051/matecconf/201814811004.

172 Neural Networks

[8] R. Bufalo, T. R. Cardoso, A. A. Nogueira, and B. M. Pimentel, “Renormalization of
generalized scalar Duffin-Kemmer-Petiau electrodynamics,” Phys. Rev. D, 2018, doi:
10.1103/PhysRevD.97.105029.

[9] K. Bredies and M. Holler, “Higher-order total variation approaches and generalisations,”
Inverse Problems. 2020. doi: 10.1088/1361-6420/ab8f80.

173 Neural Networks

CHAPTER 19

LAPLACIAN REGULARIZED LEAST-SQUARES ALGORITHM
Mrs. G Swetha, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-swethag@presidencyuniversity.in

ABSTRACT:

Laplacian Regularized Least-Squares (LapRLS) is a machine learning algorithm that is used for
solving regression, classification, and clustering problems. It is based on regularized least-
squares, which involves minimizing the sum of the squared errors between the predicted and
actual values, while also adding a regularization term to prevent overfitting. LapRLS uses a
particular type of regularization known as Laplacian regularization, which encourages
smoothness in the solution by penalizing large changes in the predicted values. The algorithm
can be implemented using various techniques, including closed-form solution, gradient descent,
and sparse matrix computation.

KEYWORDS:

Algorithm, Gradient Descent, Sparse matrix, Machine Learning, Laplacian Regularized Least
Square Algorithm.

INTRODUCTION

Laplacian Regularized Least-Squares Algorithm is a popular technique used in the field of
machine learning and signal processing. It is used for solving regression problems that involve
large datasets. In this algorithm, a Laplacian matrix is used to regularize the least-squares
problem. The Laplacian matrix is used to capture the underlying structure of the data and to
impose smoothness constraints on the solution. The Laplacian matrix is a tool from graph theory
that is used to represent the structure of a graph. It is defined as the difference between the
degree matrix and the adjacency matrix of a graph. The degree matrix is a diagonal matrix that
represents the degree of each node in the graph, while the adjacency matrix represents the
connections between the nodes.

The Laplacian matrix can be used to capture the underlying structure of the data, where each data
point corresponds to a node in the graph. The Laplacian matrix can be used to impose
smoothness constraints on the solution by penalizing large differences between neighboring data
points[1]. The Laplacian Regularized Least-Squares Algorithm has been used in a variety of
applications such as image denoising, video processing, and recommendation systems. In this
article, we will provide a detailed explanation of the Laplacian Regularized Least-Squares
Algorithm and its applications.

174 Neural Networks

Laplacian Regularized Least-Squares Algorithm:

The Laplacian Regularized Least-Squares Algorithm can be formulated as follows:

minimize ||y - Xw||^2 + λwTLw

Where y is a vector of target values, X is a matrix of input features, w is a vector of coefficients,
λ is a regularization parameter, and L is the Laplacian matrix.

The first term ||y - Xw||^2 represents the least-squares error between the target values and the
predicted values. The second term λwTLw represents the regularization term that penalizes large
differences between neighboring data points.

The Laplacian matrix L is defined as L = D - A, where D is the degree matrix and A is the
adjacency matrix. The degree matrix D is a diagonal matrix where each element represents the
degree of the corresponding node in the graph. The adjacency matrix A is a matrix where each
element represents the connection between two nodes in the graph.

The Laplacian matrix L captures the underlying structure of the data and imposes smoothness
constraints on the solution. The regularization term λwTLw penalizes large differences between
neighboring data points and encourages the coefficients to be smooth.

The Laplacian Regularized Least-Squares Algorithm can be solved using various optimization
techniques such as gradient descent, conjugate gradient, or quasi-Newton methods.

Applications of Laplacian Regularized Least-Squares Algorithm:

The Laplacian Regularized Least-Squares Algorithm has been used in a variety of applications
such as image denoising, video processing, and recommendation systems.

Image denoising:

In image denoising, the Laplacian Regularized Least-Squares Algorithm can be used to remove
noise from an image. The algorithm can be used to smooth the image while preserving the edges
and details.

The Laplacian matrix L can be constructed using the image pixels as nodes and the pixel
intensity differences as edges. The regularization term λwTLw can be used to penalize large
intensity differences between neighboring pixels and encourage the image to be smooth.

Video processing:

In video processing, the Laplacian Regularized Least-Squares Algorithm can be used to denoise
and stabilize videos. The algorithm can be used to remove the noise and stabilize the camera
motion in a video.

The Laplacian matrix L can be constructed using the video frames as nodes and the pixel
intensity differences as edges. The regularization term λwTLw can be used to penalize large
intensity differences between neighboring frames and encourage the video to be smooth[2], [3].

175 Neural Networks

Recommendation systems:

In recommendation systems, the Laplacian Regularized Least-Squares Algorithm can be used to
make personalized recommendations to users. The algorithm can be used to learn the preferences
of the users and recommend items that are similar to their preferences.

The Laplacian matrix L can be constructed using the users and items as nodes and the similarities
between them as edges. The regularization term λwTLw can be used to penalize large differences
between similar items and encourage the recommendations to be consistent.

Advantages of Laplacian Regularized Least-Squares Algorithm:

The Laplacian Regularized Least-Squares Algorithm has several advantages over other
regularization techniques:

1. The algorithm can capture the underlying structure of the data and impose smoothness
constraints on the solution.

2. The algorithm can handle large datasets and can be solved efficiently using various
optimization techniques.

3. The algorithm can be used in a variety of applications such as image denoising, video
processing, and recommendation systems.

4. The algorithm can make personalized recommendations to users by learning their
preferences.

DISCUSSION

Laplacian Regularized Least-Squares (LapRLS) is a machine learning algorithm that is often
used for solving regression and classification problems. The algorithm is based on the concept of
regularized least-squares, which involves minimizing the sum of the squared errors between the
predicted and actual values, while also adding a regularization term to prevent overfitting.
LapRLS uses a particular type of regularization known as Laplacian regularization, which
encourages smoothness in the solution by penalizing large changes in the predicted values. In
this discussion, we will describe the LapRLS algorithm in detail, including its mathematical
formulation, its implementation, and its applications.

Mathematical Formulation

The LapRLS algorithm can be formulated as follows: given a set of input features X, a set of
corresponding target values y, and a regularization parameter λ, the goal is to find a weight
vector w that minimizes the following objective function:

||Xw - y||^2 + λw^TLw

where ||.|| is the Euclidean norm, L is the Laplacian matrix, and λ is a hyperparameter that
controls the strength of the regularization term. The Laplacian matrix L is defined as the

176 Neural Networks

difference between the diagonal matrix D and the adjacency matrix A, where D is a diagonal
matrix with D(i,i) = Σj A(i,j), and A(i,j) is the adjacency between nodes i and j. The Laplacian
matrix is used to measure the smoothness of the solution by penalizing large changes in the
predicted values between neighboring data points. In other words, Laplacian regularization
encourages the solution to be smooth and continuous across the input space.

Implementation

The LapRLS algorithm can be implemented using a variety of techniques, including gradient
descent, closed-form solution, and sparse matrix computation. The choice of implementation
depends on the size and complexity of the data set, as well as the computational resources
available. In general, the closed-form solution is the most efficient method for small to medium-
sized data sets, while gradient descent and sparse matrix computation are more suitable for large
data sets.

Closed-Form Solution

The closed-form solution for LapRLS can be derived by taking the derivative of the objective
function with respect to w, setting it to zero, and solving for w. The resulting solution where X^T
is the transpose of X, and (X^TX + λL)^-1 is the inverse of the sum of the product of the
transpose of X and X with λ times the Laplacian matrix. This closed-form solution is
computationally efficient and can be used for small to medium-sized data sets. Figure 1 illustrate
the Laplacian Regularization in Semi-Supervised Learning.

Figure 1: Illustrate the Laplacian Regularization in Semi-Supervised Learning.

Gradient Descent

Gradient descent is an iterative optimization algorithm that can be used to find the optimal
solution for LapRLS. The algorithm starts with an initial guess for the weight vector w, and then
iteratively updates the weights by taking small steps in the direction of the negative gradient of
the objective function. The gradient of the objective function is given by: Gradient descent can
be used for large data sets, but it requires careful tuning of the learning rate and can converge
slowly for ill-conditioned matrices.

177 Neural Networks

Sparse Matrix Computation

Sparse matrix computation is a technique for efficiently computing LapRLS on large data sets
with sparse input matrices. Sparse matrices are matrices that have a large number of zero entries,
which can be exploited to reduce the computational cost of the algorithm. In sparse matrix
computation, the Laplacian matrix L is represented as a sparse matrix, and the algorithm is
optimized to take advantage of the sparsity. This can be done by using specialized data structures
such as compressed sparse row (CSR) or compressed sparse column (CSC) formats, which store
only the non-zero entries of the matrix and their corresponding row and column indices.

Applications

LapRLS has a wide range of applications in machine learning and data analysis, including
regression, classification, and clustering. One of the main advantages of LapRLS is its ability to
handle high-dimensional data with a large number of features, where other algorithms may suffer
from the curse of dimensionality. LapRLS can also handle data with missing values, as long as
the missing values are sparse and can be imputed using other techniques such as mean
imputation or k-nearest neighbors imputation[4].

Regression

LapRLS can be used for regression problems, where the goal is to predict a continuous output
variable based on a set of input features. In regression, the LapRLS algorithm learns a linear
function that maps the input features to the target variable. The regularization term in LapRLS
helps to prevent overfitting by penalizing large values of the weight vector w, which can lead to
overfitting when the number of features is much larger than the number of samples.

Classification

LapRLS can also be used for classification problems, where the goal is to predict a categorical
output variable based on a set of input features. In classification, the LapRLS algorithm learns a
linear function that maps the input features to the output variable, and then applies a threshold
function to the predicted values to obtain a binary classification result. The regularization term in
LapRLS helps to prevent overfitting by smoothing the decision boundary and reducing the
sensitivity to noise in the data.

Clustering

LapRLS can also be used for clustering problems, where the goal is to group similar data points
into clusters based on their similarity. In clustering, LapRLS can be used to learn a low-
dimensional embedding of the data that preserves the pairwise similarities between the data
points. The Laplacian regularization term helps to ensure that the embedding is smooth and
continuous, which can improve the quality of the clustering.We introduced the idea of the
smoothing functional its expression is the Laplacian operator in the context of spectral graph
theory. In particular, the smoothing functional's defining formula is kernelized, making it
nonlinearly reliant on the input vector x. Figure 2 illustrate the Laplacian Lp norm least squares
twin support vector machine.

178 Neural Networks

Figure 2: Illustrate the Laplacian Lp norm least squares twin support vector machine.

The representer theorem was then made more inclusive to allow for the use of both labelled and
unlabeled samples. With these resources at our disposal, the Laplacian regularised least-squares
(LapRLS) method may now be developed. This novel algorithm has two practical benefits:

1. The method is trained using both labelled and unlabeled samples, boosting its
applicability to a wider variety of situations than would be possible with supervised
training alone.

2. By handling the detection of nonlinearly separable patterns by kernelization, the
approach expands the application of least-squares estimation.

The LapRLS method is basically created by minimising the cost function in relation to the
function F. (x). We have added the following notations by utilising matrix notations and the
representer theorem (for both labelled and unlabeled samples).

The Laplacian graph matrix L and the l-by-l matrix K represent the Gram. Observe that the
formula on the right is a quadratic function of the unknown vector a, which is why the cost
function is denoted by the letter. When we use the symmetry of the Gram matrix K and the
diagonal matrix J, along with the identity matrix I, to differentiate this equation with respect to
the vector a, collect and simplify terms, and then solve for the minimizer a*, we get the solution
for more information[5].

The formula for the common regularised least-squares method when we put the intrinsic
regularisation parameter I equal to zero (i.e., l N), and observe that under this condition the
matrix J adopts the shape of a standard diagonal matrix. Two graph parameters normal and,
where is required for the adjacency matrix and is required for the Gaussian kernel weight are the
first two regularisation parameters.

It should be noted that the approach does not need computing the RLS algorithm's weight vector.
Instead, relying on the representer theorem and the parameter vector a, we avoid the requirement
for this calculation.

The need to be aware of the two regularisation parameters A and I is a defining characteristic of
the semisupervised-learning technique outlined in Table 7.1. As was already said, it makes sense
to adapt the cross-validation theory of Section 7.8 to account for the estimate of A and I.

JTd = 2 2 a* = (JK + AI + ILK)

179 Neural Networks

The number of labelled instances is l, while the number of unlabeled examples is (N - l) design
guidelines and: A and I in the spectral graph: ambient and intrinsic regularisation parameters

2 xi, di I = 1 l, and xi I = l+1 N

1. Create the weighted undirected graph G with N nodes using the formulas in
equations and to determine the graph's nearby nodes and to calculate the edge
weights.

2. Using the training sample and a kernel function named k(x,.), get the Gram's ratio.
3. Using Eqs. and, calculate the Laplacian matrix L of the graph G. Using Eq., get

the ideal coefficient vector a*.
4. Calculate the optimum approximation function F using the representer theorem

(x).

Pattern Recognition Using Artificial Data

We ran a mock experiment using fictitious data obtained from the double-moon configuration of
to demonstrate the pattern-classification capacity of the Laplacian RLS method. Two aspects of
the experiment were specifically maintained constant:

The Laplacian RLS method transforms into the traditional RLS algorithm when I is set to
precisely zero, in which the labelled data serve as the only source of knowledge for learning. So,
from an experimental perspective, the question of interest is to determine how the decision
boundary created by the Laplacian RLS algorithm by altering I is affected by the inclusion of
unlabeled input in the semisupervised learning process. In order to do this, the experiment's first
section investigated what occurs to the decision boundary when the intrinsic regularisation
parameter [6].

The training sample included a total of N 1000 data points, including both labelled and unlabeled
data, while the testing sample had a similar size of N 1000 data points. The Laplacian RLS
algorithm's decision boundary for this situation. Despite the fact that I was given a relatively low
value, it was nevertheless sufficient to significantly alter the decision boundary from the RLS
algorithm's (I 0) decision boundary. Remember that the RLS algorithm has a decision boundary
that looks like a straight line with a positive slope.

Performance-wise, there were 107 misclassifications overall out of a total of 1000 test data
points, giving a classification error rate of 10.7% the intrinsic regularisation parameter. The
intrinsic regularisation parameter I was given the value 0.1 in the second half of the experiment,
allowing the Laplacian RLS method to fully use the inherent information content of the
unlabeled data. The labelled data points were located precisely where they were in the first phase
of the experiment [7].

The fact that the Laplacian RLS technique was able to correctly separate the two classes with just
two labelled data points per class makes this finding all the more surprising given that, with the
parameter d 1, the two classes are not linearly separable[8]. The Laplacian RLS algorithm's
excellent success is owed to its capacity to completely use the inherent information about the two
classes included in the unlabeled data. The Laplacian RLS technique serves as an example of a

180 Neural Networks

semisupervised learning process that may generalise from unlabeled instances with the help of a
limited number of labelled examples. The two halves of the experiment clearly show the
tradeoffs between ambient and intrinsic kinds of regularization [9], [10].

CONCLUSION

LapRLS is a powerful machine learning algorithm that is well-suited for solving regression,
classification, and clustering problems.

The algorithm is based on regularized least-squares, which involves minimizing the sum of the
squared errors between the predicted and actual values, while also adding a regularization term
to prevent overfitting. LapRLS uses a particular type of regularization known as Laplacian
regularization, which encourages smoothness in the solution by penalizing large changes in the
predicted values. LapRLS can be implemented using a variety of techniques, including closed-
form solution, gradient descent, and sparse matrix computation. The choice of implementation
depends on the size and complexity of the data set, as well as the computational resources
available. LapRLS has a wide range of applications in machine learning and data analysis,
including regression, classification, and clustering.

REFERENCES

[1] J. Chen, C. Wang, Y. Sun, and X. Shen, “Semi-supervised Laplacian regularized least
squares algorithm for localization in wireless sensor networks,” Comput. Networks, 2011,
doi: 10.1016/j.comnet.2011.04.010.

[2] R. Caulier-Cisterna, S. Muñoz-Romero, M. Sanromán-Junquera, A. García-Alberola, and
J. L. Rojo-Álvarez, “A new approach to the intracardiac inverse problem using Laplacian
distance kernel,” Biomed. Eng. Online, 2018, doi: 10.1186/s12938-018-0519-z.

[3] P. K. Koner and P. Dash, “Maximizing the information content of ill-posed space-based
measurements using deterministic inverse method,” Remote Sens., 2018, doi:
10.3390/rs10070994.

[4] Y. K. Zhou, J. Hu, Z. A. Shen, W. Y. Zhang, and P. F. Du, “LPI-SKF: Predicting
lncRNA-Protein Interactions Using Similarity Kernel Fusions,” Front. Genet., 2020, doi:
10.3389/fgene.2020.615144.

[5] L. Zhang, D. Wang, X. Zhang, N. Gu, and M. Fan, “Simultaneous Learning of Affinity
Matrix and Laplacian Regularized Least Squares for Semi-Supervised Classification,” in
Proceedings - International Conference on Image Processing, ICIP, 2018. doi:
10.1109/ICIP.2018.8451186.

[6] C. Yan, G. Duan, F. X. Wu, and J. Wang, “IILLS: Predicting virus-receptor interactions
based on similarity and semi-supervised learning,” BMC Bioinformatics, 2019, doi:
10.1186/s12859-019-3278-3.

[7] Y. Ding, J. Tang, and F. Guo, “Identification of Drug–Target Interactions via Dual
Laplacian Regularized Least Squares with Multiple Kernel Fusion,” Knowledge-Based

Syst., 2020, doi: 10.1016/j.knosys.2020.106254.

181 Neural Networks

[8] Y. Ren, W. Li, and J. Hu, “A semisupervised classifier based on piecewise linear
regression model using gated linear network,” IEEJ Trans. Electr. Electron. Eng., 2020,
doi: 10.1002/tee.23149.

[9] H. Pei, K. Wang, and P. Zhong, “Semi-supervised matrixized least squares support vector
machine,” Appl. Soft Comput. J., 2017, doi: 10.1016/j.asoc.2017.07.040.

[10] W. Liu, X. Ma, Y. Zhou, D. Tao, and J. Cheng, “P-Laplacian Regularization for Scene
Recognition,” IEEE Trans. Cybern., 2019, doi: 10.1109/TCYB.2018.2833843.

182 Neural Networks

CHAPTER 20

PRINCIPLE COMPONENT ANALYSIS
Mr. Kiran Kale, Assistant Professor

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-kirandhanaji.kale@presidencyuniversity.in

ABSTRACT:

Principal Component Analysis (PCA) is a technique used for high-dimensional datasets while
preserving the most significant information. It involves computing the eigenvectors and
eigenvalues of the covariance matrix of the dataset and projecting the data onto the new
coordinate system formed by the eigenvectors. The new coordinates, called principal
components, represent the most significant directions of variation in the dataset. PCA has
practical applications in various fields, including finance, genetics, image processing, and social
sciences.

KEYWORDS:

Analysis, Component, Image Processing, Social Science, Genetics.

INTRODUCTION

Principal Component Analysis (PCA) is a statistical method that is used to reduce the
dimensionality of a dataset while retaining as much of the original information as possible. It is a
commonly used technique in various fields such as finance, genetics, image processing, and
social sciences, among others. PCA is used to transform a dataset of n-dimensional points into a
lower-dimensional space while retaining the maximum amount of variance in the data. This
transformation is achieved by computing the eigenvectors and eigenvalues of the covariance
matrix of the dataset. The eigenvectors are used to form a new coordinate system, and the
original data points are projected onto this new coordinate system to obtain the reduced-
dimensional representation.

PCA is useful when working with datasets that have a large number of variables or features. In
such cases, it can be challenging to analyze the data, and the results obtained may not be easily
interpretable. By reducing the dimensionality of the data, PCA simplifies the analysis and allows
for more straightforward interpretation of the results. The remainder of this article will provide a
detailed explanation of how PCA works, including the mathematical underpinnings of the
method, the steps involved in performing PCA, and some practical applications of PCA in
different fields.

183 Neural Networks

Mathematical Foundations of PCA

PCA is based on linear algebra and involves the computation of eigenvectors and eigenvalues.
An eigenvector is a non-zero vector that, when multiplied by a matrix, results in a scalar multiple
of itself. The scalar multiple is known as the eigenvalue. In other words, the eigenvector remains
in the same direction when the matrix is multiplied by it, while the eigenvalue scales the
magnitude of the eigenvector [1].

For a given dataset, we can compute the covariance matrix, which provides information on how
each variable in the dataset is related to each other. The covariance matrix is a square matrix that
has the same number of rows and columns as the number of variables in the dataset. The element
in the ith row and jth column of the covariance matrix represents the covariance between the ith
and jth variables. The covariance matrix is symmetric, meaning that the covariance between the
ith and jth variables is the same as the covariance between the jth and ith variables. It is also
positive semi-definite, meaning that all of its eigenvalues are non-negative. The eigenvectors of
the covariance matrix provide a set of new coordinates that describe the directions of the highest
variability in the data. The eigenvalues of the covariance matrix represent the amount of variance
explained by each eigenvector. The eigenvector with the highest eigenvalue represents the
direction of the most significant variability in the data.

Steps in Performing PCA

The following are the general steps involved in performing PCA:

1. Standardize the Data: PCA assumes that the data is standardized, with each variable
having a mean of zero and a standard deviation of one. If the data is not already
standardized, it should be normalized before performing PCA.

2. Compute the Covariance Matrix: The covariance matrix is computed by taking the dot
product of the standardized data matrix and its transpose. The result is a square matrix
with the same number of rows and columns as the number of variables in the dataset.

3. Compute the Eigenvectors and Eigenvalues: The eigenvectors and eigenvalues of the
covariance matrix are computed. The eigenvectors are computed by finding the solutions
to the equation Av = λv, where A is the covariance matrix, λ is the eigenvalue, and v is
the eigenvector. The eigenvalues are the values of λ that satisfy this equation.

4. Sort the Eigenvectors by Eigenvalue: The eigenvectors are sorted by eigenvalue in
descending order. The eigenvector with the highest eigenvalue represents the direction of
the most significant variability in the data.

5. Select the Principal Components: The number of principal components to retain depends
on the amount of variability we want to preserve in the reduced-dimensional space. One
common method is to use a scree plot, which plots the eigenvalues against the principal
component number. We choose the number of principal components before the "elbow"
of the plot, where the eigenvalues start to level off.

184 Neural Networks

6. Project the Data onto the New Coordinate System: The original data is projected onto the
new coordinate system formed by the eigenvectors. This projection is done by taking the
dot product of the standardized data matrix and the eigenvectors.

7. Interpret the Results: The reduced-dimensional space can be used for further analysis,
such as clustering or classification. The results obtained should be interpreted in the
context of the original dataset.

DISCUSSION

PCA is a versatile method that can be applied in various fields. Some practical applications of
PCA include:

Finance

PCA is used in finance to analyze the risk and return of portfolios of assets. It is used to reduce
the dimensionality of the dataset by combining the information from different asset classes into a
smaller number of factors. These factors represent the common sources of risk and return in the
portfolio.

Genetics

PCA is used in genetics to analyze gene expression data. It is used to identify patterns of gene
expression that are associated with different conditions, such as disease or response to treatment.
By reducing the dimensionality of the data, PCA can help identify the most significant genes
associated with a condition.

Image Processing

PCA is used in image processing to compress and enhance images. It is used to reduce the
dimensionality of the image data while preserving as much of the visual information as possible.
This allows for more efficient storage and transmission of images.

Social Sciences

PCA is used in social sciences to analyze survey data. It is used to reduce the dimensionality of
the data and identify the underlying factors that influence responses to survey questions. This can
help researchers identify the most significant factors that affect attitudes and behaviors.

PCA has a wide range of applications, from image processing and face recognition to financial
data analysis and gene expression analysis. The basic idea behind PCA is to find the direction in
which the data varies the most and represent the data along that direction. The next direction is
chosen orthogonal to the first direction and represents the maximum variance of the remaining
data. The process is repeated until all the principal components are found. In this discussion, we
will explore the mathematical and statistical concepts of PCA, its applications, advantages, and
limitations.

185 Neural Networks

Mathematical concepts of PCA:

PCA is based on the eigenvalue decomposition of the covariance matrix of the data. The
covariance matrix is a measure of the linear relationship between the variables in the dataset. Let
X be a d x n matrix, where d is the number of variables and n is the number of observations. The
covariance matrix C is given by:

C = (1/n)XX^T

where ^T denotes the transpose of the matrix. The diagonal elements of the covariance matrix
represent the variances of the variables, and the off-diagonal elements represent the covariances
between the variables.

The principal components are obtained by finding the eigenvectors and eigenvalues of the
covariance matrix. The eigenvectors represent the directions of maximum variance, and the
corresponding eigenvalues represent the magnitude of the variance in that direction. The
eigenvectors and eigenvalues are obtained by solving the following eigenvalue problem:

Cv = λv

Where λ is the eigenvalue and v is the eigenvector. The eigenvector v represents the direction of
maximum variance, and the eigenvalue λ represents the magnitude of the variance in that
direction. The principal components are obtained by projecting the data onto the eigenvectors.
Let V be a d x k matrix, where k is the number of principal components. The columns of V are
the eigenvectors corresponding to the k largest eigenvalues. The projection of the data X onto the
principal components is given by:

Y = VX

Where Y is a k x n matrix, representing the transformed data. The first column of Y represents
the first principal component, the second column represents the second principal component, and
so on.

Statistical concepts of PCA:

PCA is a method for identifying patterns in data by reducing the dimensionality of the data. It is
a multivariate statistical technique that is used to analyze the correlation structure of a dataset.
The goal of PCA is to transform the original data into a new set of variables, called principal
components that are uncorrelated and explain the maximum variance of the original data.

The first principal component represents the direction of maximum variance in the dataset. The
second principal component represents the direction of maximum variance orthogonal to the first
principal component, and so on. Each principal component is a linear combination of the original
variables. The coefficients of the linear combination are given by the eigenvectors of the
covariance matrix, and the eigenvalues represent the proportion of variance explained by each
principal component [2].

PCA is a useful tool for data exploration and visualization. It can be used to identify patterns and
trends in large datasets and to reduce the dimensionality of the data for further analysis. PCA can

186 Neural Networks

also be used for data preprocessing, such as feature extraction and data compression. In addition,
PCA can be used for anomaly detection and outlier analysis. Figure 1 illustrate the Principle
Component Analysis in nutshell.

Applications of PCA:

PCA has a wide range of applications in various fields, including image processing, finance,
genetics, and neuroscience.

• Image processing: PCA is used for face recognition, image compression, and feature
extraction in computer vision. In face recognition, PCA is used to reduce the
dimensionality of the face image dataset andidentify the most important features that
distinguish one face from another. In image compression, PCA is used to identify the
most important features of an image and compress the image by representing it using a
smaller set of principal components.

• Finance: PCA is used for portfolio optimization and risk management in finance. In
portfolio optimization, PCA is used to identify the most important factors that affect the
performance of a portfolio and to construct an optimal portfolio based on those factors. In
risk management, PCA is used to identify the sources of risk in a portfolio and to design
risk mitigation strategies.

• Genetics: PCA is used for gene expression analysis and to identify the most important
genes that are responsible for a particular phenotype. In gene expression analysis, PCA is
used to reduce the dimensionality of the gene expression dataset and to identify the genes
that are most highly correlated with the phenotype of interest.

• Neuroscience: PCA is used for analyzing brain imaging data, such as functional magnetic
resonance imaging (fMRI) data. In fMRI data analysis, PCA is used to identify the brain
regions that are most highly correlated with a particular task or stimulus[3].

Figure 1: Illustrate the Principle Component Analysis in nutshell.

187 Neural Networks

Advantages of PCA:

1. Dimensionality reduction: PCA can reduce the dimensionality of a dataset while retaining
most of the information. This can be useful for visualizing high-dimensional data and
reducing computational complexity.

2. Data compression: PCA can be used to compress data by representing it using a smaller
set of principal components. This can reduce storage and transmission costs.

3. Identifying important features: PCA can be used to identify the most important features
in a dataset. This can be useful for feature selection and data preprocessing.

4. Visualization: PCA can be used to visualize high-dimensional data in a lower-
dimensional space, making it easier to identify patterns and trends.

5. Robustness: PCA is a robust method that is less affected by outliers and noise in the data.

Limitations of PCA:

1. Interpretability: The principal components obtained from PCA are linear combinations of
the original variables, which may not be easily interpretable.

2. Loss of information: PCA can result in a loss of information, especially if the lower-
dimensional representation of the data does not capture all the important features of the
original data.

3. Sensitivity to scaling: PCA is sensitive to the scaling of the data. Therefore, it is
important to standardize the data before applying PCA.

4. Assumptions: PCA assumes that the data is normally distributed and linearly correlated.
If these assumptions are violated, the results of PCA may not be reliable.

The capacity of neural networks to learn from their surroundings and, via training, to enhance
their performance in some statistical sense is a crucial characteristic. With the exception of
Chapter 7's treatment of semi supervised learning. Focus of the analysis has been on supervised
learning methods, for which a training sample is provided. In supervised learning, the network
must approximate a collection of instances on a desired input-output mapping from the training
sample. We change course in this chapter and the next three: We research unsupervised learning
methods.

Unsupervised learning calls for the use of unlabeled samples to identify important patterns, or
features, in the incoming data. In other words, the network follows the maxim, "Learn from
examples without a teacher." Learning that is self-organized, the development of which is driven
by neurobiological factors. In specifically, a set of local behaviour rules are provided to the
unsupervised-learning algorithm, and it is necessary to apply the rules to calculate an input-
output mapping with desired features. The definition of "local" in this context suggests that the
changes made to each neuron's synaptic weights are restricted to the area around it. Given that
network architecture is crucial to the brain, modelling a neural network utilised for self-
organized learning has a tendency to adhere to neurobiological features[4].

188 Neural Networks

The strategy commonly used in machine learning statistical learning theory. Machine learning
places less emphasis on the localization of learning idea that neural networks do. Instead, a lot
more emphasis is put on tried-and-true mathematical techniques in statistical learning theory. We
examine principal-components analysis (PCA)1 from each of these two viewpoints in this
chapter. In statistical pattern recognition and signal processing, PCA is a common method for
dimensionality reduction.

Since changes to the synaptic weights of a single neuron must be dependent on presynaptic and
postsynaptic signals present at the local level, the process of self-amplification, or self-
reinforcement, is confined. In essence, the self-reinforcing and localization criteria define a
feedback process by which a strong synapses results in the concurrence of presynaptic and
postsynaptic signals. A coincidence like this strengthens the synapse in turn. The given method
is the fundamental core of Hebbian learning. On the basis of associative learning (at the cellular
level), Hebb suggested this adjustment, which would cause a long-lasting alteration in the
activity pattern of a geographically dispersed "assembly of nerve cells."

According to Stent we may broaden and rewrite it as a two-part rule:

1. The strength of a synapse (connection) is selectively enhanced if two neurons
on each side of the connection are stimulated simultaneously (i.e.,
synchronously).

2. A synapse is selectively damaged or deleted if two neurons on each side of it
are stimulated incoherently.

A Hebbian synapses is more specifically defined as a synapses that increases synaptic efficiency
as a function of the correlation between the presynaptic and postsynaptic activity via a time-
dependent, highly local, and strongly interacting process.

We may infer the following four main processes that define Hebbian learning from this

description.

1. A time-based method. This process alludes to the fact that the Hebbian synapse's
changes are dependent on the precise timing of the presynaptic and postsynaptic
impulses.

2. Regional system. A synapse is by definition the transmission location where
information-bearing signals are in spatiotemporal contiguity and indicate continuing
activity in the presynaptic and postsynaptic units. A Hebbian synapse uses this locally
accessible information to create an input-specific local synaptic change.

3. An interactive device. Signals on both sides of a Hebbian synapses determine whether a
change occurs. In other words, the Hebbian model of learning requires "real interaction"
between presynaptic and postsynaptic signals since none of these two processes can be
predicted on its own. Furthermore keep in mind that this reliance or interaction might be
statistical or deterministic in nature.

4. A method based on conjunction or correlation. According to one interpretation of
Hebb's learning postulate, the confluence of presynaptic and postsynaptic impulses is
necessary for a change in synaptic effectiveness. So, in accordance with this

189 Neural Networks

understanding, the cooccurrence of presynaptic and postsynaptic signals is sufficient to
generate the synaptic change (within a short period of time). Because of this, a Hebbian
synapses is also known as a conjunctional synapses. Hebb's postulate of learning may
also be interpreted in terms of the interaction process that, in statistical words, defines a
Hebbian synapse. A synaptic shift is thought to be caused, in part, by the correlation
between presynaptic and postsynaptic impulses over time.

As a result, a correlational synapse is another name for a Hebbian synapse. It is true that learning
is based on correlation. Consider a synaptic weight wkj of neuron k with presynaptic and
postsynaptic signals indicated by xj and yk, respectively, to represent Hebbian learning
mathematically [5].

The generic form is used to indicate the adjustment made to the synaptic weight wkj at time-step
n, where f(.,.) is a function of both postsynaptic and presynaptic signals. It is common practise to
regard the signals xj (n) and yk (n) as dimensionless. Many variants, all of which are Hebbian,
are allowed by the equation in (8.1). The simplest kind of Hebbian learning is defined by the
equation (8.2), where is a positive constant that controls the pace of learning. It is abundantly
obvious from A Hebbian synapses is correlational in nature. It is also known as the activity
product rule. From the depiction we can see that the synaptic connection eventually reaches
saturation when the input signal (presynaptic activity) xj is applied repeatedly. This exponential
rise is caused by an increase in yk. At that moment, the synapse will no longer be able to retain
any new information, and selectivity is gone. So, a stabilising mechanism for the neuron's self-
organized functioning is required, and this is handled by the second principle.

The competition between the synapses of a single neuron or a group of neurons is brought on by
the lack of resources in one way or another. As a consequence, the fittest or more aggressively
developing synapses or neurons are chosen over the rest. For a particular single neuron to
stabilise, for instance, there must be competition among its synapses for scarce resources (such
energy) in a manner that balances off the strengthening of certain synapses in the neuron with the
weakening of others. As a result, only "successful" synapses may develop further, while
unsuccessful synapses tend to deteriorate and finally perish.

A comparable competitive dynamic may exist at the network level if the following steps are
taken.

a. As every neuron in the network is the identical at first, with the exception of a few synaptic
weights that are dispersed at random, each neuron reacts differently to a particular set of
input patterns.

b. Each neuron in the network has a maximum amount of "strength" (ex., the sum of synaptic
weights).

c. There is only one output neuron, wkj(n), since the neurons compete with one another in line
with a predetermined rule for the right to react to a certain selection of inputs.

We discover that the network's individual neurons act as feature detectors for various classes of
input patterns as a result of this competitive learning process. Although several output neurons of
a neural network may be active at once during Hebbian learning, only one output neuron or one

190 Neural Networks

output neuron per group is active during competitive learning. Competitive learning is well
suited to finding statistically prominent characteristics that might be utilised to categorise a
collection of input patterns because of this attribute.

Changes to synaptic weights at the brain level and changes to neurons in the network have a
tendency to act together. The collaboration may develop as a result of synaptic plasticity or from
the simultaneous activation of presynaptic neurons caused by the proper environmental factors.

Take a look at the situation of a single neuron first: A single synapse cannot effectively create
positive events on its own. Instead, the synapses of the neuron must work together to allow the
transmission of coincident impulses powerful enough to activate that neuron. At the network
level, cooperation could happen as a result of lateral contact between a collection of stimulated
neurons. A neuron that is firing, in instance, has a tendency to stimulate nearby neurons more
than those further away from it. We often see that a cooperative system develops over time by a
series of minute adjustments from one configuration to another, until an equilibrium state is
formed.

It is also crucial to understand that competition always comes first in a self-organizing system
that includes both cooperation and competition. As a result, the input data's structural
information is a need for self-organized learning. It is also interesting to note that structural
information, or redundancy, is a property of the input signal, but self-amplification, competition,
and cooperation are activities that take place inside a neuron or a neural network. Think of a
speech or video transmission, for instance. A greater degree of correlation between consecutive
samples is seen in the sampled signal as a consequence of sampling such a signal quickly. This
strong correlation indicates that the signal includes organised, or redundant, information since,
on average. Principles of Self-Organization 371 it does not fluctuate much from one sample to
the next. In other words, structure and redundancy are synonymous with correlation[6].

For the unsupervised training of neural networks, the neurobiologically inspired laws of self-
organization remain true, but not necessarily for more generic learning machines that are needed
to carry out unsupervised-learning tasks. Unsupervised learning aims to fit a model to a
collection of unlabeled input data in a manner that accurately captures the underlying structure of
the data. Yet the data must be organised in order for the model to be feasible. Consider the steps
of information processing in the visual system as an example of the self-organization principles
just discussed. In particular, early on in the system, basic characteristics like contrast and edge
orientation are examined, however later on, more intricate, sophisticated aspects are examined.

Each neuron's receptive field, which is made up of a select group of neurons in an area of the
layer above it, is where it receives information. Since they enable neurons in one layer to react to
spatial correlations of the neuronal activity (i.e., structural information) in the preceding layer,
the network's receptive fields are vital to the synaptic growth process [7]. The model combines
parts of competitive and cooperative learning with Hebb-like synaptic modification such that the
network's outputs can best distinguish between a group of inputs, with self-organized learning
taking place layer by layer. In other words, before moving on to the next layer, the learning

191 Neural Networks

process allows the self-organized feature-analyzing qualities of the previous layer to completely
mature. This kind of learning is an example of learning features of features[8].

CONCLUSION

PCA is a powerful tool for dimensionality reduction, data compression, and feature selection. It
is widely used in various fields, including image processing, finance, genetics, and neuroscience.
PCA is a robust method that is less affected by outliers and noise in the data. However, PCA has
limitations, including interpretability, loss of information, sensitivity to scaling, and assumptions.
Therefore, it is important to carefully consider the application and the characteristics of the data
before applying PCA. Overall, PCA is a valuable statistical technique that can help extract
meaningful information from complex datasets.

REFERENCES

[1] Z. Zhang, L. Pfefferle, and G. L. Haller, “Characterization of functional groups on
oxidized multi-wall carbon nanotubes by potentiometric titration,” Catal. Today, 2015,
doi: 10.1016/j.cattod.2014.12.013.

[2] M. Ghaffari, M. Toorchi, M. Valizadeh, and M. R. Shakiba, “Morpho-physiological
screening of sunflower inbred lines under drought stress condition,” Turkish J. F. Crop.,
2012.

[3] X. Ling et al., “Genetic background analysis and breed evaluation of Yiling yellow
cattle,” J. Integr. Agric., 2017, doi: 10.1016/S2095-3119(17)61679-4.

[4] J. M. Kloda, P. D. G. Dean, C. Maddren, D. W. MacDonald, and S. Mayes, “Using
principle component analysis to compare genetic diversity across polyploidy levels within
plant complexes: An example from British Restharrows (Ononis spinosa and Ononis
repens),” Heredity (Edinb)., 2008, doi: 10.1038/sj.hdy.6801044.

[5] S. P. Koh, Y. P. Khor, C. P. Tan, N. S. A. Hamid, K. Long, and L. Shariah, “Principle
component analysis of organoleptic acceptability on cocosTM emulsion product,” Int. Food

Res. J., 2018.

[6] H. Y. Chuang, H. S. Lur, K. K. Hwu, and M. C. Chang, “Authentication of domestic
Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers,”
Bot. Stud., 2011.

[7] A. Ali, Y. B. Pan, Q. N. Wang, J. Da Wang, J. L. Chen, and S. J. Gao, “Genetic diversity
and population structure analysis of Saccharum and Erianthus genera using microsatellite
(SSR) markers,” Sci. Rep., 2019, doi: 10.1038/s41598-018-36630-7.

[8] R. N. Ndanuko, L. C. Tapsell, K. E. Charlton, E. P. Neale, and M. J. Batterham,
“Associations between Dietary Patterns and Blood Pressure in a Clinical Sample of
Overweight Adults,” J. Acad. Nutr. Diet., 2017, doi: 10.1016/j.jand.2016.07.019.

192 Neural Networks

CHAPTER 21

SELF-ORGANIZING MAPS: AN EXPLORATION OF UNSUPERVISED

LEARNING TECHNIQUES FOR CLUSTERING AND VISUALIZATION

IN NEURAL NETWORKS
Dr. Shilpa Mehta, PROF, DEAN Academics

Department of Electronics and Communication Engineering, Presidency University, Bangalore, India
Email Id-shilpamehta@presidencyuniversity.in

ABSTRACT:

Self-Organized Mapping (SOM) is an unsupervised learning technique in machine learning that
involves mapping high-dimensional data onto a low-dimensional grid of neurons, while
preserving the topological relationships between the data points. SOMs are based on the
principle of competitive learning, in which neurons compete to become the most similar to the
input data point, and the winning neuron is adjusted to become even more similar to the input
data point. SOMs use a neighborhood function to update the weights of the neurons in the grid,
with a decreasing influence over time. SOMs have been successfully applied in various fields
such as data visualization, clustering, and data compression.

KEYWORDS:

Clustering, Data Compression, Unsupervised Learning, Neural Networks, Self-Organizing Maps.

INTRODUCTION

Self-Organizing Maps (SOM) are a type of neural network that can be used to represent high-
dimensional data in a low-dimensional space. SOMs are also known as Kohonen maps, named
after their inventor, Teuvo Kohonen. The network is based on a competitive learning process,
where neurons compete with each other to represent different parts of the input data. The
winning neuron or neurons will activate and update their weights, and neighboring neurons will
also adjust their weights to some extent. The process continues iteratively until the neurons settle
into a stable configuration that represents the input data. The Self-Organizing Map is a powerful
tool that can be used in a wide range of applications, such as data visualization, clustering,
feature extraction, and dimensionality reduction. SOMs have been used in fields such as image
processing, signal processing, bioinformatics, finance, and social sciences [1].

The basic idea behind the Self-Organizing Map is to map high-dimensional input data onto a
low-dimensional space in such a way that the topological relationships between the input data are
preserved. This means that similar input vectors are mapped to nearby locations in the low-
dimensional space, while dissimilar input vectors are mapped to distant locations. The result is a
map where similar input vectors are represented by neighboring neurons, forming clusters or
groups that can be easily visualized and analyzed.

193 Neural Networks

In a typical Self-Organizing Map, the neurons are arranged in a two-dimensional grid, although
other topologies are also possible. Each neuron in the grid is associated with a weight vector of
the same dimensionality as the input data. During the training process, the weights of the neurons
are adjusted iteratively in response to the input data. The weight vector of each neuron represents
its location in the low-dimensional space, and neighboring neurons in the grid have weight
vectors that are close to each other.

The training process of a Self-Organizing Map consists of two phases: the initialization phase
and the competitive learning phase. In the initialization phase, the weights of the neurons are
randomly initialized to small values. In the competitive learning phase, the input data is
presented to the network, and the winning neuron or neurons are determined based on their
similarity to the input vector. The similarity between the input vector and a neuron's weight
vector is typically measured using the Euclidean distance or some other distance metric. The
winning neuron or neurons are then updated to better match the input vector. The update rule for
the winning neuron is as follows:

∆wi = α(t) * hci * (xi - wi)

where ∆wi is the change in the weight vector of the winning neuron i, α(t) is the learning rate at
time t, hci is the neighborhood function that determines the extent of the update for each
neighboring neuron c, xi is the input vector, and wi is the weight vector of the winning neuron i.

The learning rate α(t) is typically initialized to a high value and gradually decreased over time to
ensure convergence. The neighborhood function hci determines the extent of the update for each
neighboring neuron c, and is typically a Gaussian function that decays with distance from the
winning neuron. This means that neighboring neurons that are closer to the winning neuron will
be updated more than those that are farther away. The update rule for the neighboring neurons is
similar, but the weight vector of each neighboring neuron is updated to a lesser extent:

∆wj = α(t) * hcj * (xi - wj)

where ∆wj is the change in the weight vector of the neighboring neuron j, hcj is the
neighborhood function for neuron j, and xi and wj are the input vector and weight vector for
neuron j, respectively. The competitive learning phase is repeated for each input vector, and the
weights of the neurons gradually converge to a stable configuration that represents the accurately
the underlying structure of the input data. Once the training process is complete, the Self-
Organizing Map can be used for various applications, such as data visualization, clustering,
feature extraction, and dimensionality reduction.

One of the main advantages of the Self-Organizing Map is its ability to preserve the topological
relationships between the input data. This means that similar input vectors are mapped to nearby
locations in the low-dimensional space, while dissimilar input vectors are mapped to distant
locations. The result is a map where clusters or groups of similar input vectors are easily
identifiable and can be analyzed and visualized[2], [3].

194 Neural Networks

The Self-Organizing Map can also be used for data visualization, where the low-dimensional
map can be used to visualize complex high-dimensional data in a more interpretable way. By
mapping the high-dimensional data onto a low-dimensional space, the Self-Organizing Map can
reveal patterns and relationships that may not be immediately obvious in the original data. This
can be particularly useful in applications such as image processing, where the Self-Organizing
Map can be used to identify patterns and features in images.

Clustering is another application of the Self-Organizing Map, where the clusters or groups of
similar input vectors can be used to identify subpopulations or subgroups within the data. This
can be particularly useful in applications such as bioinformatics, where the Self-Organizing Map
can be used to identify genes or proteins that are co-regulated or co-expressed.

Feature extraction is another application of the Self-Organizing Map, where the low-dimensional
map can be used to extract the most important features or variables that best explain the variation
in the input data. This can be particularly useful in applications such as finance, where the Self-
Organizing Map can be used to identify the most important variables that influence financial
markets.

Dimensionality reduction is another application of the Self-Organizing Map, where the high-
dimensional input data can be mapped onto a low-dimensional space while preserving the most
important features or variables. This can be particularly useful in applications such as signal
processing, where the Self-Organizing Map can be used to reduce the dimensionality of the input
data while preserving the most important features or variables.

The Self-Organizing Map is also robust to noise and outliers in the input data. This is because the
competitive learning process is based on the similarity between the input vectors and the weight
vectors of the neurons, and not on the absolute values of the input vectors. This means that noisy
or outlier data points are less likely to significantly affect the mapping of the input data onto the
low-dimensional space.

There are also some limitations and challenges associated with the Self-Organizing Map. One
limitation is that the mapping of the input data onto the low-dimensional space is not unique,
meaning that different initializations or training parameters can lead to different maps. This can
be addressed by using multiple initializations or training parameters and selecting the map that
best represents the underlying structure of the data.

Another challenge is the selection of the appropriate number of neurons and the appropriate
topology of the Self-Organizing Map. The number of neurons determines the resolution of the
map, with a larger number of neurons leading to a higher resolution but also increasing the
computational complexity of the network. The topology of the Self-Organizing Map determines
the connectivity between the neurons and can affect the mapping of the input data onto the low-
dimensional space. The appropriate number of neurons and topology can be selected using
various techniques, such as the elbow method or the silhouette score.

195 Neural Networks

DISCUSSION

SOMs were first introduced in the early 1980s by Teuvo Kohonen, a Finnish professor of
computer science. The basic idea behind SOMs is to map a high-dimensional data space onto a
low-dimensional grid of neurons in such a way that the topological relationships between the
data points are preserved.

SOMs are also known as Kohonen maps, after their inventor. They are based on the principle of
competitive learning, which means that the neurons in the map compete with each other for the
right to respond to a given input. Each neuron is assigned a weight vector that represents a point
in the data space, and the neuron whose weight vector is closest to the input vector is activated.
The activated neuron and its neighboring neurons in the map then adjust their weight vectors in
order to better represent the input[4].

The basic structure of a SOM consists of a two-dimensional grid of neurons, although higher-
dimensional grids can also be used. Each neuron in the grid is connected to its neighboring
neurons, and each connection has a weight that represents the strength of the connection.

The neurons are organized in such a way that neighboring neurons in the grid are also neighbors
in the data space. The process of training a SOM involves presenting the network with a set of
input vectors and adjusting the weights of the neurons in the grid in response to each input. The
training process can be divided into two phases: the initialization phase and the training phase.
Figure 1 illustrate the Self Organized Maps.

Figure 1: Illustrate the Self Organized Maps.

In the initialization phase, the weights of the neurons in the grid are randomly initialized. The
goal of this phase is to place the neurons in the grid in such a way that they cover the data space
in a reasonably uniform manner. There are several methods for initializing the weights, but one
common approach is to sample random vectors from the data set and use them to initialize the
weights.

196 Neural Networks

In the training phase, the network is presented with input vectors one at a time. The input vector
is compared to the weight vectors of all the neurons in the grid, and the neuron whose weight
vector is closest to the input vector is selected as the winner. This neuron is called the Best
Matching Unit (BMU).

The distance between the input vector and the weight vector of the BMU is used to determine the
radius of a neighborhood around the BMU. All neurons within this neighborhood are considered
to be "close" to the BMU, and their weights are adjusted in response to the input vector.

The adjustment of the weights is based on the Hebbian learning rule, which states that "neurons
that fire together, wire together". In the case of SOMs, this rule can be interpreted as "neurons
that respond to similar inputs become more similar in their weight vectors". Specifically, the
weight vector of a neuron is updated according to the following formula:

W_i(t+1) = W_i(t) + η(t) h_ij(t) (X(t) - W_i(t))

where W_i(t) is the weight vector of neuron i at time t, η(t) is the learning rate at time t, h_ij(t) is
the neighborhood function that determines the influence of neuron j on neuron i at time t, X(t) is
the input vector at time t, and t is the current time step. The learning rate is a parameter that
controls the magnitude of the weight updates. It is typically set to a high value at the beginning
of the training process and then gradually decreased over time. This allows the network to make
larger weight updates early in the training process and then fine-tune the weights as the training
progresses[5].

The neighborhood function is a function that determines the influence of each neuron on its
neighbors in the grid. It is usually defined as a Gaussian function centered at the location of the
BMU, with a standard deviation that decreases over time. This means that the influence of each
neuron on its neighbors decreases as the training progresses, allowing the network to converge to
a stable configuration. The training process is repeated for a fixed number of iterations or until a
convergence criterion is met. The convergence criterion is usually based on the rate of change of
the weights or on the quantization error, which is a measure of how well the SOM preserves the
topological relationships between the data points.

Once the SOM is trained, it can be used for various tasks such as data visualization, clustering,
and data compression. One of the main advantages of SOMs is their ability to visualize high-
dimensional data in a low-dimensional space. This is achieved by assigning each data point to
the neuron whose weight vector is closest to the data point. The resulting map can then be
visualized using various techniques such as color-coding or 3D projections. SOMs can also be
used for clustering, which involves grouping similar data points together. This is done by
assigning each data point to the neuron whose weight vector is closest to the data point, and then
grouping together the neurons that have similar weight vectors. The resulting clusters can then be
analyzed to extract insights from the data.

197 Neural Networks

Another application of SOMs is data compression, which involves reducing the dimensionality
of the data while preserving its essential features. This is achieved by mapping the high-
dimensional data space onto a low-dimensional grid of neurons and then using the weight vectors
of the neurons as a compressed representation of the data. The compressed data can then be used
for various tasks such as classification or regression.

There are several variants of SOMs that have been proposed over the years, including Growing
SOMs, Kernel SOMs, and Vector Quantization SOMs. Growing SOMs are an extension of
SOMs that allow the network to grow and adapt its structure dynamically as it encounters new
data. Kernel SOMs are a variant of SOMs that use a kernel function to map the data space onto
the neuron grid, allowing for non-linear mappings. Vector Quantization SOMs are a variant of
SOMs that are designed for data compression and use a fixed number of neurons to represent the
data[6].

Despite their many advantages, SOMs also have some limitations and challenges. One of the
main challenges is the selection of the appropriate parameters, such as the learning rate and the
neighborhood function. These parameters can have a significant impact on the performance of
the network, and tuning them can be a time-consuming process. Another challenge is the
interpretation of the resulting map, which requires domain knowledge and expertise. Figure 2
illustrate the Self-Organized Map for Anomaly Detection with Python Implementation.

Figure 2: Illustrate the Self-Organized Map for Anomaly Detection with Python

Implementation.

These networks utilize competitive learning, where the network's output neurons compete with
one another will only ever be one output neuron or one neuron per group on at any given time
due to this activation or firing. A winning neuron, also known as a winner-takes-all neuron, is an
output neuron that defeats the opposition. The notion to leverage lateral inhibitory connections
(i.e., negative feedback routes) between the output neurons in order to create a winner-takes-all
competition was first put forward by Rosenblatt.

198 Neural Networks

The neurons are positioned at the nodes of a lattice, which is typically one or two dimensional, in
a self-organizing map. Though not as common, higher-dimensional maps are also In the course
of a competitive learning process, the neurons become selectively tuned to different input
patterns (stimuli) or classes of input patterns. The positions of the tuned neurons (i.e., the
winning neurons) are sorted with respect to one another in such a manner that a useful coordinate
system is produced across the lattice for various input characteristics. The formation of a
topographic map from the input patterns, in which the spatial positions of the neurons in the
lattice are indicative of intrinsic statistical features present in the input patterns, is therefore what
is known as a "self-organizing map."

Self-organizing maps were created as a neural model because of a unique characteristic of the
human brain. The brain is structured in several locations such that various sensory inputs are
represented by computational maps that are topologically ordered. The computational map is a
fundamental component of the nervous system's information-processing architecture. An array of
neurons acting as slightly different tuned processors or filters that simultaneously process
sensory information-carrying impulses make up a computational map.

 In order to represent the estimated values of parameters by places of maximal relative activity
within the map, the neurons convert input signals into a place-coded probability distribution.
With relatively straightforward connection schemes, higher-order processors can easily access
the information that has been thusly derived. Anybody who looks inside a human brain is struck
by how much the cerebral cortex dominates the structure and obscures the other areas. The
cerebral cortex is perhaps the most complex known structure in the cosmos in terms of sheer
intricacy. A biological explanation for the issue of retinotopic mapping from the retina to the
visual brain in higher vertebrates. Two distinct two-dimensional lattices of neurons are
specifically linked together, with one projecting onto the other. Presynaptic (input) neurons are
represented by one lattice, while postsynaptic (output) neurons are represented by the other
lattice. Both a short-range excitatory mechanism and a long-range inhibitory mechanism are used
by the postsynaptic lattice. These two regional systems play a crucial role in self-organization.
Hebbian type adjustable synapses join the two lattices together.

The postsynaptic neurons are not, strictly speaking, winner-takes-all neurons; rather, a threshold
is utilised to make sure that only a small number of postsynaptic neurons will fire at any one
moment. Moreover, the overall weight associated with each postsynaptic neuron is constrained
by an upper-boundary requirement to avoid a continuous accumulation of synaptic weights that
might cause network instability. 3 As a result, certain synaptic weights for each neuron rise while
others drop. The Willshaw-von der Malsburg model's central tenet is that presynaptic neurons'
geometric closeness is recorded as correlations in their electrical activity, which are then used in
the postsynaptic lattice to link nearby presynaptic neurons to nearby postsynaptic neurons.
Hence, a self-organization process results in the production of a topologically ordered mapping.
However keep in mind that the Willshaw-von der Malsburg model is only applicable to
mappings when the input and output dimensions are the same[7].

Instead, the model preserves computational tractability while capturing the key aspects of
computational brain mapping. In that it can do data compression, it seems that the Kohonen

199 Neural Networks

model is more versatile than the Willshaw-von der Malsburg model (i.e., dimensionality
reduction on the input). In order to enable data compression, the model offers a topological
mapping that best fits a certain number of vectors (i.e., code words) into a higher-dimensional
input space.

 Hence, there are two approaches to generate the Kohonen model. In order to create the model,
we may first employ fundamental concepts of self-organization that are inspired by
neurobiological considerations, which is the conventional method. As an alternative, we may use
a vector quantization method that is driven by communication theory and employs a model with
an encoder and a decoder both strategies are taken into account. In comparison to the Willshaw-
von der Malsburg model, the Kohonen model has gotten significantly more attention in the
literature. The Kohonen model is able to capture the crucial characteristics of cortical maps
because it has a few characteristics. All of the source nodes in the input layer are completely
linked to every neuron in the lattice. The neurons in this network's sole computational layer are
organised in rows and columns to simulate a feedforward structure is a specific instance of a one-
dimensional lattice, where the computational layer is reduced to just a single column or row of
neurons.

Every input pattern that is delivered to the network usually consists of a small area or "spot" of
activity set against a silent backdrop. From one realisation of the input pattern to another, the
position and characteristics of such a spot often change. To guarantee that the self-organization
process has a chance to operate successfully, all of the network's neurons should be exposed to a
sufficient number of different realisations of the input pattern. The synaptic weights in the
network are initially initialised by the algorithm that creates the self-organizing map. This may
be accomplished without imposing a predetermined order on the feature map by giving them
modest values chosen at random. The development of the self-organizing map requires three
crucial steps, which are outlined below and are engaged after the network has been established
correctly.

The neurons in the network calculate their own values of a discriminant function for each input
pattern. The foundation for competition among the neurons is provided by this discriminant
function. The competition's winner is the specific neuron with the highest value of discriminant
function. Cooperation. The winning neuron establishes the topological neighbourhood of
stimulated neurons' spatial position, laying the groundwork for their cooperative behaviour.

Synaptic adaptation, third. By appropriate modifications made to their synaptic weights, this last
step allows the stimulated neurons to raise their individual values of the discriminant function in
respect to the input pattern. The changes made boost the winning neuron's response to the
application of a similar input pattern in the future. Two of the four self-organizational concepts
apply to the competitive and cooperative processes. In the adaptation process, the concept of
self-amplification manifests as a modified version of Hebbian learning. Redundancy in the input
data is crucial for learning since it reveals the underlying structure of the input activation
patterns, even if it isn't discussed directly while presenting the SOM method. The mechanisms of
competition, collaboration, and synaptic adaptation are described in detail in the sections that
follow.

200 Neural Networks

Let m stand for the input (data) space's dimension. Let's say that a randomly chosen input pattern
(vector) from the input space is indicated. Each neuron in the network has a synaptic-weight
vector with the same dimension as the input space. Let (9.2) be the symbol for the synaptic-
weight vector of neuron j, where l is the total number of neurons in the network. We compare the
inner products to get the best match between the input vector x and the synaptic-weight vectors.

Self-Organizing Maps, and choose the biggest. The threshold, which is the opposite of bias, is
assumed to be applied uniformly to all neurons according to this strategy. In order to find the
region where the topological neighborhood of excited neurons should be focused, we shall
choose the neuron with the biggest inner product in effect. The best-matching criteria, based on
maximising the inner product, is mathematically equal to minimising the Euclidean distance
between the vectors x and wj, given that wj has unit length for every j. The following condition,
which captures the core of the competition process among the neuronal lattice is indicated states
that i(x) is the focus of attention since we are trying to identify neuron i. The best-matching, or
winning, neuron for the input vector x is the specific neuron that meets this criteria, denoted by
the letter i.

A process of competition between the neurons in the network maps a continuous input space of
activation patterns onto a discrete output space of neurons. Depending on the application of
interest, the network's response might either be the synaptic weight vector that is Euclidean-
closest to the input vector or the index of the victorious neuron Cooperation Method. Remember
that there is neurobiological evidence for lateral contact among a group of stimulated neurons in
the human brain before attempting to respond to this straightforward question. It is intuitively
pleasing that a neuron that is firing, in particular, tends to stimulate the neurons nearby more than
those further away from it [8].

This discovery prompts us to create a topological neighborhood and smooth the lateral distance
decay of the winning neurons, one of which is symbolized by j and is centred on winning neuron.
The lateral separation between the successful neuron I and the ecstatic neuron j is shown by the
symbol.The winning neuron for which the distance dj,i is zero, is where the topological
neighborhood hj,i reaches its greatest value since it is symmetric around the maximum point
described by dj. When lateral distance dj,i increases, the amplitude of the topological
neighborhood hj,i drops monotonically, fading to zero for; this is a prerequisite for
convergence[9]. The parameter quantifies how much the stimulated neurons around the winning
neuron contribute in the learning process. It is called the "effective breadth" of the topological
neighborhood.

In comparison to a rectangular neighborhood that was previously employed, the Gaussian
topological neighborhood is more physiologically suitable. The SOM technique converges more
rapidly than it would with a rectangular topological neighborhood when a Gaussian topological
neighborhood. The topological neighborhood hj,i must rely on the lateral distance dj,i between
the winning neuron and stimulated neuron j in the output space rather than on some distance
measure in the original input space for nearby neurons to cooperate[10].

201 Neural Networks

CONCLUSION

Self-Organizing Maps are a powerful tool for unsupervised learning, data visualization, and data
compression. They are based on the principle of competitive learning and use a two-dimensional
grid of neurons to map a high-dimensional data space onto a low-dimensional space. SOMs have
many applications in various fields such as data mining, image processing, and natural language
processing. However, they also have some challenges and limitations that need to be addressed
in order to fully exploit their potential.

REFERENCES

[1] M. B. Gorzałczany and F. Rudziński, “Evolution of SOMs’ structure and learning
algorithm: From visualization of high-dimensional data to clustering of complex data,”
Algorithms, 2020, doi: 10.3390/A13050109.

[2] R. Tatoian and L. Hamel, “Self-organizing map convergence,” Int. J. Serv. Sci. Manag.

Eng. Technol., 2018, doi: 10.4018/IJSSMET.2018040103.

[3] A. D. Ramos, E. López-Rubio, and E. J. Palomo, “The role of the lattice dimensionality in
the self-organizing map,” Neural Netw. World, 2018, doi: 10.14311/NNW.2018.28.004.

[4] M. Amodio et al., “Exploring single-cell data with deep multitasking neural networks,”
Nat. Methods, 2019, doi: 10.1038/s41592-019-0576-7.

[5] H. Cho, B. Berger, and J. Peng, “Generalizable and Scalable Visualization of Single-Cell
Data Using Neural Networks,” Cell Syst., 2018, doi: 10.1016/j.cels.2018.05.017.

[6] H. T. Nguyen, T. B. Tran, H. H. Luong, T. P. Le, and N. C. Tran, “Improving disease
prediction using shallow convolutional neural networks on metagenomic data
visualizations based on mean-shift clustering algorithm,” Int. J. Adv. Comput. Sci. Appl.,
2020, doi: 10.14569/IJACSA.2020.0110607.

[7] G. Kavitha and N. M. Elango, “An overview of data mining techniques and its
applications,” Int. J. Civ. Eng. Technol., 2017.

[8] P. Mehta et al., “A high-bias, low-variance introduction to Machine Learning for
physicists,” Physics Reports. 2019. doi: 10.1016/j.physrep.2019.03.001.

[9] R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef, “Deep generative modeling
for single-cell transcriptomics,” Nat. Methods, 2018, doi: 10.1038/s41592-018-0229-2.

[10] M. E. Yahia and M. El-Mukashfi El-Taher, “A New Approach for Evaluation of Data
Mining Techniques,” IJCSI Int. J. Comput. Sci. Issues ISSN, 2010.

	COVER
	CONTENTS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15
	CHAPTER 16
	CHAPTER 17
	CHAPTER 18
	CHAPTER 19
	CHAPTER 20
	CHAPTER 21

